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ريوطتلمدختستامابلاغكنضلاىمحسوريفلةيحطسلاتانيتوربلا:ثحبلافادهأ
ةعبرلأةيحطسلاتانيتوربلليلاعلافلاتخلاا،كلذعمو.ةيسوريفلاىودعلاعنملحاقللا
عيمجيطغتنأنكمييذلاحاقللاريوطتدقّعتكنضلاىمحسوريفلةيلصمطامنأ

ةعبرأنمةظوفحمةمتاحلبوتيلوبميمصتىلعةساردلاهذهزكرت.سوريفلاتلالاس
.عساوقاطنىلعةدياحمةداضمماسجأدضكنضلاىمحسوريفلةيلصمطامنأ

بنجىلإابنجةظوفحممتاوحةعبرأنمبوتيلوببيكرتبانمق:ثحبلاقرط
.متاوحلانمنينثانيبلصافكقلخملايأنإرآيت-ليديتسيهميزنإعمطبترت
ةعبرأعمبوتيلوبلانيبيئيزجلاعقوملاوبوتيلوبلانيتوربةينبىلعاذهدنتسا
.عساوقاطنىلعةدياحمةداضمماسجأ

ةولاع.عساوقاطنىلعةدياحمةداضمماسجأةعبرلأةقدببوتيلوبلاطبترا:جئاتنلا
عساوقاطنىلعةدياحملاةداضملاماسجلأاطبرعقومبراقتبوتيلوبلاداز،كلذىلع
داضملامسجلاوبوتيلوبنيببكرملارهظأو.DENV2دادضتسمىلإةنراقملاب
ددعىلعأدجوو.ىرخلأاةداضملاماسجلأاةثلاثللهتنراقمدنعةطبارةقاطىندأ١١أ
.٧بداضملامسجلاوبوتيلوبنيببكرملانيتوربلايفةينيجورديهلاطباورلانم
-٢.٠٧نيبتافاسمةينيتوربلاتابكرملاعيمجلةينيجورديهلاطباورلاترهظأامك

.ةبكرملاتانيتوربلاتنزاوةينيجورديهلاطباورلانأينعيامم،مورتسغنأ٣.٠٣

ىلعةدياحمةداضمماسجأةعبرأعمةروطملابوتيلوبلاتلعافت:تاجاتنتسلاا
.كنضلاىمحسوريفلةيلصملاطامنلأاةعبرلأاىلعتفرعتوعساوقاطن
عساوحاقلداجيلإروطتلانمديزملازفحيبوتيلوبلانأةساردلاهذهجئاتنيصوت
.كنضلاىمحسوريفلةللاسلا

؛عساوقاطنىلعةدياحمةداضمماسجأ؛كنضلاىمح:ةيحاتفملاتاملكلا
اياقب؛سناجتمريغطمن؛بوتيلوب
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Abstract

Objectives: Dengue virus surface proteins are often used

in the development of vaccines that protect against

dengue virus infection. However, the surface proteins on

the four serotypes of dengue virus display high variation,

which increases the difficulty of developing a vaccine that

can protect against all viral strains. In this study, a pol-

ytope that is recognized by broadly neutralizing anti-

bodies (bnAbs) was designed using conserved epitopes

from the four serotypes.

Methods: We constructed a polytope using four

conserved dengue virus epitopes such that two aligned

epitopes were separated from the other two epitopes by a

histidyl-tRNA synthetase spacer. The epitopes were

selected based on our previous docking studies. We then

performed molecular docking of the polytope with the

four bnAbs.

Results: The polytope bound precisely to the four

bnAbsdB7, C8, A11, and C10. Moreover, the polytope

had a higher affinity for the bnAbs compared to the

DENV2 antigen. The polytope and A11 antibody com-

plex had the lowest binding energy relative to complexes

between the polytope and the other three antibodies

assessed. The highest total number of hydrogen bonds

was found in the polytope and B7 antibody complex. The

hydrogen bond length in all the complexes ranged from

2.07 to 3.03 Å, implying that hydrogen bonds stabilized

the complexes.

