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Abstract: The main objective of this study was to characterize the tet(X) genes, which encode a
monooxygenase that catalyzes the degradation of tetracycline antibiotics, carried by the resistant
strains FP105 and FP233-J200, using whole-genome sequencing analysis. The isolates were recovered
from fin lesion and kidney samples of diseased rainbow trout Oncorhynchus mykiss, during two
Flavobacteriosis outbreaks occurring in freshwater farms located in Southern Chile. The strains were
identified as Epilithonimonas spp. by using biochemical tests and by genome comparison analysis
using the PATRIC bioinformatics platform and exhibited a minimum inhibitory concentration (MIC)
of oxytetracycline of 128 µg/mL. The tet(X) genes were located on small contigs of the FP105 and
FP233-J200 genomes. The sequences obtained for the tet(X) genes and their genetic environment were
compared with the genomes available in the GenBank database of strains of the Chryseobacterium
clade belonging to the Flavobacterium family, isolated from fish and carrying the tet(X) gene. The Tet(X)
proteins synthesized by the Chilean Epilithonimonas strains showed a high amino acid similarity
(range from 84% to 100%), with the available sequences found in strains belonging to the genus
Chryseobacterium and Flavobacterium isolated from fish. An identical neighborhood of tet(X) genes
from both Chilean strains was observed. The genetic environment of tet(X) observed in the two
strains of Epilithonimonas studied was characterized by the upstream location of a sequence encoding
a hypothetical protein and a downstream located alpha/beta hydrolase-encoding gene, similar to the
observed in some of the tet(X) genes carried by Chryseobacterium and Flavobacterium strains isolated
from fish, but the produced proteins exhibited a low amino acid identity (25–27%) when compared to
these synthesized by the Chilean strains. This study reports for the first time the carriage of the tet(X)
gene by the Epilithonimonas genus and their detection in fish pathogenic bacteria isolated from farmed
salmonids in Chile, thus limiting the use of therapies based on oxytetracycline, the antimicrobial
most widely used in Chilean freshwater salmonid farming. This results suggest that pathogenic
strains of the Chryseobacterium clade occurring in Chilean salmonid farms may serve as important
reservoirs of tet(X) genes.

Keywords: tet(X); Epilithonimonas; salmon farming; fish pathogen; tetracycline resistance;
aquaculture; Chile

1. Introduction

In Chilean salmon freshwater farms, the high prevalence of bacterial infections, such
as Flavobacteriosis mainly caused by the pathogen Flavobacterium psychrophilum, has stimu-
lated the use of important amounts of antimicrobials [1–3]. In 2020, the Chilean salmonid
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farming industry used 379.6 tons to produce a biomass of 1,075,896 tons of harvested
fish, of which 2.44% was used in freshwater Chilean salmonid farms [4]. Oxytetracycline
was the most used antimicrobial in freshwater Chilean salmonid farming during 2020,
accounting for 79.52% of antimicrobials administered in this environment [4], and from
these, 38.26% was used for the treatment of Flavobacteriosis episodes, in which external
signs of disease are commonly treated through a bath with oxytetracycline [2].

Aquaculture settings have been suggested as environments with a high diversity
of tet genes, encoding for tetracycline resistance [5,6], perhaps due to the wide use of
oxytetracycline to treat fish diseases [7]. Thus, the persistence and enrichment of tet genes
in the aquaculture environments can be significantly enhanced by the administration of
oxytetracycline-based therapies, prompting the need of a continuous surveillance.

Previously, several studies demonstrated an important occurrence of oxytetracycline-
resistant bacteria in Chilean land- and lake-based farms associated with Chilean freshwater
farming [8,9]. It have previously been reported the carriage of several tet genes, such as
tet(A), tet(B), tet(E), tet(H), tet(L), tet(34), tet(35), and tet(39) by various bacterial species
recovered from various Chilean aquaculture sources, including reared fish, pelletized
feed, and water and sediment from lake-based farms [10,11]. In a more recent study, the
encoding-resistance genes tet(A), tet(B), tet(C), tet(L), tet(M), tet(S), tet(W), and tet(X) were
reported in various points in riverine waters located upstream and downstream from the
discharge of effluents of various freshwater rainbow trout (Oncorhynchus mykiss) rearing
farms in Chile [7]. As noted in the article, the most common disease occurring in the five
studied trout farms was Flavobacteriosis causing a 3–4% mortality in each farm.

