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Abstract: In many countries, the fruit of betel (Piper betle Linn) is traditionally used as medicine for
treating malaria. It is a fatal disease, and existing medications are rapidly losing potency, necessitating
the development of innovative pharmaceutics. The current study attempted to determine the
compounds in the n-hexane fraction of betel fruit extract and investigate the potential inhibition
of bioactive compounds against aspartic protease plasmepsin 1 (PDB ID: 3QS1) and plasmepsin
2 (PDB ID: 1LEE) of Plasmodium falciparum using a computational approach. The ethanol extract
was fractionated into n-hexane and further analyzed using gas chromatography-mass spectrometry
(GC-MS) to obtain information regarding the compounds contained in betel fruit. Each compound’s
potential antimalarial activity was evaluated using AutoDock Vina and compared to artemisinin, an
antimalarial drug. Molecular dynamics simulations (MDSs) were performed to evaluate the stability
of the interaction between the ligand and receptors. Results detected 20 probable compounds in
the n-hexane extract of betel fruit based on GC-MS analysis. The docking study revealed that
androstan-17-one,3-ethyl-3-hydroxy-, (5 alpha)- has the highest binding affinity for plasmepsin 1 and
plasmepsin 2. The compound exhibits a similar interaction with artemisinin at the active site of the
receptors. The compound does not violate Lipinski’s rules of five. It belongs to class 5 toxicity with
an LD50 of 3000 mg/kg. MDS results showed stable interactions between the compound and the
receptors. Our study concluded that androstan-17-one,3-ethyl-3-hydroxy-, (5 alpha)- from betel fruit
has the potential to be further investigated as a potential inhibitor of the aspartic protease plasmepsin
1 and plasmepsin 2 of Plasmodium falciparum.
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1. Introduction

Malaria is an infectious disease that is very widespread worldwide, affecting 100 coun-
tries with tropical and subtropical climates. Every year in the world, 300–500 million cases
occur, resulting in 1–3 million deaths [1]. The disease is transmitted by mosquito vectors
carrying unicellular parasites of the genus Plasmodium. Plasmodia are obligate intracellular
parasites capable of infecting and replicating in erythrocytes following a silent replication
phase in the liver. Four species (P. falciparum, P. malariae, P. ovale, and P. vivax) have tra-
ditionally been recognized as natural causes of human infection, but the recent increase
in malaria cases caused by Plasmodium knowlesi in Southeast Asia has led physicians to
consider it the fifth parasite that causes malaria in humans [2].

Today, the availability of safe, effective, practical, and economically affordable anti-
malarial drugs has improved, resulting in reduced mortality from the disease. Several
drugs have been developed that inhibit or kill the asexual form of the parasite in human
erythrocytes, such as quinine, chloroquine, pyrimethamine, sulfonamides, sulfones, and
artemisinin derivatives. The problem is that these drugs have mostly failed in the healing
process due to parasites that have become resistant to antimalarial drugs [3–5]. There are
several reasons for the resistance of the parasites to these drugs. For example, parasites
do not have an active site to bind chloroquine, so this drug cannot be concentrated in
erythrocytes [6]. Various attempts have been made to develop more effective antimalarial
drugs. One of them is through utilizing a computer simulation approach.

In Plasmodium falciparum, there are three different classes of proteases responsible
for hemoglobin degradation, including aspartic proteases (plasmepsin I, II, IV, and HAP),
cysteine proteases (falcipain-1, -2 and -3), and metalloproteases (falcilysin) [7]. Plasmepsin
is synthesized in the form of an inactive precursor (membrane-bound proplasmepsin) and
processed into mature plasmepsin and falcipain, which are categorized as cysteine pro-
teases [8]. Because plasmepsin and falcipain are involved in the degradation of hemoglobin
necessary for the proliferation of parasites in the body, they have been targets of anti-
malarial drug development for decades [7,8]. Among these two proteins, plasmepsin is
considered to be the ideal target for antimalarial drugs [9]. By targeting this protein, the
parasite’s life cycle can be inhibited [10]. In addition, an antimalarial drug currently on
the market, artemisinin, is targeted to inhibit the performance of both plasmepsin 1 and
plasmepsin 2 [11].

The discovery of new drugs is labor-intensive and time-consuming. However, this
process can at least be shortened through initial screening using a computational method.
This strategy aims to improve the efficiency of the simulation and calculation procedures
used in drug design, offering the in silico method as a complement to the in vitro and
in vivo approaches that are frequently utilized in the process of drug discovery [12]. Using
an in silico-based drug design approach, the difference in ligand and receptor bond energies
is exploited between the target site of the parasite and the putative drug molecule. Stronger
interactions displayed by some molecules compared to reference molecules represent
potential drug candidates [7].

