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Abstract: Ovarian cancer (OC) is one of the most common gynecological malignancies. It is associated
with a difficult diagnosis and poor prognosis. Our study aimed to analyze tumor stemness to
determine the prognosis feature of patients with OC. At this job, we selected the gene expression
and the clinical profiles of patients with OC in the TCGA database. We calculated the stemness index
of each patient using the one-class logistic regression (OCLR) algorithm and performed correlation
analysis with immune infiltration. We used consensus clustering methods to classify OC patients
into different stemness subtypes and compared the differences in immune infiltration between them.
Finally, we established a prognostic signature by Cox and LASSO regression analysis. We found a
significant negative correlation between a high stemness index and immune score. Pathway analysis
indicated that the differentially expressed genes (DEGs) from the low- and high-mRNAsi groups were
enriched in multiple functions and pathways, such as protein digestion and absorption, the PI3K-Akt
signaling pathway, and the TGF-β signaling pathway. By consensus cluster analysis, patients with
OC were split into two stemness subtypes, with subtype II having a better prognosis and higher
immune infiltration. Furthermore, we identified 11 key genes to construct the prognostic signature
for patients with OC. Among these genes, the expression levels of nine, including SFRP2, MFAP4,
CCDC80, COL16A1, DUSP1, VSTM2L, TGFBI, PXDN, and GAS1, were increased in the high-risk
group. The analysis of the KM and ROC curves indicated that this prognostic signature had a
great survival prediction ability and could independently predict the prognosis for patients with
OC. We established a stemness index-related risk prognostic module for OC, which has prognostic-
independent capabilities and is expected to improve the diagnosis and treatment of patients with OC.

Keywords: ovarian cancer; stemness index; prognostic; immune infiltration

1. Introduction

Ovarian cancer (OC) involves thorny tumors with high malignancy and a difficult
diagnosis. It poses a health threat to women worldwide [1]. OC remains the deadliest
gynecological tumor, despite recent improvements in survival times. Compared to other gy-
necological cancers, the 5-year survival rate of OC is less than 40% [2]. Drug resistance and
high rates of recurrence are the main causes of this poor prognosis [3]. Currently, surgical
debulking and chemotherapy are still the main treatment modalities for OC [4]. Moreover,
immunotherapy is also applied to OC treatment owing to its widespread application [5].

Cancer stem cells (CSCs) belong to a type of malignant tumor cells with stemness
characteristics that have the potential for differentiation and self-renewal [6]. CSCs have
been studied in many solid tumors, including breast cancer [7], lung cancer [8], and OC [9].
These cells are thought to be responsible for the spread and metastasis of tumors [7,10]. The
stemness characteristic of CSCs is considered have an important effect on the resistance to
tumor chemotherapy and could be a potential therapeutic target [11]. Many studies have
found that the abundance of CSCs in breast cancer and gliomas is negatively correlated with
treatment [12], indicating a relation to patients [6]. In melanoma, a subset of CSCs evade
the immune system by negatively regulating the expression of T cell function and secreting
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immunosuppressive factors, which may be involved in tumor recurrence [13]. CSCs also
promote OC migration and resistance to therapy. Platinum-based anticancer drugs cannot
eliminate CSCs [14,15], which could lead to metastasis and OC recurrence [9]. Increasing
evidence suggests that CSC elimination will suppress OC growth and recurrence [16,17].
Therefore, investigating the role of CSCs in OC may improve clinical results.

To quantify CSCs’ characteristics, Malta et al. [18] identified and quantified CSCs’
characteristics based on the OCLR algorithm and proposed mRNA expression to quantify
the stemness index (mRNAsi). In this job, we explored the role of the stemness index in
OC and identified the prognostic capacity of the stemness index for patients with OC. We
counted the stemness index and immune score for all OC samples and analyzed the associ-
ation between mRNAsi and immune infiltration. Then, we obtained the DEGs between the
high- and low-mRNAsi groups and performed a functional enrichment analysis. Based
on these DEGs, we classified OC patients into two stemness subtypes using the consensus
clustering method. The two stemness subtypes showed significant differences in immune
infiltration, and subtype II showed a better prognosis (p < 0.05). Finally, we established a
prognostic signature for OC and demonstrated that this signature was independent.

