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Abstract
We used sensitive rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) to

quantify the Clostridium coccoides group, which is a major anaerobic population in the

human intestine. For this purpose, the C. coccoides group was classified into 3 subgroups

and 19 species for expediency in accordance with the existing database, and specific prim-

ers were newly developed to evaluate them. Population levels of the C. coccoides group in

human feces determined by RT-qPCR were equivalent to those determined by fluores-

cence in situ hybridization. RT-qPCR analysis of fecal samples from 96 volunteers (32

young children, 32 adults and 32 elderly) by using the 22 new primer sets together with the

C. coccoides group-specific primer setm revealed that (i) total counts obtained as the sum

of the 3 subgroups and 19 species were equivalent to the results obtained by using the C.
coccoides group-specific primer set; (ii) total C. coccoides-group counts in the elderly were

significantly lower than those in young children and adults; (iii) genus Blautia was the most

common subgroup in the human intestinal C. coccoides-group populations at all age popu-

lations tested; (iv) the prevalences of Fusicatenibacter saccharivorans and genus Dorea
were significantly higher in adults than in young children and the elderly; and (v) the preva-

lences of C. scindens and C. hylemonae, both of which produce secondary bile acid in the

human intestine, were significantly higher in the elderly than in young children and adults.

Hierarchical clustering and principal component analysis showed clear separation of the

bacterial components between adult and elderly populations. Taken together, these data

suggest that aging plays an important role in the diversity of C. coccoides-group popula-

tions in human intestinal microbiota; changes in this diversity likely influence the health of

the host.
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Introduction
The human intestine is inhabited by more than 1000 bacterial species, with a total of 1011 to
1012 bacterial cells per gram of feces [1]. Among a variety of human intestinal bacteria, the
strictly anaerobic Clostridium coccoides group constitutes 25% to 60% of the total and is thus
the most dominant bacterial group [2–5]. A large number of species of genera such as Clostridi-
um, Blautia, Dorea, Eubacterium, Ruminococcus, Anaerostipes, Roseburia, and Coprococcus be-
long to the group [2,5]. A clone library analysis has shown that not only culturable species but
also many as-yet-uncultured bacteria are included in this group [6]: our team has recently iden-
tified a new species, Fusicatenibacter saccharivorans, in the group [7].

The C. coccoides-group bacteria have been reported to affect their hosts’ intestines in several
ways. For example, Eubacterium rectale, Eubacterium hallii, Eubacterium ramulus, Roseburia
intestinalis, and Anaerostipes caccae are known to produce butyrate [8,9]. Clostridium scindens
and Clostridium hylemonae have high levels of bile acid 7α-dehydroxylating activity; this yields
secondary bile acids such as deoxycholic acid and lithocholic acid [10]. Moreover, certain com-
mensal C. coccoides-group species induce regulatory T-cell production in the mouse colon, sug-
gesting that these bacteria play critical roles in immune homeostasis [11,12]. Taken together,
these findings show that C. coccoides group play important roles in immunology, nutrition,
and pathological processes, and hence in the health of their hosts. Despite their predominance
in the human intestine and their physiological importance to the host, the composition of C.
coccoides group-species in the human intestine remains unclear. YIF-SCAN (Yakult Intestinal
Flora-SCAN), a highly sensitive and rapid system that uses reverse transcription-quantitative
PCR (RT-qPCR), has been developed to quantify a variety of bacterial populations in the intes-
tinal microbiota [13–17]. The sensitivity of this technique has been shown to be 100 to 1000
times higher than that of qPCR, because the rRNA copy number per cell (approximately 104

copies per actively growing cell) is higher than that of rRNA genes (approximately 10 copies in
a genome) [13,14,16]. Here, we developed specific primer sets for the 3 subgroups and 19 spe-
cies in the C. coccoides group. We then analyzed the intestinal C. coccoide-group populations in
96 Japanese volunteers (32 young children, 32 adults, and 32 elderly) by using RT-qPCR to
evaluate bacterial population diversity in the different age groups.