Several previous in silico studies have been conducted to identify antimalarial com-
pounds. Bioactive flavonoid compounds from the roselle plant (Hibiscus sabdariffa L.) as an
antimalarial compound against plasmepsin 1 and plasmepsin 2 produce a lower docking
score than artemisinin, indicating that these compounds have better potential activity for
the aspartic protease enzyme [13]. The results of pharmacological and molecular docking
of phytol from Moringa oleifera demonstrated that this bioactive compound has potential as
an antimalarial drug [14].

In pharmacological studies, the fruit and leaves of green betel (Piper betel Linn) have
health and health-related benefits, including analgesia [15], anti-ulcer, anti-allergic [16],
antibacterial [17–20], anti-mosquito larvae [21], antioxidant [22], and insect repellent proper-
ties [23]. Betel fruit has antimalarial activity in vivo in Wistar rats, which was administered
by mixing it with mayana leaves, honey, and egg yolk [1]. This present study used the
GC-MS method to determine the bioactive chemicals present in the n-hexane fraction of
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betel fruit grown in North Sulawesi. The identified compounds were then analyzed in
silico to determine their potential for inhibiting the aspartic proteases plasmepsin 1 and 2
from P. falciparum and compared to artemisinin, a standard antimalarial drug.

2. Results
2.1. GC-MS Analysis

According to GC-MS analysis, the n-hexane fraction of the betel fruit extract recorded
a total of 10 readable peaks, corresponding to a total of 20 probable bioactive compounds
(Figure 1). These compounds were recognized by relating their peaks’ retention times,
peak area (%), height (%), and mass spectral fragmentation patterns to those of known
compounds documented by the NIST (National Institute of Standards and Technology)
mass spectra database and library. The chemical names of the bioactive compounds are
shown in Table 1. Each retention time produces three probable compounds. There are some
that produce the same probable compound, and some that are different, so all the probable
compounds are considered results based on the database used.
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Table 1. Compounds from the n-hexane fraction of betel fruit extract identified using GC-MS analysis.

Peak Retention
Time (min)

Probable Compound Name
#Hit1

Probable Compound
Name #Hit2

Probable Compound
Name #Hit3

Retention
Area (%)

1 12.814 Phenol,
2-methoxy-3-(2-propenyl)-

Phenol, 2-methoxy-4-(2-
propenyl)-

Phenol,
2-methoxy-4-(2-propenyl)- 32.22

2 12.905 4-Nitroisopropylbenzene 4-Nitroisopropylbenzene 3-Nitroisopropylbenzene 16.99
3 13.005 Guaiacol, 3-allyl- p-Eugenol p-Eugenol 7.10
4 15.559 Benzoic acid, 2,4-dimethyl- Benzoic acid,

2,4-dimethyl- Benzoic acid, 2,6-dimethyl- 18.86
5 16.872 Delta-Cadinene delta-Cadinene delta-Cadinene 11.85
6 17.452 Nerolidol Nerolidol b (cis or trans) d-Nerolidol 3.04
7 18.759 alpha-Cadinol Epiglobulol Torreyol 2.84
8 19.161 Androstan-17-one,

3-ethyl-3-hydroxy-, (5 alpha)- Longipinocarveol, trans- Neoclovenoxid-alcohol 1.95

9 22.089 Hexadecanoic acid,
methyl ester

Hexadecanoic acid,
methyl ester

Hexadecanoic acid,
methyl ester 2.37

10 23.869 9-Octadecenoic acid,
methyl ester

9-Octadecenoic acid (Z)-,
methyl ester

9-Octadecenoic acid (Z)-,
methyl ester 2.78
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2.2. ADME Analysis

All probable compounds detected were used as ligands and then examined for their
pharmacokinetic properties using ADME (absorption, distribution, metabolism, and ex-
cretion) tools. Table 2 summarizes the findings. According to this finding, all the prob-
able compounds detected in betel fruit comply with Lipinski’s rule of five (Ro5), except
neoclovenoxid-alcohol, which indicates that these compounds would be likely orally ac-
tive medicine in humans. The Ro5 criteria are as follows: (i) the molecular weight is
≤500 g/mol; (ii) the number of H-bond acceptors is ≤10; (iii) the number of H-bond
donors is ≤5; (iv) the log p-value (lipophilicity) is ≤5; and (v) the molar refractivity should
be between 40 and 130.

Table 2. Lipinski’s rule of the plasmepsin protease potential inhibitors.