Most of the known tet genes confer resistance to tetracyclines by encoding for efflux
proteins (33 genes), whereas a smaller number of tet genes conferring resistance to tetracy-
clines by encoding ribosomal protection proteins (12 genes) or for enzymes that chemically
modify tetracycline (13 genes) have been currently reported (http://faculty.washington.
edu/marilynr/, accessed on 10 August 2021).

The tet(X) gene encodes a NADP-dependent monooxygenase that catalyzes the degra-
dation of tetracycline antibiotics, including tigecycline [12–14]. It is well-known that
tet(X)-carrying bacteria exhibit high levels of resistance to all clinical important tetracy-
clines [15], but until now, no studies reporting the occurrence of this gene in bacteria
isolated from Chilean salmonid farms are available. In only one study it was demonstrated
the occurrence of tet(X) genes in pathogenic fish bacteria belonging to the Flavobacterium
family, identified as Chryseobacterium balustinum (identity: 95.5%) and recovered from
rainbow trout in the UK [16].

Epilithonimonas is a bacterial genus belonging to the Chryseobacterium clade, thus
closely related to the bacterial genus Chryseobacterium, the second largest genus in the
Flavobacteriaceae family [17,18]. Epilithonimonas sp. FP211-J200 is the first representative of
this genus associated with fish diseases [19], but tet(X) genes have never been previously
reported in this genus. The main aim of the study was to characterize tet(X) genes and their
genetic background carried by two Epilithonimonas strains isolated from diseased fishes
from two Chilean freshwater salmonid farms.

2. Results
2.1. Phenotypic Characterization

The bacterial strains FP105 and FP211-J200 showed the phenotypic characteristics
typical of members of the Chryseobacterium clade belonging to the Flavobacterium family.
Strains FP105 and FP211-J200 were found to be Gram-negative, rod-shaped, non-motile,
positive for production of oxidase, indole and catalase, reduction of nitrate to nitrite
and hydrolysis of aesculin, negative for acid production from glucose and able to form
flexirubin-type pigments. When grown on TYES agar, the colonies were circular, smooth,
convex and bright orange with diameters from 1.5 to 2.5 mm (Figure 1). Both strains were
able to grow on R2A and Tryptone Soy agar plates, but not on MacConkey agar. Growth of
strains occurred at 15 and 28 ◦C, but not at 37 and 42 ◦C, and cannot tolerate 2% NaCl.
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Figure 1. Colony morphotypes of the Epilithonimonas strains recovered from diseased rainbow trout
from Chilean farms grown on TYES agar: (A) FP105; (B) FP211-J200.

The API ZYM profiles of the FP105 and FP211-J200 strains are presented in Table 1,
showing the capacity of both isolates to produce the enzymes alkaline phosphatase, esterase
(C4), lipase (C8), leucine arylamidase, valine arylamidase, acid phosphatase, and naphthol-
AS-BI-phosphohydrolase, whereas only FP211-J200 strain was able to produce lipase (C14)
and cystine arylamidase.

Table 1. Enzymatic properties of the Epilithonimonas FP105 and FP211-J200 strains by using the API
ZYM system (BioMerieux).

Enzyme
Activity

FP105 FP211-J200

Control Negative Negative
Alkaline phosphatase Positive Positive

Esterase (C4) Positive Positive
Esterase lipase (C8) Positive Positive

Lipase (C14) Negative Positive
Leucine arylamidase Positive Positive
Valine arylamidase Positive Positive

Cystine arylamidase Negative Positive
Trypsin Negative Negative

α-chymotrypsin Negative Negative
Acid phosphatase Positive Positive

Naphthol-AS-BI-phosphohydrolase Positive Positive
α-galactosidase Negative Negative
β-galactosidase Negative Negative
β-glucoronidase Negative Negative
α-glucosidase Negative Negative
β-glucosidase Negative Negative

N-acetyl-β-glucosaminidase Negative Negative
α-mannosidase Negative Negative
α-fucosidase Negative Negative