Materials and Methods

Strains and culture conditions
The strains listed in Table 1 were used. Thirty-eight strains were cultured anaerobically at 37°C
in Modified GAM broth (Nissui Pharmaceutical Co., Ltd, Tokyo, Japan) containing 1.0% (wt/
vol) glucose (Beckton Dickinson Co., Sparks, MD) for the following periods of time for harvest
them in the early stationary phase: A. caccae, Dorea formicigenerans, Eu. ramulus, and Blautia
producta for 18 h; Clostridium hathewayi, Clostridium symbiosum, F. saccharivorans, Rumino-
coccus gnavus, Ruminococcus lactaris, Eu. rectale, and Eubacterium ventriosum for 20 h; Clos-
tridium nexile and Eu. hallii for 22 h; Clostridium indolis, Clostridium oroticum, Eubacterium
eligens, Clostridium celerecrescens, Clostridium sphenoides, Blautia hydrogenotrophica, Blautia
schinkii, Ruminococcus obeum, Blautia coccoides, Blautia hansenii, Blautia luti, C. hylemonae,
C. scindens, Ruminococcus torques, Coprococcus eutactus, Coprococcus comes, Roseburia intesti-
nalis, Clostridium asparagiforme, Bacteroides vulgatus, Bifidobacterium longum, Collinsella
aerofaciens, Prevotella melaninogenica, Clostridium perfringens, and Clostridium difficile for 24
h; and Faecalibacterium prausnitzii for 72 h. Lactobacillus acidophilus was cultured anaerobi-
cally at 37°C for 24 h in Lactobacilli MRS broth (Becton Dickinson Co.). Escherichia coli, En-
terococcus faecalis, and Staphylococcus aureus were cultured aerobically at 37°C for 16 h in
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Brain Heart Infusion broth (Beckton Dickinson Co.). Campylobacter jejuni was cultured under
micro-aerophilic conditions at 37°C for 16 h in Preston broth, which contained Bacto peptone
(1.0%, wt/vol; Difco Laboratories, Detroit, MI), Lab-Lemco powder (1.0%, wt/vol; Oxoid Co.,
Basingstoke, UK), PBS(-) (1.0%, wt/vol; Nissui Pharmaceutical Co., Ltd), sodium pyruvate
(0.025%, wt/vol; Kanto Chemical Co., Tokyo, Japan), sodium disulfite (0.025%, wt/vol; Kanto
Chemical Co.), and iron(III) sulfate n-hydrate (0.025%, wt/vol; Kanto Chemical Co.).

Total RNA isolation from bacterial culture
For RNA stabilization, 200 μl of RNAlater (Ambion Inc., Austin, TX) was added to each fresh
bacterial culture (100 μl). After being kept for 10 min at room temperature, the bacterial sus-
pensions were centrifuged at 4°C at 13,000g for 10 min. Pellets were stored at -80°C until used
for RNA extraction. RNA extraction was performed by using a method described previously
[16]. Briefly, the thawed sample was resuspended in a solution containing 346.5 μl of RLT buff-
er (Qiagen Sciences, Germantown, MD), 3.5 μl of β-mercaptoethanol (Sigma-Aldrich Co.,
St. Louis, MO) and 100 μl of Tris-EDTA buffer (Wako Pure Chemical Industries, Ltd., Osaka,
Japan). Glass beads (300 mg; diameter, 0.1 mm) (BioSpec Products, Inc., Bartlesville, OK) were
added to the suspension, and the mixture was vortexed vigorously for 5 min with a ShakeMas-
ter Auto (BioMedical Science Inc., Tokyo, Japan). Then 500 μl of water-saturated phenol
(Wako Pure Chemical Industries, Ltd.) was added to the mixture, which was then incubated at
60°C for 10 min. After the incubation, 100 μl of chloroform-isoamylalcohol (24:1) was added
to the mixture. After centrifugation of the mixture at 13,000g at 4°C for 10 min, 470 μl of super-
natant was collected and an equal volume of chloroform-isoamylalcohol was added to the su-
pernatant. After centrifugation at 4°C at 12,000g for 5 min, 400 μl of supernatant was collected
and subjected to isopropanol precipitation. Finally, the nucleic acid fraction from the bacterial
culture was suspended in 100 μl of nuclease-free water (Ambion Inc.).

Fecal collection and processing
Feces from 8 healthy Japanese adults (average age 39±8 years) were used for comparison of
bacterial counts by using RT-qPCR, qPCR, and fluorescence in situ hybridization (FISH).
Feces from 32 healthy young Japanese children (average age 3.2±0.1 years), 32 healthy adults
(average age 39±11 years), and 32 healthy elderly (average age 82±6 years) were used to analyze
the intestinal microbiota among different age generations by using RT-qPCR.

A spoonful of feces (0.5 g) was collected into a tube containing 2 ml of RNAlater for nucleic
acid extraction; another spoonful was collected into an empty tube for FISH analysis. Both col-
lections were made immediately after defecation. Bacterial rRNA in feces suspended in RNAla-
ter solution can be kept stable during processing and storing [14].

Each fecal sample for nucleic acid analysis was weighed and suspended in 9 volumes of
RNAlater to make a fecal homogenate (100 mg feces/ml). In preparation for RNA extraction, 1
ml of PBS(-) was added to 200 μl of fecal homogenate. The fecal homogenate was centrifuged
at 4°C at 13,000g for 10 min and all the supernatant was discarded. The precipitating pellets
were stored at -80°C until used for RNA extraction. RNA extraction was performed as de-
scribed above except that the final suspension volume of nuclease-free water was 1 ml. In prep-
aration for DNA extraction, 1 ml of PBS(-) was added to 200 μl of fecal homogenate. The fecal
homogenate was centrifuged at 13,000g for 10 min and 1 ml of the supernatant was discarded.
After another wash with 1 ml of PBS(-), the pellets were stored at -30°C until used for DNA ex-
traction. DNA extraction was performed according to the method described by Matsuki et al.
[18].
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Each fecal sample for FISH analysis was weighed and suspended in 9 volumes of PBS(-) to
make a fecal homogenate (100 mg feces/ml). One hundred microliters of fecal homogenate was
fixed with 300 μl of 4% paraformaldehyde at 4°C for 16 h. After fixation, 10 μl of the diluted
suspension was used in the FISH analysis.