2. Materials and Methods
2.1. Data Obtained

The gene expression and corresponding clinical characteristic profiles of OC patients
were obtained from the University of California Santa Cruz (UCSC) Xena database. The
RNA-seq data were measured by fragments per kilobase of transcript per million mapped
reads and normalized by log2. Patients without complete clinical information were re-
moved. The expression data of the patients with OC (OV-AU) was obtained from the
International Cancer Genome Consortium (ICGC) database as the validation cohort.

2.2. Calculation of the Stemness Index and Immune Score

In this research, we downloaded the stem cell expression profiles (syn2701943) in
the Progenitor Cell Biology Consortium database and used the OCLR algorithm to count
the mRNAsi of each patient. The mRNAsi value is scaled 0–1 accordingly; the higher
the value, the higher the activity of the cancer stem cells. Patients were placed into the
high- or low-mRNAsi groups using the median mRNAsi. Then, we obtained the immune
scores, stromal scores, and ESTIMATE scores of all patients using the ESTIMATE algorithm.
Patients were also split into high- or low-immunity groups using the median immune score.

2.3. Correlation Analysis of the Stemness Index and Immune Infiltration

To analyze the correlation between mRNAsi and immune infiltration, we applied
the ssGSEA and CIBERSORT algorithms [19]. We collected a set of 28 immune-related
genes [20] and used ssGSEA to calculate the rank value of each gene from the expression
profile and quantified the enrichment score of each gene. Single immune-related genes in
each sample can be used to determine the immune cell activity or immune pathway. The
CIBERSORT method provides a set of gene signatures for 22 tumor-infiltrating immune
cell fractions, including naive B cell, memory B cell, CD4+ resting memory T cell, etc.

2.4. Differentially Expressed and Functional Enrichment Analyses

The “limma” function was applied to identify the DEGs from the two mRNAsi groups.
The selection criteria for DEGs were an FDR < 0.05 and |log2 fold change (FC)| > 1.
To analyze the possible functions and pathways involved in these DEGs, we used the
“clusterProfiler” package for functional annotation. Gene Ontology (GO) was performed
for functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) were
performed to assess related pathways.
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2.5. Data-Obtained Identification of OC’s Stemness-Related Molecular Subtypes

We performed a consensus cluster analysis with the “ConsensusClusterPlus” package
according to DEGs and identified different stemness subtypes. The number of replicates of
the cluster analysis was set to 100, and 80% of the samples were used for each replicate.
We used the consensus heatmap and the cumulative distribution function (CDF) to select
the optimal number of clusters. The gene set variation analysis (GSVA) was performed to
explore the pathways in the stemness subtypes using the package “GSVA”. The KEGG
pathway profile was downloaded from the molecular signatures database (MSigDB).

2.6. Evaluation of the Relationship between Stemness Subtypes and Immune Infiltration

To assess the connection between immune infiltration and stemness subtype, we first
compared the correlation between the immune score and stemness subtype, and the level
of immune infiltration between different subtypes. Next, we compared the difference in
the tumor mutation burden (TMB) value between the different stemness subtypes. We also
compared the six immune checkpoint expression levels in different stemness subtypes,
including PDCD1, CD80, CD274, PDCD1LG2, CTLA4, and CD86.

2.7. Construction and Validation of the Prognostic Signature

First, we obtained the genes related to prognosis based on DEGs using the univariate
Cox regression analysis. Genes with significance were chosen for the subsequent analysis.
The least absolute shrinkage and selection operator (LASSO) regression analysis was used
to determine the best suitable genes. Finally, the remaining genes and corresponding
coefficients were retained to establish the risk prognostic signature, which was: Risk
score = ∑n

i Coef(i)× Exp(i) (n: the amount of genes; i: gene; Coef: coefficients; Exp: gene
expression level).

The patients in the TCGA cohort were assigned to high- or low-risk groups using the
median risk score. Then, we used the survival information from the two risk groups to plot
the Kaplan–Meier (KM) survival curve. We performed receiver operating characteristic
(ROC) analysis, and the area under the ROC curve (AUC) was used to evaluate the signature
value. ICGC data was used as a validation cohort.

2.8. Identification of Prognostic Factors and Nomogram Construction

To explore whether this risk signature has the ability to independently prognosticate,
we extracted clinical characteristics, including age and clinical stage. We evaluated these
variables in combination with risk scores using Cox regression analysis. We constructed
prognostic nomograms using independent prognostic factors identified by Cox regression
analysis and tested the predictive accuracy of the nomogram using calibration plots.