2.2. Bacterial Identification

The whole genome sequences of FP105 and FP211-J200 strains were compared with
several whole genome sequences currently available for the related members of the Chry-
seobacterium clade. The results are presented as a phylogenetic dendrogram, as is depicted
in Figure 2 showing that both Chilean strains are members of the genus Epilithonimonas,
observing that Chilean strains are genetically most closely related to the Epilithonimonas
lactis strain LMG24401 isolated from raw cow’s milk in Israel [20].
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Figure 2. Phylogenetic tree based on the whole genome sequences, showing the relationship between the Chilean Epilithon-
imonas strains (FP105 and FP211-J200) and closely related taxa within the Chryseobacterium clade. Tree was constructed
using the patric server (https://patricbrc.org/app/PhylogeneticTree, accessed on 12 July 2021). A total of 100 single-copy
genes found for 46 genomes and both amino acid and nucleotide sequences were used for each gene. Empedobacter brevis
NBRC 14943 was used as an outgroup. Accession numbers of each sequence are shown in parentheses. Red asterisks (*) are
included to highlight genomes harboring the tet(X) gene.

2.3. Minimum Inhibitory Concentrations (MICs)

Both the MIC values of oxytetracycline of FP105 and FP211-J200 strains were 128 µg/mL,
whereas reference strains Escherichia coli (E. coli) ATCC 25922 and Aeromonas salmonicida
ATCC 33658 used for quality controls exhibited MIC values of oxytetracycline of 0.5 and
0.25 µg/mL, respectively, in agreement with the values recommended by CLSI [21].

https://patricbrc.org/app/PhylogeneticTree
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2.4. Molecular Analysis of tet(X)

When the publicly available genomes of other genera belonging to the Flavobacte-
riaceae family were investigated, among the genomes of strains deposited in GenBank
belonging to Flavobacterium, Chryseobacterium, and Empedobacter genus. They were iso-
lated from fishes, and only three genomes of Flavobacterium spp. and six genomes of
Chryseobacterium spp. were found to harbor the tet(X) gene.

Tet(X) was detected in contigs 80 (5749 bp) and 54 (5763 bp) of FP211-J200 and FP105
genomes, respectively, and were identical at nucleotide and amino acid sequence level
(identity of 100%) to each other. As shown in Table 1, the amino acid sequence identity of
Tet(X) protein produced by Epilithonimonas strains exhibited a 100% identity with those
synthesized by the Chryseobacterium strains (SNU WT5 and SNU WT7) from South Ko-
rea [22,23]. Tet(X) proteins from Chilean strains showed an approximately 84% identity
with the Tet(X) of Chryseobacterium from the UK (MOF25P and BGARF1) [16], Turkey (C2),
and Spain (701B-08) [24,25], Flvobacterium kayseriense from Turkey (F-47 and F-380) [26],
and Flavobacterium plurextorum from Spain (CCUG 60112) [27,28]. All of these strains
were isolated from fish, and their whole genomes are currently included in the GenBank
database (Table 2).

As observed in Figure 3, the surface structure of Tet(X) protein first described in
Bacteroides fragilis (Figure 3A) and used as the structure reference (control) showed a
high similarity with Tet(X) proteins synthesized by the Chilean Epilithonimonas strains and
Chryseobacterium strains from South Korea (Figure 3B). However, they showed an important
number of differences with the Tet(X) protein structures produced by the Chryseobacterium
strains from the UK (Figure 3C) and Flavobacterium strains from Turkey (Figure 3D) and
Spain (Figure 3E) at the substrate binding domain, FAD (flavin adenine dinucleotide)-
binding domain, and helix bridge.

The above is mostly explained, because Tet(X) proteins synthesized by the Chilean
Epilithonimonas and South Korean Chryseobacterium strains exhibited only two amino acid
substitutions with the sequence of Tet(X) protein produced by B. fragilis (Figure S1, Sup-
plementary Data). In contrast, there were a number of amino acid substitutions (64 or 67)
between the sequences of the Tet(X) protein synthesized by the B. gracilis strain, and the
sequences of the Tet(X) proteins synthesized by the Chryseobacterium strains from the UK,
Turkey, and Spain and the Flavobacterium strains (Figure S1, Supplementary Data).

Otherwise, the alignment of the amino acid sequences of Tet(X) from the studied
strains did not shown substitutions in the amino acid sequences of the putative substrate-
loading cavity composed of FAD-interactive residues and tetracycline-binding residues,
thus not affecting their antimicrobial inactivation activity (Figure S1, Supplementary Data).