In accordance with the Declaration of Helsinki, all subjects were adequately informed of the
study and provided their written informed consent to participate. In the case of minors, their
guardians were also adequately informed of the study and provided written informed consent
for participation. The ethics committee of Yakult Central Institute approved the study.

Design of rRNA-targeted specific primers
By using 16S rRNA sequences obtained from the DDBJ/GenBank/EMBL databases, we used
the program Clustal X [19] to construct multiple alignments of 31 C. coccoides-group species
known to be commensals in the human intestine [1,5,6] and also of the reference organism (E.
coli). We constructed a phylogenetic tree by using the neighbor-joining method with Tree
View software. We then used the phylogenetic tree to classify the commensal C. coccoides-
group species in the human intestinal microbiota for expediency into 3 subgroups (designated
genus Blautia, C. indolis subgroup, and genus Dorea) and 19 species (Eu. ventriosum, Eu. hallii,
Co. eutactus, Eu. eligens, Eu. rectale, Eu. ramulus, C. symbiosum, F. saccharivorans, C. asparagi-
forme, C. hathewayi, R. gnavus, A. caccae, R. intestinalis, Co. comes, C. nexile, C. scindens, C.
hylemonae, R. torques, and R. lactaris) (Fig 1). After comparison of the sequences, potential tar-
get sites for specific detection were identified and 22 primer sets specific for the subgroups and
species were newly constructed (Table 2). Their specificity was checked by submitting the se-
quences to the Probe Match program of the Ribosomal Database Project (http://rdp.cme.msu.
edu/).

RT-qPCR
RT-qPCR was performed with a Qiagen OneStep RT-PCR kit (Qiagen GmbH, Hilden, Ger-
many). Each reaction mixture (10 μl) was composed of 1× Qiagen OneStep RT-PCR buffer,
0.5× Q-solution buffer, each deoxynucleoside triphosphate at a concentration of 400 μM, a
1:100,000 dilution of SYBR green I (BioWhittaker Molecular Applications, Rockland, ME),
0.4 μl of Qiagen OneStep RT-PCR enzyme mixture, and 5 μl of template RNA. Each primer set
was added at a concentration of 0.6 μM in accordance with the method used in previous re-
ports [14,16], except in the case of s-Acac-F/R, which was added at a concentration of 2.1 μM.
The reason for using a different concentration of the s-Acac-F/R primer set in the reaction mix-
ture was that RT-PCR efficiency was quite low when s-Acac-F/R was used at a concentration of
0.6 μM or 0.12 μM, but it improved substantially at a concentration of 2.1 μM (data not
shown). The reaction mixture was incubated at 50°C for 30 min for reverse transcription. The
continuous amplification program consisted of one cycle at 95°C for 15 min, followed by 45 cy-
cles at 94°C for 20 s, 55°C or 60°C for 20 s, and 72°C for 50 s. The annealing temperature for
each primer set was described in Table 2. The fluorescent products were detected in the last
step of each cycle. A melting curve analysis was performed after amplification to distinguish
the targeted PCR products from the non-targeted ones. The melting curve was obtained by
slow heating at temperatures from 60 to 95°C at a rate of 0.2°C/s with continuous fluorescence
collection. Amplification and detection were performed in 384-well optical plates with an ABI
PRISM 7900HT sequence detection system (Applied Biosystems, Foster, CA). Standard curves
for the standard bacterial strains in Table 2 were generated by using Cq values and the corre-
sponding cell counts, which were determined microscopically with the DAPI staining method
as previously described [20]. To determine the target bacterial populations in the fecal samples,
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Fig 1. Phylogenetic tree showing the relationships among 16S rRNA gene sequences of theClostridium coccoides group. Scale bar represents 0.1
substitutions per nucleotide position. The Escherichia coli sequence was used as an outgroup for rooting the tree.

doi:10.1371/journal.pone.0126226.g001
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Table 2. Primer information.

group/species Standard Strain Strain No. Primer
name

Sequence (5'-3') Anealing
Temp (°C)

Product size
(bp)