Ligand Properties PubChem
ID

Mol. Weight
< 500 g/mol

No. H-Bond
Donors < 5

No. H-Bond
Acceptors < 10

Log
p < 5

No. of
Violation

Androstan-17-one,
ethyl-3-hydroxy-, (5 alpha)- 14681481 318.50 1 2 4.4 0

Torreyol 11990360 222.37 1 1 3.3 0
Delta-cadinene 12306054 204.35 0 0 3.8 0

Epiglobulol 11858788 222.37 1 1 3.7 0
Longipinocarveol, trans- 534645 220.35 1 1 3.8 0

Alpha-Cadinol 6431302 223.37 3 5 3.78 0
Neoclovenoxid-alcohol 16211877 220.35 1 6 3.22 1

9-Octadecenoic acid, methyl ester 5280590 34.06 1 1 0.57 0
d-Nerolidol 5356544 194.31 1 1 3.54 0
Nerolidol 5284507 222.37 1 1 4.19 0

Benzoic acid, 2,4-dimethyl- 11897 150 1 2 2 0
Nerolidol b (cis or trans) 131753171 233.26 1 3 4.5 0

Eugenol 3314 164 1 2 2.2 0
3-Nitroisopropylbenzene 591251 165.19 0 2 2.07 0
4-Nitroisopropylbenzene 15749 165 0 2 2.12 0

Benzoic acid, 2,6-dimethyl- 12439 150 1 2 2.3 0
Phenol, 2-methoxy-3-(2-propenyl)- 596373 125 1 2 2.98 0
Phenol, 2-methoxy-4-(2-propenyl)- 3313 125 1 3 2.9 0

Hexadecanoic acid, methyl ester 8181 270 0 2 5.6 0
Guaicoal 460 312 5 6 0.05 0

Artemisinin (control) 68827 282.33 0 5 2.8 0

2.3. Toxicity Analysis

Several parameters in the toxicity analysis included LD50, predicted toxicity class,
hepatoxicity, carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Toxicity
levels are classified as follows: classes 1 and 2 (fatal if swallowed), class 3 (toxic if swal-
lowed), class 4 (harmful if swallowed), class 5 (maybe harmful if swallowed), and class
6 (non-toxic). As shown in Table 3, based on their respective LD50 (mg/kg), seven com-
pounds are classified as harmful if swallowed (class 4), one compound is non-toxic (class
6), and the remaining compounds may be harmful if swallowed (class 5). None of the
compounds demonstrated mutagenicity or cytotoxicity. Benzoic acid, 2,4-dimethyl- and
benzoic acid, 2,6-dimethyl- are predicted to have hepatotoxicity activity with a probability
of 0.52. Guaicoal is predicted as carcinogenic with a probability of 0.56. Androstan-17-
one, ethyl-3-hydroxy-, (5-alpha)-, Torreyol, longipinocarveol, trans-, alpha-Cadinol, and
artemisinin all demonstrated significant immunotoxicity, with probabilities of 0.79, 0.69,
0.62, 0.69, and 0.70, respectively.



Pharmaceuticals 2021, 14, 1285 5 of 17

Table 3. Toxicity analysis of the five plasmepsin protease potential inhibitors.

Compounds LD50
(mg/kg)

Predicted
Toxicity

Class

Hepatotoxicity
(Prediction/
Probability)

Carcinogenicity
(Prediction/
Probability)

Immuno-
Toxicity

(Prediction/
Probability)

Mutagenicity
(Prediction/
Probability)

Cytotoxicity
(Prediction/
Probability)

Androstan-17-one,
ethyl-3-hydroxy-, (5-alpha)- 3000 5 −/0.52 −/0.78 +/0.79 −/0.96 −/0.82

Torreyol 2830 5 −/0.82 −/0.66 +/0.69 −/0.91 −/0.87
Delta-cadinene 4390 5 −/0.82 −/0.75 −/0.68 −/0.68 −/0.69

Epiglobulol 2000 4 −/0.77 −/0.69 −/0.87 −/0.75 −/0.89
Longipinocarveol,

trans- 5000 5 −/0.89 −/0.64 +/0.62 −/0.92 −/0.96
Alpha-Cadinol 2830 5 −/0.82 −/0.66 +/0.69 −/0.91 −/0.87

Neoclovenoxid-alcohol 2000 4 −/0.77 −/0.75 −/0.94 −/0.75 −/0.86
9-Octadecenoic acid,

methyl ester 3000 5 −/0.59 −/0.56 −/0.96 −/0.98 −/0.70
d-Nerolidol 5000 5 −/0.81 −/0.65 −/0.99 −/0.91 −/0.81
Nerolidol 5000 5 −/0.81 −/0.65 −/0.99 −/0.91 −/0.81