Conclusion: The developed polytope interacted with four

different bnAbs that recognize the four serotypes of

dengue virus. The results of this study suggest that this
y. This is an open access article under the CC BY-NC-ND license
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polytope warrants further development for use in a

broad-spectrum vaccine against dengue virus.

Keywords: bnAbs; Dengue; Heterotype; Polytope; Residue
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Introduction

The annual incidence of dengue fever continues to rise,
particularly in the AsiaePacific, Africa, and the Carib-
bean.1e3 Dengue viruses belong to the Flaviviridae family.

The mature virions contain non-structural proteins and the
structural capsid (C), membrane (M), and envelope (E)
proteins. There are four serotypes of dengue virus, where
each is specifically recognized by host cells during infection.

Infection with one serotype results in immunity against that
serotype, but not against other serotypes.4,5

Secondary infection with a different dengue virus serotype

can cause dengue haemorrhagic fever or dengue shock syn-
drome.5 Therefore, significant effort has been made to
prevent dengue infection, such as by decreasing virus

virulence and developing vaccines protective against each
dengue virus serotype.6e8 In 2015, the World Health
Organization (WHO) approved a new dengue vaccine,

CYD-TDV, and several additional candidate vaccines are
currently undergoing clinical development.9 Several of these
vaccines, including CYD-TDV, are live attenuated vac-
cines.10e12 These live attenuated vaccines have associated

risks because pathogens are used as the vaccinating agent.
One recent study found that injection of polytopic live
attenuated dengue virus enhanced B- and T-cell activation,

but failed to lead to neutralizing antibody production.13

Subunit viral proteins also have potential for use in
vaccines. For example, a vaccine containing dengue virus E

glycoprotein epitopes has been proposed.14 However,
potential vaccines are still rather limited because they would
not be effective against all four serotypes of dengue virus.6,7

Using multiple conserved epitopes or polytopes is a com-
mon strategy used in vaccine design as it can stimulate im-
munity againstmany viral strains.15,16 Therefore, we designed
a polytope vaccine in silico from epitopes from all four dengue

virus serotypes, which when presented with class I or II major
histocompatibility complexes (MHC) could stimulate B and/
or T cells. The designed polytope was based on conserved

epitopes from each serotype extracted from 629 E protein
sequences obtained from the National Centre of
Biotechnology Information database.17 This challenging

polytope was designed using a bioinformatics approach to
bind to broadly neutralizing antibodies (bnAbs).

Materials and Methods

This study was conducted from July 2015 to January 2016
at the Biocomputational Laboratory in the Biology

Department, Brawijaya University, Malang, Indonesia.
Molecular modelling of the polytope

Four epitopes selected from our previous work17 were

used to design a polytope by aligning two epitopes and
then joining them with another two epitopes using a linker
derived from a region of histidyl-tRNA synthetase (Gen-
Bank: AEG33143.1), 319-GFGLPEEK-326. This linker

peptide is highly conserved across species, forms part of the
host cell response, and is hypothesized to fail to generate any
immune or autoimmune responses.16 I-TASSER online

software was used to model and evaluate the tertiary
structure of the polytope,18,19 which was then visualized
using Accelrys Discovery Studio 4.0.20 The molecular

weight of the polytope was estimated using the ProtParam
tool (http://web.expasy.org/protparam).21 The quality of
the protein geometry was evaluated using ModFOLD

version 3.0. The global model quality scores ranged from
0 to 1. The consistency of the global scores allowed
calculation of p-values, which represent the probability
that each model is incorrect.22,23

Antibody protein structures

The protein structures of the dengue virus-recognizing
antibodies in complex with their cognate antigens with

accession numbers 4UT6, 4UTA, 4UTB, and 4UT9 were
retrieved from the Protein Data Bank. The antibody-antigen
complexes were visualized using the Vega ZZ software, and
the antigen was then removed from the antibody complexes.