The genetic environment of tet(X) genes of Epilithonimonas sp. FP105 and FP211-J200
strains was characterized by the upstream location of a sequence encoding an hypothetical
protein, whereas the downstream of the tet(X) gene was detected by a gene encoding an
alpha/beta hydrolase (Figure 4). When the neighborhood of the tet(X) genes carried by
both Chilean Epilithonimonas strains was compared to the other fish Flavobacteriaceae tet(X),
the genetic surroundings of tet(X) genes carried by the Epilithonimonas strains were very
different to those of the South Korean Chryseobacterium strains. The Chryseobacterium strains
carried a lnu(F) gene encoding a lincosamide nucleotidyltransferase protein at the upstream
location and a downstream location of a gene encoding a class D β–lactamase (SNU WT5).
While both carried the ere(D) gene, they were responsible for erythromycin resistance (SNU
WT7) found in different locations (Figure 4).

The same upstream and downstream flanking genes of tet(X) genes carried by the
Chilean strains were observed in the tet(X) genes carried by the Chryseobacterium spp.
strains from UK, Turkey, and Spain. While the tet(X) genes carried by the Flavobacterium
strains also exhibited an upstream flanking gene encoding an hypothetical protein, they
had different downstream flanking genes (Figure 4).
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Table 2. Similarity of nucleotide and amino acid sequences of Tet(X) synthesized by Flavobacteriaceae strains isolated from fishes and Tet(X) produced by Bacteroides fragilis (control).

Strain
Percentage of Nucleotide/Amino Acid Similarity * (%)

Control FP105 FP211-J200 SNU WT5 SNU WT7 MOF25P BGARF1 C2 701B-08 F-47 F-380 CCGU

Control 100/100 99.83/99.48 99.83/99.48 99.83/99.48 99.83/99.48 86.00/83.20 86.00/83.20 85.91/83.20 85.82/83.20 83.59/82.69 83.59/82.69 83.76/83.20
FP105 100/100 100/100 100/100 100/100 87.25/84.66 87.25/84.66 87.16/84.66 87.07/84.66 84.78/84.13 84.78/84.13 84.96/84.66

FP211-J200 100/100 100/100 100/100 87.25/84.66 87.25/84.66 87.16/84.66 87.07/84.66 84.78/84.13 84.78/84.13 84.96/84.66
SNU WT5 100/100 100/100 87.25/84.66 87.25/84.66 87.16/84.66 87.07/84.66 84.78/84.13 84.78/84.13 84.96/84.66
SNU WT7 100/100 87.25/84.66 87.25/84.66 87.16/84.66 87.07/84.66 84.78/84.13 84.78/84.13 84.96/84.66
MOF25P 100/100 100/100 99.91/100 99.82/100 92.61/93.92 92.61/93.92 90.85/91.27
BGARF1 100/100 99.91/100 99.82/100 92.61/93.92 92.61/93.92 90.85/91.27