Benzoic acid,
2,4-dimethyl- 3200 5 +/0.52 −/0.72 −/0.99 −/0.97 −/0.88

Nerolidol b (cis or trans) 5000 6 −/0.75 −/0.66 −/0.99 −/0.92 −/0.79
Eugenol 1930 4 −/0.67 −/0.73 −/0.83 −/0.97 −/0.90

3-Nitroisopropylbenzene 430 4 −/0.51 −/0.52 −/0.86 −/0.57 −/0.79
4-Nitroisopropylbenzene 1000 4 −/0.51 −/0.52 −/0.96 −/0.57 −/0.79

Benzoic acid, 2,6-dimethyl- 4480 5 +/0.52 −/0.72 −/0.99 −/0.97 −/0.88
Phenol,

2-methoxy-3-(2-propenyl)- 1230 4 −/0.68 −/0.72 −/0.70 −/0.84 −/0.86
Phenol,

2-methoxy-4-(2-propenyl)- 916 4 −/0.74 −/0.62 −/0.70 −/0.84 −/0.86
Hexadecanoic acid, methyl

ester 5000 5 −/0.58 −/0.55 −/0.90 −/0.83 −/0.70
Guaicoal 520 4 −/0.72 +/0.56 −/0.85 −/0.99 −/0.81

Artemisinin 4228 5 −/0.72 −/0.63 +/0.70 −/0.63 −/0.97

2.4. Molecular Docking Analysis

The docking results revealed that some of the bioactive compounds from the frac-
tionation of n-hexane betel fruit exhibited substantial binding-free energy (BFE) values
compared to artemisinin (Table 4). The BFE value of the compounds ranged from −4.7
to −9.1 kcal/mol for plasmepsin 1, and from −4.5 to −8.0 kcal/mol for plasmepsin 2.
Meanwhile, artemisinin, which acted as a control, exhibited a BFE value of −7.7 and
−6.7 kcal/mol for plasmepsin 1 and 2, respectively.

Table 4. Binding free energy of bioactive compounds of the betel fruit extract.

Ligand Properties
Binding Free Energy (kcal/mol)

1LEE
(Plasmepsin 2)

3QS1
(Plasmepsin 1)

Androstan-17-one, ethyl-3-hydroxy-, (5-alpha)- −8.0 −9.1
Torreyol −6.6 −6.4

Delta-cadinene −6.4 −6.3
Epiglobulol −6.4 −6.3

Longipinocarveol, trans- −6.1 −7.1
Alpha-Cadinol −6.0 −6.1

Neoclovenoxid-alcohol −6.0 −6.0
9-Octadecenoic acid, methyl ester −5.9 −5.8

d- Nerolidol −5.8 −6.1
Nerolidol −5.8 −6.1

Benzoic acid, 2,4-dimethyl- −5.6 −5.6
Nerolidol b (cis or trans) −5.4 −5.6

Eugenol −5.4 −5.5
3-Nitroisopropylbenzene −5.3 −6.0
4-Nitroisopropylbenzene −5.2 −5.8

Benzoic acid, 2,6-dimethyl- −5.0 −5.1
Phenol, 2-methoxy-3-(2-propenyl)- −5.0 −5.3
Phenol, 2-methoxy-4-(2-propenyl)- −4,9 −5.0

Hexadecanoic acid, methyl ester −4.9 −4.9
Guaicoal −4.5 −4.7

Artemisinin (control) −6.7 −7.7
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The compound androstan-17-one, ethyl-3-hydroxy-, (5 alpha)- (hereafter referred to
as AND) (Figure 2), which showed the best results for 3QS1 and 1LEE, was selected for
molecular interaction analysis (Tables 5 and 6). For comparison, the molecular interactions
between artemisinin, acting as a control, and 3QS1 and 1LEE are shown in Table 5. Results
of the investigation of molecular interactions revealed that AND interacts with residues
MetA13, IleA30, SspA32, TyrA75, ValA75, SerA77, PheA109, PheA117, IleA120, GlyA2178,
and ThrA21 with 3QS1 (Figure 3). Meanwhile, the interactions shown by artemisinin with
the same receptor are with residues MetA13, IleA30, AspA32, TyrA75, SerA77, PheA109,
AlaA111, PheA117, IleA120, GlyA217, ThrA218, and SerA219 (Figure 4). It appears that
these two compounds bind to the same site of 3QS1, albeit through different types of
interactions and at different distances.

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 7 of 19 
 

 

pocket residue as artemisinin, both to plasmepsin 1 and 2, indicates that AND has poten-
tial as an inhibitor for these two receptors. 