2.9. Statistical Analysis

All statistical analyses were performed using R software (version 4.1.1). We used the
log-rank test to calibrate the difference in the survival analysis. The Cox regression analysis
was applied to calculate the connection between survival outcomes and gene expression.
p < 0.05 was considered statistically significant.

3. Results
3.1. Correlation between the Stemness Index and Clinical Characteristics

To investigate the correlation between mRNAsi and clinical characteristics of OC,
we calculated the stemness index and immune score of 379 OC patients using the OCLR
and ESTIMATE algorithms. We then ranked patients to explore the relationship between
mRNAsi and clinical characteristics (Figure 1A,B). We divided all patients into different
groups according to the clinical characteristics and then compared the mRNAsi expression
in various clinical characteristics. Association analysis showed that mRNAsi did not
significantly differ by age and clinical stage (Figure 1C,D). We found that the value of
mRNAsi in the survival group was higher than that in the group that died, but this was
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insignificant (Figure 1E). However, patients in the survival group had significantly higher
immune scores than those in the group that died (p = 0.0067; Figure 1H). There were no
significant differences in the immune scores by age or clinical stage (Figure 1F,G).

Figure 1. The clinical characteristics associated with the mRNAsi and immune score in OC patients.
(A) The general picture of the association between mRNAsi and the clinical features. (B) The general
picture of the association between the immune score and the clinical features. (C–E) The correlation
between mRNAsi and age, clinical stage, and clinical status. (F–H) The correlation between immune
score and age, clinical stage, and clinical status.

3.2. Correlation between mRNAsi and Immune Infiltration

Considering the important influence of immune infiltration in tumor treatment, and
the differences in the immune scores between clinical outcomes, we investigated the
correlation between mRNAsi and immune infiltration. The enrichment levels of 28 immune-
related signatures were quantified using the ssGSEA method, reflecting the immune activity.
The result showed that the immune activity in the low-mRNAsi group was higher than that
in the high-mRNAsi group (Figure 2A). The correlation analysis showed that mRNAsi was
significantly negatively correlated with the immune score, stromal score, and ESTIMATE
score (p < 0.01), which indicated that the immune cell infiltration levels decrease with
elevated OC stemness (Figure 2B–D). We then quantified the abundances of the 22 immune
cell types in the 2 mRNAsi groups using the CIBERSORT algorithm. We found that the
mRNAsi was significantly positively correlated with B cell memory, T cell follicular helper
cells, activated NK cells, and activated dendritic cells. mRNAsi was significantly negatively
correlated with plasma cells, naive B cells, M2 macrophages, dendritic cells, and neutrophils
(Figure 2E).
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Figure 2. The immune features of OC that are associated with mRNAsi. (A) Correlation between
mRNAsi and immune infiltration. (B–D) Correlation between mRNAsi and the immune score,
stromal score, and ESTIMATE score. The blue line is the regression line of mRNAsi and other scores.
(E) Comparisons of the abundances of 22 immune cells in 2 mRNAsi groups. * p < 0.05; ** p < 0.01;
*** p < 0.001, **** p < 0.0001.
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3.3. Differentially Expressed and Functional Enrichment Analyses

Next, we attempted to explore the differences in the functional annotation and path-
way enrichment analysis between the groups categorized by miRNA. Since there were
no significant differences between samples grouped by the median mRNAsi value, we
determined an optimal cutoff of mRNAsi = 0.58 based on the results of the “survminer”
analysis (Figure 3A) to obtain a more reasonable grouping. We reclassified 379 OC patients
into the high-mRNAsi group (n = 231) or the low-mRNAsi group (n = 148). We then per-
formed a differential expression analysis in the 2 mRNAsi groups and identified 156 DEGs
(Figure 3B).

Figure 3. Differential expression analysis and functional enrichment analysis. (A) We determined
0.58 as the optimal grouping value. (B) The heatmap reflects the expression levels of DEGs. (C) The
GO functional annotation analysis. (D) The KEGG pathway enrichment analysis.

We performed DAVID using these DEGs to investigate their possible biological func-
tions. According to the results of the functional enrichment analysis, we found more than
50 enriched biological processes, including extracellular structure organization, extracel-
lular matrix organization, and external encapsulating structure organization; 31 enriched
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cellular components, including fibrillar collagen trimer, collagen trimer, collagen-containing
extracellular matrix, and endoplasmic reticulum lumen; 42 enriched molecular functions,
including extracellular matrix structural constituent, collagen binding, and extracellular
matrix structural constituent conferring tensile strength (Figure 3C); and 28 enriched KEGG
pathways, including the PI3K-Akt signaling pathway, Wnt signaling pathway, and TGF-β
signaling pathway (Figure 3D). These results indicate that these DEGs are associated with
the tumor signaling pathway and may regulate tumor progression.