B7, C8, A11, and C10 are conserved bnAbs that recognize
the four serotypes of dengue virus.24

Molecular docking

The binding affinities between the polytope and the four
aforementioned bnAbs were examined using PATCH-
DOCK. The binding site of the polytope antigen on each
antibody was determined using the Knowledge-based FADE

and Contacts web server. The results were displayed using
FireDock and then the best result was selected based on the
global energy.25,26 Protein complex docking results were

visualized using Accelrys Discovery Studio 4.0.20

Proteineprotein docking assessments

Ligplot software was used to assess the interactions be-
tween the four antibodies and the polytope. This software

assessed the amino acid residues involved in the formation of
hydrogen and hydrophobic bonds. The residues in the
binding sites were then three-dimensionally mapped. Similar

binding positions and amino acid residues in the polytopee
antibody complexes were compared with native antigene
antibody complexes. The Ligplot program automatically

generated 2D schematic representations of proteineprotein
and protein-ligand complexes. The output was a colour or
black-and-white PostScript file containing a straightforward

and informative representation of the intermolecular in-
teractions, including hydrogen bonds and hydrophobic in-
teractions, and their strengths and atom accessibility. This
method has been used to analyse interactions in proteine
protein and protein-ligand complexes.27

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Results

Polytope construction

Four conserved dengue virus epitopes were predicted
based on their secondary and tertiary structures. The sec-
ondary structures of the epitopes consisted of a coil and/or
beta sheet. These epitopes represent the four dengue virus

serotypes and were constructed in tandem using a linker as a
spacer between two epitopes. Three-dimensional protein
models of the polytope revealed a coil-beta sheet-beta sheet-

coil on the exposed surface (Figure 1).

Quality of 3D model of polytope protein

Based on MoldFold predictions, the p-value and confi-
dence of the polytope 3D model was p < 0.05, which is

considered moderate confidence and implies that there is less
than a 1/20 chance that this model is incorrect. The global
model quality score was 0.2183, indicating that the polytope

model was appropriate for assessing docking.

Pairwise docking of polytope and bnAbs

Using the same procedure, the B7, C8, A11, and C10
bnAbs were separately and directly docked with the polytope

as their antigen. The antibody binding sites were in accor-
dance with a previous study and determined using the
Knowledge-based FADE and Contacts web server. In order
to experimentally confirm recognition of the antigen by the

antibodies, identify interchain hydrogen bonds, and calcu-
late binding affinities between antibodies and antigen, we
docked the polytope separately with the B7, C8, A11, and

C10 bnAbs (Tables 1 and 2). Interfacial contact between the
polytope residues occurred via interactions with either the
heavy (H) or light (L) chains of B7, C8, A11, and C10

bnAbs (Table 1), as shown in Figure 2.
Figure 1: Tertiary structure of polytope consisting of epitopes

from four dengue virus serotypes connected by a linker in the

middle of the structure (green).
Docking of polytope with B7 bnAb

At the interface of the B7 bnAb-polytope complex, there

are 41 hydrophobic (Table 1) and five hydrogen bonds
(Table 2). The B7 bnAb-polytope complex contains the
following hydrogen bonds: Ser 71-Glu 22, Tyr 110-Gln 36,
Tyr 111-Glu 37, Ser 59-Gly 50, and Ser 99-Thr 58. The global

binding energy of the B7 bnAb-polytope complex
was �40.30. There were 13 interfacing residues on the pol-
ytope that interacted with the H chain and two that inter-

acted with the L chain of the B7 bnAb. The polytope had B7
bnAb binding sites at Ser 56 and Lys 95 that are also the
binding sites of the native antigen.

Docking of polytope with C8 bnAb

The C8 bnAb-polytope complex had 48 hydrophobic
(Table 1) and two hydrogen bonds (Table 2). The interactions
between the C8 bnAb and polytope included the following

hydrogen bonds: Met 109-Lys 38 and Asn 102-Asp 48. The
global binding energy of the complex was�46.03. There were
14 polytope interfacing residues when interacting with the H
chain and three when interacting with the L chain of the C8

bnAb. The polytope bound to C8 bnAb at sites also bound by
the native antigen, which were the C8 bnAb residues Tyr 100,
Phe 103, Tyr 106, Asn 93, and Phe 32.