 
Figure 2. The two-dimensional structure of androstan-17-one, ethyl-3-hydroxy-, (5-alpha)-. 

Table 5. Molecular interactions of AND with 3QS1 and 1LEE. 

Receptor Name 
Binding Affinity 

(kcal/mol) No. H-Bond 
Interacting 
Residues Distance (Å) Category 

Type of Interac-
tion 

Plasmepsin 1 
(3QS1) 

−9.1 1 

Ser(A77) 2.74 H-Bond Conventional 
Tyr(A75) 3.83 Hydrophobic Pi-Sigma 
Met(A13) 4.92 Hydrophobic Alkyl 
Ile(A30) 3.89 Hydrophobic Alkyl 

Phe(A117) - Electrostatic Van der Waals 
Ile(A120) - Electrostatic Van der Waals 

Phe(A109) - Electrostatic Van der Waals 
Val(A76) - Electrostatic Van der Waals 
Asp(A32) - Electrostatic Van der Waals 
Thr(A218) - Electrostatic Van der Waals 
Gly(A217) - Electrostatic Van der Waals 

Plasmepsin 2 
(1LEE) 

−8 0 

Ile(A300) 5.12 Hydrophobic Pi-Alkyl/Alkyl 
Val(A78) 4.18 Hydrophobic Pi-Alkyl/Alkyl 
Val(A78) 4.53 Hydrophobic Pi-Alkyl/Alkyl 

Tyr(A192) 4.93 Hydrophobic Pi-Alkyl/Alkyl 
Gly(A36) - Electrostatic Van der Waals 

Asp(A214) - Electrostatic Van der Waals 
Asp(A34) - Electrostatic Van der Waals 
Tyr(A77) - Electrostatic Van der Waals 
Ile(A123) - Electrostatic Van der Waals 
Ile(A32) - Electrostatic Van der Waals 

Phe(A111) - Electrostatic Van der Waals 
Phe(A120) - Electrostatic Van der Waals 
Ser(A79) - Electrostatic Van der Waals 

Gly(A216) - Electrostatic Van der Waals 
Thr(A217) - Electrostatic Van der Waals 
Leu(A292) - Electrostatic Van der Waals 

Figure 2. The two-dimensional structure of androstan-17-one, ethyl-3-hydroxy-, (5-alpha)-.

Table 5. Molecular interactions of AND with 3QS1 and 1LEE.

Receptor
Name

Binding Affinity
(kcal/mol)

No.
H-Bond

Interacting
Residues

Distance
(Å) Category Type of Interaction

Plasmepsin 1
(3QS1) −9.1 1

Ser(A77) 2.74 H-Bond Conventional
Tyr(A75) 3.83 Hydrophobic Pi-Sigma
Met(A13) 4.92 Hydrophobic Alkyl
Ile(A30) 3.89 Hydrophobic Alkyl

Phe(A117) - Electrostatic Van der Waals
Ile(A120) - Electrostatic Van der Waals

Phe(A109) - Electrostatic Van der Waals
Val(A76) - Electrostatic Van der Waals
Asp(A32) - Electrostatic Van der Waals
Thr(A218) - Electrostatic Van der Waals
Gly(A217) - Electrostatic Van der Waals

Plasmepsin 2
(1LEE) −8 0

Ile(A300) 5.12 Hydrophobic Pi-Alkyl/Alkyl
Val(A78) 4.18 Hydrophobic Pi-Alkyl/Alkyl
Val(A78) 4.53 Hydrophobic Pi-Alkyl/Alkyl

Tyr(A192) 4.93 Hydrophobic Pi-Alkyl/Alkyl
Gly(A36) - Electrostatic Van der Waals

Asp(A214) - Electrostatic Van der Waals
Asp(A34) - Electrostatic Van der Waals
Tyr(A77) - Electrostatic Van der Waals
Ile(A123) - Electrostatic Van der Waals
Ile(A32) - Electrostatic Van der Waals

Phe(A111) - Electrostatic Van der Waals
Phe(A120) - Electrostatic Van der Waals
Ser(A79) - Electrostatic Van der Waals

Gly(A216) - Electrostatic Van der Waals
Thr(A217) - Electrostatic Van der Waals
Leu(A292) - Electrostatic Van der Waals
Phe(A294) - Electrostatic Van der Waals
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Table 6. Molecular interactions of artemisinin with 3QS1 and 1LEE.