3.4. Identification of Two Stemness Subtypes with Distinct Characteristics

To analyze the association between mRNAsi and OC subtypes, we used the con-
sensus clustering method to explore a novel classification of OC in the TCGA cohort.
According to the consensus heatmap and the CDF curve, the intergroup connections were
the lowest and the intragroup connections were the highest when k = 2 (Figure 4A,B,
Supplementary Table S1). Therefore, 379 patients with OC were classified into 2 stemness
subgroups (Figure 4C), including stemness subtype I (201 patients, 53.2%) and stemness
subtype II (178 patients, 47.8%). The demographic information between the two stemness
subtypes is shown in Supplementary Table S2. Survival analysis indicated that patients
with OC in the stemness subtype II had a better OS time than those in the stemness subtype
I (p = 0.014, Figure 4D). The median OS time of the patients in the stemness subtype II was
longer than that in the stemness subtype I.

Subsequently, we performed differential expression analysis on the two subtypes and
performed GSVA to analyze the molecular pathways and underlying functions associated
with the stemness subtype. Finally, we identified 33 significantly enriched pathways that were
positively related to the stemness subtype II (Figure 4E). The results revealed that stemness
subtype II tumors were primarily related to tumorigenesis (e.g., P53 pathway, and PI3K AKT
mTOR signaling) and immune responses (e.g., apoptosis, and IL6 JAK-STAT3 signaling).

3.5. Stemness Subtype Differences in Immune Infiltration

Considering the association between mRNAsi and immune infiltration, we next com-
pared differences in the immune infiltration between stemness subtypes. We found that the
immune score, stromal score, and ESTIMATE score were higher in the stemness subtype
II (p < 0.001), indicating a high abundance of immune and stromal cells (Figure 5A–C).
We also found that the TMB values were significantly higher in the stemness subtype II
(p = 0.019; Figure 5D). In general, the higher the TMB, the more efficacious treatment with
an immune checkpoint inhibitor is. Subsequently, CIBERSORT was used to quantify the
abundance of the immune cell infiltration in OC. Most of the CD4+ and CD8+ T cell subsets,
NK cells, and neutrophils were more enriched in the stemness subtype II. Plasma cells and
resting mast cells were significantly more enriched in the stemness subtype I (Figure 5E).
Among them, NK cells and T cells play an important role in killing tumor cells.

We also evaluated the expression level of six immune checkpoint genes in the two
stemness subtypes. We found that the expression level of the checkpoint genes was
significantly increased in the subtype II (p < 0.01, Figure 5F–K). The stemness subtype II
exhibited significantly higher levels of expression of various immune signatures compared
to the stemness subtype I. These findings suggest that the two stemness subtypes differ
in their response to immunotherapy, and that the subtype II is more immunogenic and
responds better to immunotherapy.
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Figure 4. Identification of the two stemness subtypes. (A) Consensus clustering heatmap when k = 2.
(B) CDF curves of the consensus score from k = 2 to 10. (C) The heatmap of DEGs between the two
subtypes. (D) KM curve analysis exhibited that the patients in stemness subtype II have significantly
better OS. (E) Heatmap showed 33 differentially enriched pathways between the 2 subtypes.
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Figure 5. The two stemness subtypes exhibit distinct differences in immune infiltration. (A–D) Com-
parisons of the immune score, stromal score, ESTIMATE score, and TMB between the stemness
subtypes I and II. (E) Comparisons of the abundances of 22 immune cells in the 2 subtypes. (F–K) The
expression levels of PDCD1, PDCD1LG2, CD274, CTLA4, CD86, and CD80 in the two subtypes.
* p < 0.05; ** p < 0.01; *** p < 0.001, **** p < 0.0001.