Clostridium coccoides
group

Blautia producta JCM
1471T

g-Ccoc-F AAATGACGGTACCTGACTAA 55 438

g-Ccoc-R CTTTGAGTTTCATTCTTGCGAA

Eubacterium ventriosum Eubacterium ventriosum ATCC
27560T

s-Event-F GTCGGGGGACAATAGTTCC 55 451

s-Event-R ATTTGCTTACCCTCACGGGG

Eubacterium hallii Eubacterium hallii DSM
3353T

s-Ehal-F GTGTCGGGGCCGTATAGG 55 436

s-Ehal-R GTTCGCCTCACTCTGTGAC

Coprococcus eutactus Coprococcus eutactus ATCC
27759T

s-Ceut-F CTGGAGCTTGCTCCGGCCGATTT 55 655

s-Ceut-R GTCAGTAGCAGTCCAGTAAGT

Eubacterium eligens Eubacterium eligens DSM
3376T

s-Eeli-F TGTCGGGGCCCATAAGGG 55 190

s-Eeli-R CATTACTGTCCGGTCAGTG

Eubacterium rectale Eubacterium rectale ATCC
33656T

s-Erec-F TTCTGACCGGTACTTAACCGTACC 55 281

s-Erec-R TTTGCTCGGCTTCACAGCTTT

Eubacterium ramulus Eubacterium ramulus ATCC
29099T

s-Eram-F GAGCGTAGGCGGTCCTGC 55 452

s-Eram-R GGGAAAACACATTACATGTTCTG

Genus Blautia Blautia producta JCM
1471T

g-Blau-F GTGAAGGAAGAAGTATCTCGG 55 559

g-Blau-R TTGGTAAGGTTCTTCGCGTT

Clostridium symbiosum Clostridium symbiosum JCM
1297T

s-Csym-F TAAGCGCACAGTATTGCATGATA 55 815

s-Csym-R CGTTACTCCCCCGTCGAG

Fusicatenibacter
saccharivorans

Fusicatenibacter
saccharivorans

JCM
18507T

s-Fsac-F CTGCATTGGAAACTGTCTGG 55 389

s-Fsac-R CGTTACGGGCCGGTCATC

Clostridium
asparagiforme

Clostridium
asparagiforme

DSM
15981T

s-Casp-F GTTTTCGGATGGATTCTAGATG 55 568

s-Casp-R CTCCTGCACTCTAGCTTGA

Clostridium hathewayi Clostridium hathewayi DSM
13479T

s-Chath-F CTTGACATCCCACTGAAAACAC 55 162

s-Chath-R AGAGTGCCCGACTCTACTC

Clostridium indolis
subgroup

Clostridium indolis JCM
1380T

sg-Cind-F ACCAAGTCTTGACATCGGAATGA 55 276

sg-Cind-R TTGCTCCAGATCGCTCCTT

Ruminococcus gnavus Ruminococcus gnavus ATCC
29149T

s-Rgna-F CTTGCTGGACGATGACTGAC 55 269

s-Rgna-R CTCCGATTAAAGAGCGGTCAGA

Anaerostipes caccae Anaerostipes caccae DSM
14662T

s-Acac-F GTTTTCGGATGGATTTCCTATAT 55 121

s-Acac-R CTTTTCACACTGAATCATGCGATT

Roseburia intestinalis Roseburia intestinalis DSM
14610T

s-Rint-F GCACAGGGTCGCATGACCT 60 818

s-Rint-R AACACATTACATGTTCTGTCATC

Coprococcus comes Coprococcus comes ATCC
27758T

s-Ccom-F GTGACCGGCGTGTAATGACG 55 145

s-Ccom-R CAGAGTGCCCATCCGAATTG

Clostridium nexile Clostridium nexile ATCC
27757T

s-Cnex-F GGATTTCTTCGGATTGAAGTTTTT 55 517

s-Cnex-R TTTCACATCAGACTTACACAAC

Genus Dorea Dorea formicigenerans DSM
3992T

g-Dor-F GCAGCTAACGCAATAAGCAG 55 155

g-Dor-R CTTCCATTACGAAGCGGTC

Clostridium scindens Clostridium scindens JCM
6567T

s-Csci-F GCATTTGGAACTGCGTGG 55 587

s-Csci-R CGTTACGCGCTTTGGCATCG

Clostridium hylemonae Clostridium hylemonae DSM
15053T

s-Chyl-F AAGAGATTAGCTTGCTAAGATCAG 55 141

s-Chyl-R TCTACCATGCGGTACTGAGGT

Ruminococcus torques Ruminococcus torques ATCC
17756T

s-Rtor-F CGAAGCACTTTGCTTAGA 55 526

s-Rtor-R ACATCAGACTTGCCCATC

Ruminococcus lactaris Ruminococcus lactaris ATCC
19176T

s-Rlac-F GGGAGCGTAGACGGAGCA 55 452

s-Rlac-R AAGCAGACATTACTCTGCCG

doi:10.1371/journal.pone.0126226.t002
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1/20,000, 1/200,000, and 1/2,000,000 portions of the RNA solution were subjected to RT-
qPCR. The quantification cycle (Cq) values in the linear range of the assay were applied to the
analytical curve generated in the same experiment to obtain the corresponding bacterial count
in each nucleic acid sample; this count was then converted to the count per sample. No PCR in-
hibition was observed in each assay (data not shown).

qPCR
The specific primer set for C. coccoides group (Table 2) was used. Each reaction mixture (10 μl)
was composed of 1× PCR buffer (Takara Bio Inc., Shiga, Japan), each deoxynucleoside triphos-
phate at a concentration of 200 μM, MgCl2 solution at a concentration of 2.5 mM, a 1:75,000
dilution of SYBR green I (BioWhittaker Molecular Applications), Takara Taq (Takara Bio Inc.)
at a concentration of 0.02 units/μl, TaqStart antibody (Takara Bio Inc.) at a concentration of
5.5 ng/μl and 5 μl template DNA. g-Ccoc-F and g-Ccoc-R primers were added at a concentra-
tion of 0.2 μM in accordance with the method used in a previous report [21]. The amplification
program consisted of one cycle at 95°C for 5 min, followed by 40 cycles at 94°C for 20 s, 55°C
for 20 s, and 72°C for 50 s. The fluorescent products were detected in the last step of each cycle.
A melting curve analysis was performed as described in the methods for RT-qPCR. qPCR am-
plification and detection were performed in 384-well optical plates with an ABI PRISM
7900HT sequence detection system (Applied Biosystems). Standard curves for the standard
bacterial strain in Table 2 were generated by using Cq values and the corresponding cell counts,
which were determined microscopically with the DAPI staining method as previously de-
scribed [20]. To identify the target bacterial population in the fecal samples, 1/2,000, 1/20,000,
and 1/200,000 portions of DNA solution were subjected to qPCR. The Cq values in the linear
range of the assay were applied to the analytical curve generated in the same experiment to ob-
tain the corresponding bacterial count in each nucleic acid sample; this count was converted to
the count per sample. No PCR inhibition was observed in each assay (data not shown).