Receptor
Name

Binding Affinity
(kcal/mol)

No.
H-Bond

Interacting
Residues

Distance
(Å) Category Type of Interaction

Plasmepsin 1
(3QS1) −7.7 0

Ile(A120) 5.01 Hydrophobic Pi-Alkyl/Alkyl
Phe(A109) 4.99 Hydrophobic Pi-Alkyl/Alkyl
Tyr(A75) 3.77 Hydrophobic Pi-Alkyl/Alkyl
Ile(A30) 4.97 Hydrophobic Pi-Alkyl/Alkyl
Ile(A30) 4.98 Hydrophobic Pi-Alkyl/Alkyl

Phe(A117) 4.27 Hydrophobic Pi-Alkyl/Alkyl
Met(A13) 4.13 Hydrophobic Pi-Alkyl/Alkyl
Ala(A111) - Electrostatic Van der Waals
Ser(A219) - Electrostatic Van der Waals
Thr(A218) - Electrostatic Van der Waals
Gly(A217) - Electrostatic Van der Waals
Ser(A77) - Electrostatic Van der Waals
Asp(A32) - Electrostatic Van der Waals

Plasmepsin 2
(1LEE) −6.7 2

Ser(A79) 2.70 H-Bond Conventional
Thr(A217) 2.99 H-Bond Conventional
Val(A78) 4.40 Hydrophobic Pi-Alkyl/Alkyl
Tyr(A77) 5.05 Hydrophobic Pi-Alkyl/Alkyl
Tyr(A77) 5.16 Hydrophobic Pi-Alkyl/Alkyl
Ile(A123) 4.66 Hydrophobic Pi-Alkyl/Alkyl
Ile(A32) 3.86 Hydrophobic Pi-Alkyl/Alkyl

Tyr(A192) - Electrostatic Van der Waals
Ser(A37) - Electrostatic Van der Waals
Asp(A34) Electrostatic Van der Waals
Gly(A216) - Electrostatic Van der Waals
Ser(A218) - Electrostatic Van der Waals
Asp(A214) - Electrostatic Van der Waals
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Figure 4. A molecular interaction between artemisinin and 3QS1: (a) artemisinin’s binding position in the active site of
3QS1; (b) the type of interaction of artemisinin that binds to the amino acids of 3QS1.

With the 1LEE receptor, AND interacts at residues IleA32, AspA34, GlyA36, TyrA77,
ValA78, SerA79, PheA111, PheA120, TyrA192, IleA123, AspA214, GlyA216, ThrA217,
LeuA292, PheA294, and IleA300 (Figure 5). Meanwhile, the control ligand artemisinin
binds to the ILEE receptor at residues IleA32, AspA34, SerA37, SerA79, TyrA77, ValA78,
IleA123, TyrA192, AspA214, GlyA216, ThrA217, and SerA218 (Figure 6). These two
compounds appear to share a common binding site, although there are some differences
in the binding of the residues and the types of interactions. The binding of AND to the
same pocket residue as artemisinin, both to plasmepsin 1 and 2, indicates that AND has
potential as an inhibitor for these two receptors.
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2.5. Molecular Dynamics Simulation

Interactions between AND and 3QS1 were simulated for 50 ns. First, the interaction
between AND and 3QS1 was analyzed concerning the protein–ligand complex. Based on
the protein backbone atoms, the root-mean-square deviation (RMSD) was calculated to
measure changes in the 3QS1 apo form (3QS1-Apo), 3QS1-AND complex (3QS1-AND),
and AND (AND-AND) over the time of the simulation. As shown in Figure 6, the 3QS1-
AND complex deviated very little and remained constant throughout the simulation.
The average RMSD values of 3QS1-Apo, 3QS1-AND, and AND-AND were measured at
0.229 nm, 0.279 nm, and 0.053 nm, respectively.

According to the RMSF analysis shown in Figure 7, the binding of AND to 3QS1 did
not negatively alter the fluctuation or stability of the protein. Between the 285th and 289th
amino acids, where the apo form showed the highest fluctuation, 3QS1-Apo peaked at
0.39 nm, while the 3QS1-AND holo form peaked at 0.27 nm.
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Another method used in the evaluation of protein compactness is the measurement of
radius of gyration (Rg) values. The smaller the Rg values and the fewer deviations they
explain, the higher the compactness of the protein. As shown in Figure 7, 3QS1-Apo and
3QS1-AND Rg values with small fluctuations between 2.05 nm and 2.17 nm were obtained.
The solvent accessible surface area (SASA) measurements are used to understand changes
in the protein’s solvent accessible surface area and stability as a result of the interaction of
the ligand with the protein. For this purpose, SASA analysis of the apo form of 3QS1 and
the AND-linked holo form was performed. As shown in Figure 7, average SASA values
for 3QS1-Apo and 3QS1-AND were 161.49 nm2 and 165.19 nm2 SASA, respectively. The
binding of AND to 3QS1 increased the average SASA value of the protein.