3.6. Construction and Validation of the Prognosis Risk Signature

To predict OC prognosis, we constructed an mRNAsi-related prognostic signature.
Using univariate Cox regression analysis on 156 DEGs, we identified 72 genes related to
OC prognosis (p < 0.05) and reduced this number to 11 genes using LASSO regression
analysis. Then, we used these 11 genes to build a prognosis signature: CCDC80, COL16A1,
DUSP1, GAS1, IGLV2-14, MFAP4, PXDN, SCGB1D2, SFRP2, TGFBI, and VSTM2L. Among
them, IGLV2-14 and SCGB1D2 were associated with decreased risk with HR < 1 while the
others genes were related to an increased risk with HR > 1 (Figure 6A,B). The prognostic
formula was: Risk score = 0.081 × Exp (CCDC80) + 0.028 × Exp (COL16A1) + 0.01 × Exp
(DUSP1) + 0.055 × Exp (GAS1) − 0.072 × Exp (IGLV2-14) + 0.027 × Exp (MFAP4) + 0.002
× Exp (PXDN) − 0.017 × Exp (SCGB1D2) + 0.003 × Exp (SFRP2) + 0.072 × Exp (TGFBI) +
0.024 × Exp (VSTM2L).

According to the risk formula, we counted the risk score of all patients and assigned
them to low-risk (n = 190) or high-risk (n = 189) groups using the median risk score. The
association between the risk score and survival information is exhibited in Figure 6C.
In the TCGA cohort, the patients in the low-risk group had significantly longer overall
survival times (p < 0.001, HR = 4.2, 95%CI: 2.58–7; Figure 6D). The AUC was 0.626 for the
3-year survival, 0.671 for the 5-year survival, and 0.717 for the 7-year survival (Figure 6E),
indicating that the signature has high precision. We used the same method to assign
93 patients from ICGC to low-risk groups (n = 47) or high-risk groups (n = 46). In the ICGC
cohort, patients in the low-risk group had lower death rates and longer survival times
(p = 0.014, HR = 2.3, 95% CI: 1.1–4.7; Figure 6F). The AUC of the ICGC cohort also indicated
that the model has predictive power (Figure 6G).
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Figure 6. Construction and validation of the prognostic signature. (A,B) Eleven genes were identified
by LASSO regression analysis. (C) Risk score distribution, survival status, and signature gene
expression in the TCGA cohort. (D) The KM curves of the TCGA cohort. (E) The ROC curve of the
TCGA cohort. (F) The KM curve of the ICGC cohort. (G) The ROC curve of the ICGC cohort.

3.7. The Prognostic Signature Is an Independent Prognostic Factor for OC

Finally, we explored whether this signature has the ability to be independently prog-
nostic using Cox regression analysis. The univariate Cox analysis demonstrated that the risk
score and age were prognostic factors (p < 0.05, HR = 4.248, 95%CI: 2.582–6.989; Figure 7A),
and the multivariate Cox analysis demonstrated that the risk score was an independent
factor for OC (p < 0.05, HR = 3.612, 95%CI: 2.182–5.982; Figure 7B). We plotted the expres-
sion level of eleven genes between the two risk subgroups (Figure 7C) and found that nine
genes were highly expressed in the high-risk group, suggesting that they may regulate
OC progression. We established a nomogram using the prognostic signature (Figure 7D).
The calibration curves for the 1-year, 3-year, and 5-year survival indicate a high degree of
overlap between the actual survival rate and the survival rate predicted by the nomogram
(Figure 7E). This suggests that the nomogram has a great predictive value.



Genes 2022, 13, 993 11 of 15

Figure 7. The prognostic signature was an independent prognostic factor. (A) The univariate Cox
regression analysis. (B) The multivariate Cox regression analysis. (C) The heatmap for the connections
between the clinical characteristics and the risk groups. (D) Nomogram of the prediction model for
OC. (E) The nomogram calibration curves to predict the 1-, 3-, and 5-year survival.

4. Discussion

OC is one of the most serious gynecological tumors and is a global public health
problem. Treatment modalities for OC mainly include surgical debulking and radiotherapy
or chemotherapy [4]. Because of drug resistance and the high rate of recurrence, treatment
results are unsatisfactory. The identification of reliable tumor markers will significantly
impact OC treatment and prognosis. CSCs play critical roles in OC growth, metastasis, and
chemoresistance [21,22]. An in-depth understanding of the molecular mechanisms of CSCs
in OC would help improve clinical results.

mRNAsi has been widely used to assess the clinical prognosis and treatment of
various tumors [23–25]. Stemness-related signatures have been revealed in different cancers,
including lung squamous cell carcinoma [26], hepatocellular carcinoma [27], triple-negative
breast cancer [28], and gastric cancer [29]. mRNAsi has also been used to identify prognostic
biomarkers and therapeutic targets in glioma [30,31]. However, there are few studies [32,33]
on the stemness index in OC. Therefore, we analyzed the stemness index’s application
value in OC to improve diagnosis and treatment.