Determination of bacterial counts by FISH
FISH analyses with the C. coccoides group-specific oligonucleotide probe Erec482 (5’-
GCTTCTTAGTCARGTACCG-3’) [22] were performed as described previously [23]. Briefly,
fresh bacterial cultures were fixed with three volumes of 4% paraformaldehyde at 4°C for 16 h.
Then, 10 μl of fixed-cell suspension at the appropriate dilution was smeared on a MAS-coated
slide glass (Matsunami Glass Ind., Ltd., Osaka, Japan), which was hybridized with the probe.
Observation and acquisition of the fluorescent images were performed with a Leica imaging
system (using a Leica DM6000 automatic fluorescent microscope), image-acquisition software
QFluoro, and a cooled black-and-white charge-coupled display camera (Leica DFC3500FX)
(Leica Microsystems GmbH, Wetzlar, Germany). The fluorescent images obtained were ana-
lyzed by using image analysis software (Image-Pro Plus v. 4.5; Media Cybernetics, Inc., Be-
thesda, MD) to quantify the fluorescent cells in each sample. Microscopic counts were
determined for 10 images per sample.

Specificity check
The specificity of the primer sets was confirmed against the total RNA fractions extracted from
105 cells of each bacterial strain (Table 1) by using RT-qPCR. The amplified signal was consid-
ered positive (+) at>104 standard cells, positive/negative (±) at 104 to 100 standard cells, and
negative (-) at<100 standard cells. The amplified signal was also defined as negative (-) when
the corresponding melting curve had a peak different from that of the standard strain.
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Sequencing of the RT-PCR amplified products
RT-PCR products generated with the primer set s-Casp-F and s-Casp-R were purified by using
a HighPure PCR product purification kit (Roche Diagnostics GmbH, Mannheim, Germany)
and used for sequence analysis.

Statistical analyses
The log-transformed bacterial count was used for statistical analyses. Bacterial counts of “not
detected” (ND) samples were regarded as half the detection limits of the corresponding primer
sets. JMP version 9.0 software (SAS Institute, Cary, NC) was used to conduct the Steel-Dwass
test, which is a popular non-parametric method for multiple comparisons, and Fisher’s proba-
bility test with the Holm correction was used to compare the ratio among the 3 age groups. For
multivariate analyses of the data, a principal component analysis (PCA) was used to visualize
the data sets by using the statistical programming language R 2.1.5. A heatmap was created by
using the R function “heatmap.”Hierarchical clustering was based on Ward's minimum vari-
ance method and the Euclidean distance metric.

Results

Comparison of RT-qPCR with FISH and qPCR for quantification of C.
coccoides group populations in human feces
We compared the RT-qPCR method with FISH and qPCR, which are well-established method-
ology targeting RNA and DNA, respectively, for enumeration of the C. coccoides group in fecal
samples from 8 healthy volunteers. The population levels of C. coccoides group determined by
RT-qPCR using the C. coccoides group-specific primer set were statistically equivalent to the re-
sults obtained by using FISH. The population levels determined by qPCR were significantly
higher than those determined by using RT-qPCR (Steel-Dwass test, P<0.01) (Table 3).

Specificity of the designed primers
The specificity of the newly designed primers was evaluated by RT-qPCR using the total RNA
fractions extracted from 105 cells of the 43 strains tested. Each primer set gave positive RT-
qPCR results only for the corresponding target bacterial species within the range of 3 Cq values
(Table 1). The primer sets g-Blau-F/R, s-Csym-F/R, s-Casp-F/R, and s-Rgna-F/R cross-reacted
only weakly with some of the non-target C. coccoidesgroup strains, at negligible levels, having
little effect on the specific enumeration of target bacteria. The detection limit of the RT-qPCR
system was 10–1 cells per reaction; this was equivalent to about 105 cells/g feces.