The second trajectory analysis was performed to analyze the interaction between AND
and 1LEE and their changes over the simulation time. An RMSD analysis was performed
to examine changes in protein stability over time. As illustrated in Figure 8, the root-mean-
square deviation (RMSD) values for the 1LEE-AND complex was determined to be less
than 0.4 nm. The average RMSD values of 1LEE-Apo, 1LEE-AND, and AND-AND were
measured at 0.236 nm, 0.277 nm, and 0.042 nm, respectively. According to the root-mean
square fluctuation (RMSF) analysis performed to measure protein fluctuation, 1LEE-Apo
and 1LEE-AND exhibited quite similar conformational changes, as shown in Figure 8.
The interaction between AND and 1LEE did not impair protein stability. According to
the radius of gyration (Rg) analysis performed to measure the compactness of 1LEE-
Apo and 1LEE-AND, Rg values between 2.05 nm and 2.17 nm were observed. Based on
solvent accessible surface area (SASA) analysis to evaluate the solvent-accessible area of
the protein–ligand complex, 1LEE-Apo and 1LEE-AND yielded average values of 163.13
and 163.42 nm2, respectively. In this study, time-dependent changes in the short-range
Lennard-Jones energy between AND and 3QS1-1LEE and the energy of the environment
over 50 ns were calculated. As shown in Figure 9, the stable binding energy of AND was
measured in both 3QS1-AND and 1LEE-AND. The 3QS1-AND and 1LEE-AND protein–
ligand complexes formed average short-range Lennard-Jones energies of −95.2164 and
−102.94 kJ mol−1, respectively.
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3. Discussion

Malaria is a public health problem in developing countries that can cause death,
especially in high-risk groups. Due to drug resistance in the treatment of the disease with
numerous medications, it is vital to look for promising medicinal plants in traditional anti-
malarial medicine that have been scientifically tested. Traditional Indonesian medicinal
plants are a potential source of novel antimalarial substances. One of them is the fruit of the
betel plant (P. betle). In this study, we used the fractionation of n-hexane from a methanol
extract of betel fruit in an effort to identify anti-malarial drugs. GC-MS analysis yielded
20 probable compounds, which are shown in Figure 1 and detailed in Table 1. Generally,
these compounds are reported as antimicrobials. Table 1 shows that the compounds with
the highest number in the n-hexane fraction of betel fruit are located at peak 1 with a
percent content (retention area) of 32.22%. The three compounds present at peak 1 are
the same: phenol, 2-methoxy-3- (2-propenyl)-. The second-largest component is observed
at peak 4, with a percentage of 18.86%. The three compounds at peak four are also the
same compound: benzoic acid, 2,4-dimethyl-. All of the probable compounds detected by
GC-MS were used as ligands in molecular docking.

The aim of searching for ligand-based drugs is to identify ligands that can interact
effectively with the target receptors. However, this does not mean that the compound will
be active if given orally. The journey to drug targets and drug interactions in the body
consists of pharmacokinetic events, including ADME. Therefore, it is necessary to consider
pharmacokinetics in the design of new drugs [24]. When designing an orally active drug, it
should meet the criteria of Lipinski’s Ro5 [25,26]. This rule is used to establish whether
particular chemical compounds possess the requisite chemical and physical qualities for
usage as active pharmaceutical ingredients that may be administered orally to humans
and to evaluate drug similarities [25]. Lipinski’s Ro5 analysis demonstrates that the five
probable compounds with the highest BFE have excellent bioavailability due to their
compliance with the rules. As a result, these compounds are predicted to be active when
administered orally. This means that the compound easily binds to the receptor and that
the ligand can cross the cell membrane easily [27].

In modern drug discovery, one of the most important components is the toxicity
prediction of potential drug candidates. This includes hepatotoxicity, carcinogenicity,
immunotoxicity, mutagenicity, and cytotoxicity, which are the most important factors
to consider when searching for new drugs with potentially beneficial properties. Acute
toxicity of a compound is expressed as a median lethal dose (LD50) [28]. The LD50 of the
compounds studied ranged from 2000 (class 4 toxicity) to 5000 (class 5 toxicity) mg/kg.
In general, the lower the LD50, the more toxic the substance [29]. Only a few compounds
under study, including artemisinin, have the potential to be immunotoxic. Immunotoxicity
is described as the immune system’s maladaptive functioning after exposure to a xenobiotic
chemical. These events include immune system dysfunction and hyperactivity, resulting in
cellular damage and permanent or reversible changes in the immune response [30].