C-2 100/100 99.91/100 92.52/93.92 92.52/93.92 90.77/91.27
701B-08 100/100 92.44/93.92 92.44/93.92 90.68/91.27

F-47 100/100 100/100 92.00/92.06
F-380 100/100 92.00/92.06

CCUG 60112 100/100

* control (B. fragilis), tet(X), M37699.1; Tet(X), AAA27471.1; Epilithonimonas sp. FP105, tet(X), JAHTWS010000054.1; Tet(X), MBV6881964.1; Epilithonimonas sp. FP211-J200, tet(X), LSH01000079.1; Tet(X), OAH64793.1;
Chryseobacterium sp. SNU WT5, tet(X), CP041687.1; Tet(X), QDP85680.1; Chryseobacterium sp., SNU WT7 tet(X), CP044507.1; Tet(X), QFG52251.1; Chryseobacterium sp. MOF25P, tet(X), LFEG01000086.1; Tet(X),
OBW41066.1; Chryseobacterium sp. BGARF1, tet(X), LELA01000055.1; Tet(X), OBW45804.1; Chryseobacterium sp. C-2, tet(X), JACXXP010000006.1; Tet(X), MBD3904424.1; Chryseobacterium oncorhynchi 701B-08, tet(X),
PPEI02000003.1; Tet(X), PWN64762.1. Flavobacterium kayseriense F-47, tet(X), JACRUI010000001.1; Tet(X), MBC5847276.1. F. kayseriense F-380, tet(X), JACRUJ010000001.1; Tet(X), MBC5840054.1. Flavobacterium
plurextorum CCUG 60112, tet(X), MUHD01000006.1; Tet(X), OXB10245.1.
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Figure 4. Comparison of the genetic environment of the tet(X) genes carried by Chilean Epilithonimonas strains (FP105 and FP211-J200) with the available tet(X) genes carried by
Chryseobacterium and Flavobacterium strains isolated from fishes. Numbers between ORFs indicate the size of the intergenic region in base pairs (bp). The sequences used in the scheme
were those included the GenBank under the accession numbers CP041687.1 (C. sp. SNU WT5), CP044507.1 (C. sp. SNU WT7), LFEG01000086.1 (C. sp. MOF25P), LELA01000055.1 (C. sp.
BGARF1), JACXXP010000006.1 (C. sp. C-2), PPEI02000003.1 (C. oncorhynchi 701B-08), JACRUI010000001.1 (F. kayseriense F-47), JACRUJ010000001.1 (F. kayseriense F-380), MUHD01000006.1
(F. plurextorum CCUG 60112) JAHTWS010000054.1 (E. sp. FP105), and LSHB01000079.1 (E. sp. FP211-J200). Resistome-related genes are in red. Mobilome-related genes are in green.
Hypothetical proteins (HP) are in white. Other genes are in yellow.
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The Chilean strains showed a very low amino acid identity to the flanking hypo-
thetical proteins detected in the Chryseobacterium, Flavobacterium kayseiense (F. kayseriense;
26.51%), and Flavobacterium plurextorum (25.30%) strains. Otherwise, the genes encoding
the hypothetical proteins carried by the Chryseobacterium and Flavobacterium strains had an
amino acid identity of more than 90% (Table S1, Supplementary Data).

As is shown in Figure 4, four Chryseobacterium spp. (MOF25P, BGARF1, C-2, and
701B-08) and two F. kayseriense (F-47 and F-380) strains also carried a downstream located
gene encoding an alpha/beta hydrolase (Figure 3). However, Chilean strains showed a
very low amino acid identity to the flanking alpha/beta hydrolase sequences detected
in the Chryseobacterium (27.13%) and F. kayseriense (27.67%) strains. All of the hydrolase
genes carried by the Chryseobacterium strains shared a 100% amino acid identity between
themselves, as was observed between the same genes carried by the F. kayseriense strains
(Table S2, Supplementary Data).

3. Discussion
3.1. Bacterial Identification

Many representatives belonging to the Flavobacteriaceae family have a very relevant
role as fish pathogens, as was exhaustively described [29,30]. The genus Chryseobacterium
has been frequently isolated as the causative agent of disease ocurring in freshwater fish
and particularly rainbow trout diseases, including C. viscerum, C. oncorhynchae, C. tructae,
C. shigense, C. chaponense, C. piscicola species [24,31,32]. Other members of the Flavobacteri-
aceae family have been previously isolated from diseased farmed salmonids in Chile [33–35].

It is not uncommon to misidentify bacteria as F. psychrophilum as occurs with the
studied strains, which could be due to the fact that they be correctly identified as Epilithon-
imonas sp., a member of the Chryseobacterium clade, shown in this study [36,37].

This misidentification is very relevant considering that F. psychrophilum species does
not carry specific genes for resistance to tetracyclines, as occurs with pathogenic strains
of fish and humans belonging to the Chryseobacterium clade, including several species
belonging to the Chryseobacterium, Empedobacter, and Riemerella genus, among others,
which have been reported to carry the tet(X) gene [38–42]. As a result of this, it has been
hypothesized that the Flavobacteriaceae family could be a potential ancestral source of
the tigecycline-resistance gene tet(X), as was recently claimed [43]. Thus, the detection of
genes encoding for tetracycline resistance in fish pathogenic bacteria is of concern for the
sustainability of this industry.

3.2. Detection of tet(X) Genes

It has been demonstrated that using culture-independent methods, water samples
taken from fish farms with recent oxytetracycline use have significantly higher frequencies
of tet genes than water from farms without recent oxytetracycline therapies exceeding by
more than two-fold that of untreated farms [44].