Comparison of C. coccoides group populations among different age
groups
The total count of C. coccoides group was 109.8±0.3 cells/g feces in young children and 1010.0±0.5

cells/g feces in adults (mean±SD), whereas that in the elderly was 109.3±0.9 cells/g feces signifi-
cantly lower than those in young children and adults (Steel-Dwass test, P<0.01) (Table 4). The
sum of the bacterial counts obtained by using the 22 newly developed primer sets was 109.7±0.3

cells/g feces (99.4% of the total) in young children, 109.8±0.4 cells/g feces (99.8% of the total) in
adults, and 109.3±0.8 cells/g feces (100% of the total) in the elderly. The bacterial counts of the
genus Blautia were the highest among the 3 subgroups and 19 species in all three generation
groups tested, suggesting that genus Blautia predominates in human intestinal C. coccoides-
group populations regardless of age. The prevalences of R. gnavus and R. torques were also
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high in all generation groups (84% to 100%). The prevalences of F. saccharivorans and genus
Dorea in adults (88% and 88%, respectively) were significantly higher than those in young chil-
dren (53% and 22%, respectively) and the elderly (16% and 16%, respectively) (Fisher’s exact
probability test, P<0.01). Eubacterium ramulus was detected in 41% of adults but was not de-
tected in the other age groups. In contrast, C. nexile was detected in most of the young children
tested (94%), whereas its detection rates in adults and the elderly were significantly lower at
34% and 50%, respectively (Fisher’s exact probability test, P<0.01). The prevalences of C. scin-
dens and C. hylemonae in the elderly (94% and 38%, respectively) were significantly higher
than those in young children (56% and 9%, respectively) and adults (53% and 3%, respectively)
(Fisher’s exact probability test, P<0.01). The counts of Eu. ventriosum, Eu. hallii, Eu. eligens,
Eu. rectale, genus Blautia, C. symbiosum, C. asparagiforme, A. caccae, Ro. intestinalis, Co.
comes, R. torques, and R. lactaris populations also differed significantly among different age
groups (Steel-Dwass test, P<0.05).

In accordance with the hierarchical clustering of all the data sets, the 96 subjects were classi-
fied into 4 groups (Groups A to D) (Fig 2). Seventy-eight percent of the adults were classified
into the same group (Group C), whereas 78% of the elderly belonged to another group (Group
B) (Fig 2). Thirty-four percent of the young children were classified into Group A and 50%
into Group D. The results of PCA supported our finding of clear differences among the age
groups—especially between the plots of adults and those of the elderly along the PC1 axis,
which had high degrees of correlation with the counts of F. saccarivorans and genus Dorea (Fig
3). Both the heatmap analysis and the PCA visualized diverse bacterial patterns among individ-
uals (Figs 2 and 3). Taken together, these results indicated that C. coccoides-group populations
clearly differed among the age groups.

Discussion
Culture-dependent and—independent approaches, including sequence-based methods, have
produced large numbers of data sets of dominant populations in the human intestinal micro-
biota, as well as a catalog of prevalent microbial genes [1,24–28], but few studies have focused
on the C. coccoides group. This seems to be the result of the methodological limits of the culture

Table 3. Comparison of C. coccoides group population levels in human feces, as demonstrated by
RT-qPCR, FISH and qPCR.

Subject Bacterial counts (log10 cells/g feces)

RT-qPCR FISHa qPCR

A 10.3 10.0 10.5

B 10.3 10.1 10.9

C 10.3 10.2 10.9

D 10.6 10.3 10.8

E 10.2 10.0 10.5

F 10.0 9.8 10.7

G 10.4 10.2 10.7

H 10.5 10.3 11.0

AV 10.3b 10.1c 10.8

SD 0.2 0.2 0.2

a The C. coccoides group-specific probe (Erec482: 5'-GCTTCTTAGTCARGTACCG-3') was used.

b Indicates a significant difference between RT-qPCR and qPCR with Steel-Dwass test (P<0.01)

c Indicates a significant difference between FISH and qPCR with Steel-Dwass test (P<0.01)

doi:10.1371/journal.pone.0126226.t003
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methods or PCR, i.e. the selection media or specific primer sets at the species level in this group
have been insufficient for identification. We initially classified the diverse C. coccoides group
into 3 subgroups and 19 species. We then developed a highly sensitive RT-qPCR system for
quantification of the C. coccoides group by using 22 specific primer sets.

The population levels of C. coccoides group in the intestine, as determined by using RT-
qPCR, were equivalent to those determined by using FISH but significantly lower than those

Table 4. Comparison ofC. coccoides group populations among different groups.

Bacteria Young children (3.2±0.1 years old,
n = 32)

Adults (39±11 years old, n = 32) Elderly (82±6 years old, n = 32)

Bacterial countsa

(log10 cells/g feces)
Prevalence
(%)

Bacterial counts (log10

cells/g feces)
Prevalence
(%)

Bacterial counts (log10

cells/g feces)
Prevalence
(%)