Docking of polytope with A11 bnAb

The interface between theA11bnAbandpolytope involved
11 hydrophobic (Table 1) and one hydrogen bonds (Table 2).
The interactionsbetweenA11bnAband thepolytope included

one hydrogen bond, Asn 63-Ser 13. The global binding energy
of the A11 bnAb-polytope complex was �47.07. There were
four polytope interfacing residues when interacting with theH

chain and three when interacting with the L chain of A11
bnAb. The polytope bound to A11 bnAb site that is also
bound by native antigen, which was Tyr 100.

Docking of polytope with C10 bnAb

The C10 bnAb-polytope polytope contained 38 hydro-
phobic (Table 1) and three hydrogen bonds (Table 2). The
interactions between C10 bnAb and polytope included

hydrogen bonds: Thr 52-Gly 27, Ser 53-Thr 29, and Asn
31-Ser 49. The global binding energy of C10 bnAb with
polytope was �38.30. There were 11 polytope residues
interacting with the H chain and five interacting with the L

chain of C10 bnAb. The polytope bound to C10 bnAbs at
sites also bound by the native antigen, which were Tyr 100,
Phe 30, Asn 31, Tyr 32, Asp 50, Thr 52, and Ser 53.

Discussion

Glycosylated envelope protein-mediated interactions
occur between dengue virus and host cells. N-glycosylation of

envelope proteins can promote proper folding and subsequent
trafficking using host cell chaperones.4,28 Host cell receptors
involved in the immune response to dengue virus include
laminin receptor, mannose receptors, such as the

macrophage mannose receptor (MMR) and the dendritic



Table 1: Ligplot and PatchDock confirmation results.

Complexes Interfacing polytope residues Antibody

chain (heavy chains:

H & light chains: L)

Total number

of hydrophobic

bonds

Global energy

(The binding energy

of the molecules)

Polytope B7 bnAb Met 12, Ser 13, Ala 20, Glu 22, Gly 27,

Ser 30, Phe 32, Gly 33, Leu 34, Gln 36,

Glu 37, Gly 50, Asp 51

H 41 �40.30

Asp 48, Asp 51 L

C8 bnAb Met 12, Gly 19, Ala 20, Glu 22, Gly 31, Pro 35,

Gln 36, Glu 37, Glu 46, Asp 48, Ser 49, Gly 50,

Asp 51, His 54

H 48 �46.03

Lys 38, Gly 67, Thr 68 L

A11 bnAb Gly 27, Ser 49, Gly 50, Asp 51 H 11 �47.07

Gln 11, Ser 13, Gln 24 L

C10 bnAb Leu 4, Thr 5, Gly 6, Thr 55,

Leu 57, Gly 59, Ala 60, Glu 62, Ile 63, Gln 64,

Thr 65

H 38 �38.30

His 1, Gly 27, Thr 29, Ser 49, Asn 53 L
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cell-specific ICAM-3 grabbing non-integrin (DC-SIGN), and
CD14-associated protein.28,29 This study focused on

conserved dengue virus epitopes that were chosen based on
our previously published work.17 Epitopes were selected
based on docking between the mannose receptor and E

glycoproteins from all serotypes of the dengue virus. The
epitopes were predicted based on their antigenicity when
presented with class II MHC. Furthermore, the chosen

epitopes were used to design a subunit vaccine. Subunit
vaccines are potential substitutes for the current live
attenuated dengue virus vaccine approved by the World
Health Organization.9 A recently published study found

that this live attenuated vaccine stimulated B and T cells
but did not increase production of neutralizing antibodies.13

We combined these four epitopes into a polytope to create

a candidate vaccine. This vaccine used B cell epitopes
theorized to induce immunity against multiple antigenic
targets and stimulate antibody production.30e32 The

polytope was composed of 68 amino acids, included a
histidyl-tRNA synthetase linker, and had a molecular
weight of 6.56 kDa.