Furthermore, the occurrence of tetracycline-resistance encoding genes in aquaculture-
impacted environments is frequent, as was observed in studies showing that 57.14% of the
total resistant bacteria recover from aquaculture environments [45]. All 108 resistant strains
isolated from aquaculture ponds in China were positive for a tet gene [46], which persisted
at aquaculture farms even in the absence of a selection pressure [47]. Xiong et al. [48] found
a high relative abundance (10−5 to 10−3 of gene copies/16S ribosomal RNA (rRNA) gene
copies) of various tet genes, including tet(X) in sediment samples from fish ponds without
antimicrobial usage. They concluded that detected antimicrobials, such as oxytetracycline
and doxycycline, were introduced by applied organic wastes from terrestrial animals. The
authors suggested that sediments are the main reservoirs of tetracycline resistance genes in
aquaculture environments in China. Another study has shown that farmed fish feces are a
relevant source of tetracycline resistance genes in the farm sediments, despite the absence
of antibiotic treatments at the studied farms [49].
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In a recent article [50], the authors performed a whole-genome sequencing analysis of
the Chryseobacterium aquaticum strain C-174, isolated from diseased farmed rainbow trout
in Turkey, reporting this strain carries many tetracycline-resistance genes, including tet(32),
tet(60), tet(T), tet(X), and tet(W). However, when the C-174 genome was further analyzed,
we confirmed that all of these genes, and other reported antimicrobial-resistance genes were
misidentified, not corresponding to antimicrobial-resistance genes. The tet(X) sequence
(NMR 36027.1) has only a 28% identity with the tet(X) sequence included in the GenBank
database, whereas it has a 99% identity with other flavin-dependent monooxygenases
which do not belong to the Tet(X) group (WP_050378416.1).

It must be noted that among all tet(X) genes reported in flavobacteriaceae strains
from fish, only in this study, it was confirmed that the detected tet(X) genes conferred the
tetracycline-resistance phenotype, considering that both Epilithonimonas strains showed an
MIC of oxytetracycline of 128 µg/mL, which is within the expected level of resistance to
oxytetracycline mediated by the Tet(X) activity. This value is in agreement with previous
studies in which tet(X) genes heterologously expressed by E. coli transconjugants harboring
recombinant plasmids exhibited MIC values of 128–256 µg/mL [12,40,51,52].

3.3. Molecular Analysis of tet(X)

The tet(X) genes carried by the Chilean strains were 99.83% identcal to the wild-
type (WT) tet(X) gene, which was first recovered in Bacteroides fragilis [53], and only two
mutations (A280G and G1077C) were detected in the tet(X) genes carried by the Chilean
Epilithonimonas strains resulting in amino acid substitutions at the corresponding sites
(K94E and M359I), (Figure S1). These two mutatios were previously reported in a tet(X)
variant carried by an Empedobacter falsenii strain isolated from a chinese patient [41]. The
authors demonstrated that both amino acids are located far from the active site regions,
thus not affecting the activity of this Tet(X) protein.

Important differences in the genetic neighborhood of tet(X) genes carried by the
Chilean strains, when compared to the other tet(X)-carrying strains isolated from fishes,
were observed. It must be noted that all Chryseobacterium and Flavobacterium strains ana-
lyzed in the study carried the catB gene, encoding for a chloramphenicol acetyltransferase
in the tet(X) neighborhood, whereas this gene was absent in the genome of Chilean Epilithon-
imonas strains.

In addition, the insertion sequence IS91 was detected in the genetic environment of
the majority of the analyzed strains, with the only exception of the Chilean strains and
F. plurextorum. In addition, the tet(X) gene in Bacteroides fragilis was found to be inserted
in the transposon Tn4400, with an upstream location of the erythromycin-resistance gene
ermF [53], very different from what was observed in the strains in this study.

This is the first report of a tet(X) gene detected in pathogenic species belonging to the
Flavobacteriaceae family in Chilean aquaculture and prompts the necessity to investigate
the carriage of this gene by bacteria associated to Chilean salmonid farms and farmed
salmonid microbiota, considering that mobilome elements such as ISCR2, IS26, and many
conjugative and mobilizable plasmids could play an essential role in the acquisition and
dissemination of tet(X) genes in natural reservoirs [54]. Furthermore, the potential role of
pathogenic strains belonging to the Flavobacteriales occurring in Chilean salmonid farms
as reservoirs of tet(X) genes must be elucidated.