Clostridium coccoides
group

9.8 ± 0.3 100 10.0 ± 0.5b 100 9.3 ± 0.9c,d 100

Sum of 22 subgroups/
species

9.7 ± 0.3 100 9.8 ± 0.4 100 9.3 ± 0.8 100

Eubacterium ventriosum 7.7 ± 0.5 22 7.9 ± 0.5b 59e 7.9 ± 0.8d 9g

Eubacterium hallii 7.6 ± 1.1 66 8.1 ± 0.8b 88 7.8 ± 1.1d 34f, g

Coprococcus eutactus 8.2 3 NDh 0 ND 0

Eubacterium eligens 8.6 ± 0.8 41 8.3 ± 0.8 41 7.4 ± 1.0c,d 16

Eubacterium rectale 8.4 ± 0.7 47 8.4 ± 0.7 66 6.1 ± 0.6d 47

Eubacterium ramulus ND 0 7.5 ± 0.6b 41e NDd 0g

Genus Blautia 9.4 ± 0.4 100 9.3 ± 0.5 100 8.9 ± 0.9c 100

Clostridium symbiosum 7.0 ± 0.6 97 6.7 ± 0.6b 53e 7.2 ± 0.6d 94g

Fuscicatenibacter
saccharivorans

8.4 ± 0.9 53 8.8 ± 0.6b 88e 7.5 ± 0.7c,d 16f, g

Clostridium
asparagiforme

7.2 ± 0.5 47 6.2 ± 0.4 50 7.4 ± 0.6c,d 97f, g

Clostridium hathewayi 6.8 ± 0.7 66 6.7 ± 0.7 50 7.0 ± 0.8 72

Clostridium indolis
subgroup

ND 0 ND 0 5.8 3

Ruminococcus gnavus 8.6 ± 0.8 100 8.1 ± 0.9 97 8.3 ± 0.9 91

Anaerostipes caccae 7.3 ± 1.1 94 6.8 ± 0.9b 59e 7.9 ± 1.1d 88g

Roseburia intestinalis 8.1 ± 1.0 47 6.9 ± 0.8 38 7.7 ± 0.8c,d 9f, g

Coprococcus comes 6.3 ± 0.7 41 6.7 ± 0.6b 66 6.1 ± 0.5d 38

Clostridium nexile 7.5 ± 0.9 94 7.1 ± 0.8b 34e 7.1 ± 0.8c 50f

Genus Dorea 8.6 ± 0.3 22 8.2 ± 0.6b 88e 8.0 ± 1.1d 16g

Clostridium scindens 8.2 ± 0.7 56 6.8 ± 0.8 53 8.8 ± 0.6c,d 94f, g

Clostridium hylemonae 6.9 ± 0.8 9 6.0 3 6.7 ± 0.6c,d 38f, g

Ruminococcus torques 7.6 ± 1.2 84 6.8 ± 0.8 91 8.7 ± 0.6c,d 94

Ruminococcus lactaris 8.8 3 8.2 ± 0.9b 25 6.3 ± 0.9 19

a Data are expressed as the means and standard deviations.

b Indicates a significant difference between young children and adults with Steel-Dwass test (P<0.05)

c Indicates a significant difference between young children and elderly with Steel-Dwass test (P<0.05)

d Indicates a significant difference between adults and elderly with Steel-Dwass test (P<0.05)
e Indicates a significant difference between young children and adults with Fisher's exact probability test after Holm correction (P<0.05)

f Indicates a significant difference between young children and elderly with Fisher's exact probability test after Holm correction (P<0.05)

g Indicates a significant difference between adults and elderly with Fisher's exact probability test after Holm correction (P<0.05)
h Not detected

doi:10.1371/journal.pone.0126226.t004
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Fig 2. Heatmap analysis of the counts ofC. coccoides group populations enumerated by using 22 primer sets in 32 young children, 32 adults, and
32 elderly. (A) Hierarchical clustering with a heatmap representation based onWard's minimum variance method and a Euclidean distance metric. Subject
IDs of 32 young children (I-1 to I-32), 32 adults (A-1 to A-32), and 32 elderly (E-1 to E32) are shown at the right side of the heatmap. The subjects tested were
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determined by using qPCR (Table 3). This was likely due to the difference in target molecules
among these methods: both RT-qPCR and FISH target bacterial RNA molecules, whereas
qPCR targets bacterial DNAmolecules. RNA molecules can be degraded more rapidly after
cell death than can DNAmolecules and are produced only by metabolically active cells; they
are therefore indicators of bacterial cell viability [29,30]. Although it has been reported that
rRNA, unlike mRNA, can persist for extended periods in dead cells [31], several in vitro analy-
ses of both anaerobic and aerobic bacterial cultures have shown that the bacterial counts ob-
tained by using RT-qPCR are in good agreement with those obtained by using culture methods
even when the cells are dead, suggesting that the counts of viable cells can be quantified accu-
rately by using RT-qPCR targeting rRNA [14,15,17]. Unlike RNA, bacterial DNA cannot be
degraded rapidly in dead cells, and this may lead to the mis-quantification of substantial num-
bers of dead cells along with viable cells by qPCR [14]. Therefore, the differences in the counts
between qPCR and RT-qPCR (Table 3) were likely due to overestimation of the bacterial
counts by the DNA-targeted method. The slight differences in the bacterial counts obtained by
FISH and RT-qPCR (100.1 to 100.3 cells/ g feces) might have been due to technical issues. FISH
gives positive or negative signals (i.e. the cell is detected above a certain threshold of rRNA

classified into 4 groups (Groups A to D) by hierarchical clustering. Colors ranging from green to red indicate low to high population levels. (B) Classification of
subjects by the hierarchical clustering. Most of the adults (78%) were classified into Group C and most of the elderly (78%) into Group B, Specific clusters
were not as apparent in children.

doi:10.1371/journal.pone.0126226.g002

Fig 3. Principal component analysis (PCA) of bacterial counts determined by using 22 primers in 32 young children, 32 adults, and 32 elderly. Blue,
red, and green plots show young children, adults and the elderly, respectively. Arrows indicate characteristic vectors of the upper 4 factor loadings.

doi:10.1371/journal.pone.0126226.g003
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molecules, regardless of how many are present), whereas the RT-qPCR signals are quantitative
and are directly related to the number of rRNA molecules present.