Vaccines optimized to generate a high neutralizing anti-
body response reduce the frequency of symptomatic in-
fections.33 The dengue virus-specific polytope designed in this
Table 2: Hydrogen bonds between polytope and antibodies.

Interaction Points of

interaction

Distance

(Angstrom)

Total

number of

hydrogen

bonds

Polytope-B7

bnAb

Glu 22-Ser 71 2,85 5

Gln 36-Tyr 110 2,07

Glu 37-Tyr 111 3,03

Gly 50-Ser 59 2,91

Thr 58-Ser 99 2,72

Polytope-C8

bnAb

Lys 38-Met 109 2,84 2

Asp 48-Asn 102 2,74

Polytope-A11

bnAb

Ser 13-Asn 63 3,20 1

Polytope-C10

bnAb

Gly 27-Thr 52 2,90 3

Thr 29-Ser 53 2,62

Ser 49-Asn 31 3,33
study consisted of epitopes that solely interact with bnAbs.
The characterization of interactions between the polytope

and binding antibodies in this work provides promising in-
formation regarding the potential of the polytope as a
candidate bnAb-binding dengue virus vaccine candidate. To

examine the antigenicity of this polytope, we analysed mo-
lecular docking of the polytope with four dengue virus-
specific antibodies, C7, B8, A11, and C10. Further analysis

found the polytope bound to the bnAbs with similar orien-
tations and via several same residues as the native antigen,
based on the binding sites proposed by Rouvinski et al. for
complexes of native DENV2 and these bnAbs.24 The

matching antibody binding residues are presented in
Figure 2. We found the polytope-A11 bnAb complex had
the lowest binding energy of the complexes assessed. Mean-

while, the B7 bnAb-polytope and A11 bnAb-polytope com-
plexes had the most and fewest hydrogen bonds, respectively
(Table 2). Intermolecular hydrogen bonding is important for

binding specificity in and stabilization of antibody-antigen
complexes because it separates the individual proteins by
minimum and maximum distances of 2 and 8.0 Å, respec-

tively.34 All the docking distances calculated in this study
were between 2.07 and 3.03 Å (Table 2), where the
hydrogen bonds functioned to stabilize the complexes.

The polytope was estimated to have an antigen-based role

when interacting with the four antibodies via interfacing
residues. The bnAb paratopes in the H and L chains were
mostly exposed. Both the heavy and light chains of the B7

and A11 bnAbs had exposed paratopes that could make
contacts with the polytope. In contrast, previously published
reports have stated that the exposed paratopes of these

bnAbs were located on the heavy chains, despite the light
chain alone being in contact with N153 glycan when docked
with native antigen.24 Therefore, the three-dimensional
structure of the polytope changes from a coil-beta sheet-

beta sheet-coil structure into a coil-coil-coil-coil structure
after docking with each of the antibodies assessed. This
interaction illustrates the ability of the polytope to bind to

bnAbs recognizing the four dengue virus serotypes and, thus,
may provide protection against all four serotypes. However,
this protection needs to be confirmed using in vivo assays and

protein expression of the polytope in the selected host needs



Figure 2: Molecular docking between polytope and bnAbs. Polytope interactions with (A) B7, (B) C8, (C) A11, and (D) C10 antibodies.
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to be optimized. When designing recombinant proteins, the

size of the polytope should be improved using protein
tagging to minimize protein degradation in the host. Devel-
opment of a polytope that interacts with antibodies involved

in dengue virus attachment to mannose receptors is another
potential area of further investigation.

Conclusion

Four conserved epitopes were successfully joined into a
polytope using a linker derived from histidyl-tRNA synthe-

tase. This polytope had good binding affinities for four anti-
bodies that recognize four different dengue virus serotypes.
Binding between the polytope and bnAbs indicated that the
polytope may induce B-cell immunoglobulin production.

Therefore, such polytope warrant further examination due to
its potential for use in vaccine that protect against heterotypic

infection with different serotypes of dengue virus.
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