4. Materials and Methods
4.1. Bacterial Strains

The bacterial strains FP105 and FP233-J200 isolated from fin lesion (FP105) and kidney
(FP223-J200) of diseased rainbow trout Oncorhynchus mykiss positively diagnosed with
Flavobacteriosis sampled from two freshwater Chilean farms located in the South of
Chile (Llanquihue Lake and Cude River, respectively) were studied. Strains were isolated
in the fish pathological diagnostic laboratory ADL Diagnostics and sent to the Aquatic
Pathobiology Lab of the Universidad Católica del Norte. The strains were purified using
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Tryptone-Yeast Extract Salt (TYES) agar [55] and stored at −85 ◦C in CryoBankTM vials
(Mast Diagnostica, Reinfeld, Germany). Strains were grown in TYES agar at 25 ◦C for 24 h
prior to use (Figure 3).

4.2. Phenotypic Characterization

The phenotypic tests of Gram staining, cell morphology, colony morphology grown
onto TYES agar, and oxidation/fermentation (O/F) of glucose were determined according
to the procedures described in Buller [56]. Furthermore, several key characteristics for
the description of bacterial strains belonging to the Flavobacteriaceae family [57], such as
production of oxidase and catalase, hydrolysis of aesculin and gelatin, reduction of nitrate
to nitrite, indole production, production of flexirubin-type pigment, growth at 25 ◦C on
R2A (Becton-Dickinson, Sparks, MD, USA), MacConkey (Becton-Dickinson, Sparks, MD,
USA), Trypticase Soy (TSA, Becton-Dickinson, Sparks, MD, USA) agar, and in Brain Heart
Infusion (BHI, Becton-Dickinson, Sparks, MD, USA) broth added with 1.0, 2.0, 3.0, 4.5, and
6.5% NaCl were performed using procedures as previously described [56,58]. In addition,
growth at 15, 25, 30, 37, and 42 ◦C in a BHI broth was assayed.

Other enzymatic activities of FP105 and FP223-J200 strains were determined using
the API ZYM system (bioMérieux, Marcy-l’Etoile, France) according to the manufacturer’s
guidelines. Test strips were read after 5 min as indicated by the manufacturer, and each
assay was performed twice to ensure reproducibility.

4.3. Bacterial DNA Extraction and Sequencing

The genomic DNA of strains was extracted and purified using the commercial Wizard®

Genomic DNA Purification kit (Promega, Madison, WI, USA), following the instructions of
the supplier. The whole genomic DNA was sequenced by Macrogen USA (Rockville, MD,
USA) using the Illumina MiSeq platform, and 500-bp inserts from paired-end sequencing
were utilized in the genomic library. Low-quality reads were trimmed with a quality
threshold of Q20; the trimmed reads were then subjected to de novo assembly using
the SPAdes assembler [59]. The reads were assembled to 83 (FP211-J200) and 63 (FP105)
scaffolds with the 4,110,772 bp and 4,124,333 bp total genomes lengths for each strain,
respectively. Genome was annotated using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) service. In total, 3748 and 3778 coding sequences of strains FP211-J200
and FP105, respectively, were annotated in the NCBI database. The GenBank accession
number of the complete genome sequence of FP211-J200 strain is LSHB01000000 [19], and
the genome sequence of FP105 strain was registered under the GenBank accession number
of JAHTWS000000000.1.

4.4. Bacterial Identification

The whole genomic DNA sequences were used to identify the strains by a genome
comparison using the PATRIC bioinformatics platform. FP105 and FP211-J200 strains
were identified by comparison analysis of 100 single copy genes using the PATRIC server
(https://patricbrc.org/app/PhylogeneticTree, accessed on 10 April 2021). As described
in PATRIC platform, protein sequences were aligned using MUSCLE, and the nucleotide
coding gene sequences were aligned using the Codon_align function of BioPython. A
concatenated alignment of all proteins and nucleotides were written to a phylip formatted
file, and then a partitions file for RaxML is generated, describing the alignment in terms
of the proteins and then the first, second and third codon positions. Support values were
generated using 100 rounds of the “Rapid” bootstrapping option of RaxML.