The gastrointestinal tract is colonized first by facultative anaerobes immediately after birth,
and consumption of oxygen by these bacteria is followed by the growth of strict anaerobes [32].
Previous studies have shown that the C. coccoides group in the intestines is established at an
early age and remains stable with age [33,34]. Our results also support the hypothesis that over-
all counts of the C. coccoides group in young children are similar to those in adults. However,
the RT-qPCR analysis at the subgroup and species levels demonstrated differences in composi-
tion among the different age groups. For example, Eu. ramulus characterized the intestinal
microbiota in adults (Table 4); this bacterium has been reported to grow with quercetin-3-glu-
coside (isoquercitrin), a flavonoid, as the sole carbon and energy source [35]. Flavonoids are
polyphenolic compounds present in foods and beverages of plant origin [36], and the growth
of Eu. ramulus is stimulated by ingestion of flavonoids in vivo [37]. Unlike that of Eu. ramulus,
the incidence of C. nexile was higher in young children (94%) than in adults (34%) (Table 4);
thus C. nexile, which produces antimicrobial substances [38], characterizes the intestinal
microbiota of young children. Growth of C. nexile is inhibited by garlic [39], which is not usu-
ally included in the regular meals of younger children. These results suggest that diet affects the
composition of the intestinal C. coccoides group.

Decreases in population levels of the C. coccoides group are correlated with age-related
events such as the development of frailty, hospitalization, antibiotic treatment, and non-steroi-
dal anti-inflammatory therapy [40–43]. Population levels of the intestinal C. coccoides group in
our elderly group were significantly lower than those in young children and adults (Table 4),
supporting the data from Japanese, Italian and Finnish studies [44–46]. The lower C. coccoides
group population levels in the elderly could be due to the lower levels of the genus Blautia as
the predominant population in this group (Table 4). Genus Blautia has recently been postulat-
ed to be a novel group by its reclassification on the basis of 16S rRNA sequencing [47], and a
number of isolates belonging to this genus have recently been identified from human feces by
using methods such as FISH, flow cytometry, clone library analysis, and metagenomic analysis
[1,6,48]. In a Japanese study, Hayashi et al. [6] have shown that R. obeum, a member of the
genus Blautia, commonly inhabits the human intestine regardless of age. The genus was found
in all the subjects in this study, and the population levels tend to diminish with age (Table 4).
Intestinal levels of the genus Blautia can change with a number of conditions. For example, in-
testinal population levels of Blautia in children with type 1 diabetes are significantly higher
than those in healthy children [49], and there is a significant reduction in the Blautia popula-
tion in the intestines of cirrhotic patients [50]. These results and ours suggest that the reduced
population levels of the genus Blautia in the elderly may have a substantial effect on health in
this age group.

The hierarchical clustering and PCA results showed that the patterns of intestinal micro-
biota in the elderly were clearly different from those in adults (Figs 2 and 3): the elderly were
characterized by high frequencies of C. scindens and C. asparagiforme and low frequencies of F.
saccharivorans and genus Dorea (Table 4, Fig 3), suggesting that these species might be useful
age markers. The function of species that predominate in the elderly is unclear, as is the func-
tion of F. saccharivorans, a novel species only recently isolated from human feces [7]. In con-
trast, C. scindens is known to be responsible for bile acid 7α-dehydroxylation; this contributes
to the production of secondary bile acids such as deoxycholic acid and lithocholic acid [10],
which are associated with increased risk of gallstone disease and colon cancer [51,52]. Interest-
ingly, the prevalence of C. hylemonae, another species with high bile acid 7α-dehydroxylating
activity [10], was significantly higher in the elderly than in adults and young children
(Table 4). The abundance of secondary bile acid-producers in the elderly might have harmful
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impacts on the health of this group. In contrast with the PCA plots of adults and the elderly,
the plots of young children showed wide scattering along both the PC1 and the PC2 axis (Fig
3). Moreover, hierarchical clustering showed that the group composition for young children
clearly differed from those for the adults and elderly (Fig 2). Although it has been reported that
the population levels of major anaerobes in children aged 3 years are similar to those in adults
[34], our results indicated that the composition of the C. coccoides group was not yet stable at
this age. However, because the numbers of subjects and age groups were limited in our study,
large numbers of subjects covering wider age groups need to be evaluated by using the RT-
qPCR system to examine dynamic shifts over entire lifetimes.

In conclusion, our 16S rRNA-targeted RT-qPCR system for the C. coccoides group gave ac-
curate information on the composition of the major intestinal anaerobes. We demonstrated a
dramatic change in C. coccoides-group populations throughout life: those in young children are
unstable and highly diverse among individuals, and those in adults are clearly different from
those in the elderly. These results suggest that a number of factors affect the composition of C.
coccoides-group populations; at the same time, the diversity of these populations likely helps to
maintain intestinal homeostasis in the different age groups.
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