Previous studies have indicated that OC stemness is related to the tumor environment
and immune cells [34]. We found a significant negative correlation between mRNAsi and
the OC immune score. ssGSEA revealed that the number of immune cells was significantly
reduced in patients with high mRNAsi. This indicates that high mRNAsi is closely as-
sociated with a low abundance of immune cells, suggesting that CSCs may promote OC
development by attenuating immune cells’ abilities. Alex Miranda et al. [35] found an
inverse correlation between stemness and immune cell infiltration in solid tumors. Other
research [36,37] has indicated that CSCs suppress immune system responses and improve
tumor survival.
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Subsequently, we redefined the low- and high-mRNAsi groups using optimal survival
thresholds. The pathway enrichment analysis found that these DEGs were closely related
to biological processes such as endoderm formation and the collagen metabolic process.
The DEGs were significantly enriched in multiple cancer pathways such as the PI3K-Akt
and Wnt signaling pathways, indicating that CSCs regulate tumor progression in multiple
ways. Using the consensus class discovery method, we classified patients into two stemness
subgroups that exhibited different clinical outcomes. Compared to the stemness subtype
I, patients in the stemness subtype II had a longer survival time (p = 0.019) and a higher
enrichment of immune cells and immune infiltration. The expression level of CD274 and the
TMB value were higher in the subtype II, and TMB and CD274 reflected patients’ sensitivity
to immunotherapy [38–40]. Despite OC’s poor response to current immunotherapy, we can
combine immunotherapy with other treatments such as chemotherapy and radiotherapy to
improve treatment efficiency. According to a subtype analysis, the stemness subtype II is
more sensitive to and benefits more from immunotherapy. This suggests that in patients
with OC, we could choose different clinical treatments based on stemness characteristics.

In the present study, we identified 11 genes related to prognosis and constructed a
prognostic risk signature. KM analysis and an ROC curve indicated that the patients in the
low-risk group had significantly longer overall survival times. Furthermore, we constructed
a nomogram for OC patients for potential clinical application. In this prognostic signature,
SFRP2, MFAP4, CCDC80, COL16A1, DUSP1, VSTM2L, TGFBI, PXDN, and GAS1 were
highly expressed in the high-risk group, and HR > 1, suggesting that they may promote
OC initiation and migration. SFRP2 promotes metastasis and resistance to therapy in
various solid tumors [41,42]. The downregulation of SFRP2 facilitates the stemness of
glioma by activating Wnt/β-catenin signaling [43]. SFRP2 also regulates non-small-cell
lung cancer metastasis via modulation of mitochondrial fission [44]. Zhao et al. verified
that high levels of MFAP4 expression predict platinum-based chemotherapy resistance
and imply a poor prognosis in patients with serous OC [45]. CCDC80 is a common tumor
stemness marker used in a variety of solid tumor prognostic models [46–48]. Studies
have shown that it helps tumor cells acquire drug resistance and immune infiltration [46].
USP1 is one cause of drug resistance in tumors, allowing them to evade chemotherapy
by modulating the p38 pathway and activating the MAPK pathway [49,50]. High TGFBI
expression accompanies tumor resistance, and it promotes breast cancer metastasis by
modulating tumor hypoxia [51]. These genes have an important influence in tumorigenesis,
tumor progression, and drug resistance. However, their effect in promoting OC metastasis
and drug resistance has not been fully elucidated, which requires further study.

This study also had some limitations. First, we only included 93 patients from ICGC,
which is a small sample size. Second, since the two stemness subtypes have obvious
differences in immune infiltration, they may show different responses to immunotherapy.
However, we did not have the corresponding data to verify this. Therefore, the correla-
tion between stemness and immunotherapy responsiveness must be validated in future
clinical experiments.

5. Conclusions

In conclusion, we analyzed the association between mRNAsi and clinical characteris-
tics and immune infiltration and identified two stemness-related molecular subtypes. We
developed a risk signature that can effectively predict the prognosis of patients with OC,
providing new insights into the precise diagnosis and prognosis for these individuals.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes13060993/s1, Table S1: The clinical information and
clustering results; Table S2: The demographics between the two stemness subtypes.
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