The whole genome sequences of FP105 and FP211-J200 strains were compared with
a total of 46 whole genome sequences currently available for related members of the
Chryseobacterium clade.

https://patricbrc.org/app/PhylogeneticTree
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4.5. MICs

The MICs of oxytetracycline of FP105 and FP211-J200 isolates were determined by
a microdilution procedure, as recommended by the CLSI guideline M07-A10 [60] and
previously described [61]. Conical bottom microplates added with a cation-adjusted
Mueller–Hinton broth (Difco Labs, NJ, USA) were inoculated with the antibiotic to obtain
final series of two-fold concentrations in the range of 0.0625–512 µg/mL, and bacterial
suspensions were inoculated in triplicate microplates, delivering approximately 104 colony-
forming units per well and incubated at 28 ◦C for 24 h. The reference strains E. coli ATCC
25,922 and Aeromonas salmonicida ATCC 33,658 were included as quality controls, as was
recommended [21]. All assays were performed twice to check the reproducibility of the assay.

4.6. Molecular Analysis of tet(X) Genes

The analysis of the tet(X) gene sequences and their genetic environments were per-
formed using the contigs derived from genomic sequencing using the BioEdit 7.2.5 soft-
ware [62] and subsequent comparison by BLAST computational analysis with the sequences
of tet(X) genes carried by Chryseobacterium strains isolated from fishes included in the Gen-
Bank database and/or previously reported [16,25].

The modelling of Tet(X) proteins produced by the studied strains was based on
published Tet(X) from Bacteroides thetaiotaomicron (PDB accession number: c2xdoC) using
the online server Phyre2 [63]. The substrate-binding domain (light green), the FAD-binding
domain (pink), and the C-terminal helix (blue) were displayed, while the open substrate-
loading channel was marked in a yellow dotted box. In addition, the alignment of the
amino acid sequences of Tet(X) proteins produced by the Chilean Epilithonimonas strains
with the sequences of the other Tet(X) variants found in Flavobacteriaceae from fishes were
conducted with Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed
on 15 June 2021) generating its output with ESPript 3.0 (http://espript.ibcp.fr/ESPript/cgi-
bin/ESPript.cgi, accessed on 15 June 2021) [64]. A secondary structure based on the Tet(X)
protein detected in Bacteroides fragilis (PDB number: 4A6N) served as a structure reference.

5. Conclusions

In conclusion, the results of this study demonstrated, for the first time, the carriage
of the tet(X) gene by bacterial strains isolated from reared rainbow trout affected with
Flavobacteriosis in Chilean freshwater salmonid farming and the carriage of this gene by
the Epilithonimonas genus. The detection of the tet(X) gene in these representatives of the
Chryseobacterium clade reinforces the hypothesis that this taxonomic group may serve as
an important environmental reservoir of this gene. Furthermore, the genetic environment
of tet(X) carried by the Epilithonimonas strains is very different to those detected in two
Chryseobacterium isolates recovered from fish in South Korea, despite their high amino acid
similarity, suggesting the need to gain knowledge of the genetic epidemiology of tet(X)
genes carried by fish pathogenic bacteria. Finally, this study demonstrates the carriage of
tet(X) genes by two pathogenic bacteria from reared rainbow trout in Chile may become
a threat due to the frequent oxytetracycline-based treatment of Flavobacteriosis in Chile.
Finally, this study demonstrated the carriage of tet(X) genes by two pathogenic bacteria
isolated from farmed rainbow trout in Chile, which may become a threat to the Chilean
industry due to the frequent use of oxytetracycline for the treatment of Flavobacteriosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10091051/s1, Figure S1: Alignment of the amino acid sequences of Tet(X) proteins
produced by the Chilean Epilithonimonas strains with the sequences of the other Tet(X) variants
found in Flavobacteriaceae from fishes, Table S1: Similarity of nucleotide and amino acid sequences
of alpha/beta hydrolase flanking the tet(X) gene carried by strains belonging to the Flavobacteriaceae
family isolated from fishes, Table S2: Similarity of nucleotide and amino acid sequences of hypo-
thetical protein flanking the tet(X) gene carried by strains belonging to the Flavobacteriaceae family
isolated from fishes.

https://www.ebi.ac.uk/Tools/msa/clustalo/
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
https://www.mdpi.com/article/10.3390/antibiotics10091051/s1
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