The compounds that passed the pharmacokinetic and toxicity screening were further
analyzed for their binding affinity for plasmepsins. The enzymes are aspartic proteases that
work in coordination with cysteine proteases to degrade hemoglobin in the parasite’s food
vacuole [31]. These enzymes have been identified as possible targets for the development
of new antimalarial drugs [9]. This study suggests that AND has a favorable interaction
with plasmepsin 1 and 2, based on their BFE values being greater than those of artemisinin.
Artemisinin, as a positive control in this study, inhibits plasmepsins and represents an
antimalarial agent [11].

The receptors 3QS1 and 1LEE have the native ligands KNI and R36, respectively.
The native ligands were extracted and redocked into their original binding pockets. The
RMSD analysis is one of the most widely used parameters for calculating protein atomic
deviations [32]. The RMSD values resulting from these superimposing native ligands after
redocking to their original binding pockets were 1.7099 Å and 1.2918 Å. These values are
<2.0000 Å, a value typically used in evaluating the success of docking algorithms. This
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indicates that the docking method was valid [13]. The binding positions of AND and
artemisinin on plasmepsins were in the same pocket, suggesting that AND provides new
hope as an antimalarial lead candidate. As a result, further visualization and molecular
dynamics simulation were performed.

The three parameters that are usually considered when calculating molecular docking
results are binding affinity, the interaction of the amino acid residuals involved, and the
hydrogen bond energy [33]. Several amino acid residues are involved in the binding of
the compounds to plasmepsins, and the presence of hydrogen bonds is involved so that
these three parameters stabilize AND bonds at plasmepsins, indicating that this compound
inhibits the activity of these enzymes. The interactions that occur between artemisinin as a
ligand and amino acid residues in the receptors demonstrate that artemisinin as a positive
control ligand interacts with 10 amino acid residues of the receptor 3QS1 and 14 amino acid
residues of the receptor 1LEE. According to the type of AND interaction with 3QS1 and
1LEE, the interactions involve 11 amino acid residues in 3QS1 and 15 amino acid residues
in 1LEE, implying that the interactions involve more amino acids than artemisinin. The
accuracy of ligand binding to the receptor can be seen from the amino acid residues that
interact with ligand and receptor binding [34].

Molecular dynamics simulation studies in drug active ingredient designs are fre-
quently used in predictive studies of potential ligand–receptor interactions [35]. In an in
silico physiological environment, simulations are accepted as a rational approach for eval-
uating the molecular dynamics and interactions between the ligand and the protein [36].
From this point of view, the change in AND over time was investigated and analyzed by
the molecular docking of plasmepsins. A molecular dynamics simulation of 50 ns duration
was performed using CHARMM force fields, and RMSD, RMSF, Rg, and SASA trajectory
analysis were measured for both target proteins.

Measuring the binding energy between protein and ligand against time is one of the
important approaches in molecular dynamics simulations where protein–ligand interac-
tions are investigated [37]. Lennard-Jones energy measurements are one of the most widely
used molecular dynamics simulations to measure the potential energy of two molecules
that interact but do not bond with each other [38]. Hence, the short-range Lennard-Jones
protein–ligand interaction energy was calculated. To investigate the effect of AND on
two target proteins, the ligand-free apo form was simulated in the same environment
and conditions. When the data obtained from molecular dynamics simulations, RMSD,
RMSF, Rg, SASA, and the average short-range Lennard-Jones energy were evaluated, the
stability of the complex in which AND forms plasmepsin 1 and plasmepsin 2 proteins
was evaluated. The ligand gave very small deviations in the complex of AND formed by
plasmepsin 1 and plasmepsin 2. It is also understood that the protein–ligand Lennard-Jones
energy is a constant interaction throughout the simulation.

The results of a pharmacoinformatics study of potential compounds of betel fruit
indicate that these compounds have significant implications in the search for antimalarial
drugs. As public trust in the applicability and reliability of in silico approaches grows, so
will their use in regulatory decision-making [39].

4. Materials and Methods
4.1. Plant Collection

Ripe betel fruits were collected from Kotamobagu City, North Sulawesi, Indonesia.
The fruits were washed under running water and dried in a drying cabinet at 45 ◦C for
24 h. The dried fruits were ground into powder using a mixer grinder, passed through a
40-mesh Sieve to achieve a very fine powder, and stored in an airtight container until used.

4.2. Sample Preparation

Ten grams of dried betel fruit powder were macerated in 100 mL of 95% ethanol
for three days with occasional shaking and filtered using Whatman No. 1 filter paper.
Then, the supernatant was evaporated using a rotary vacuum evaporator to obtain a
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concentrated extract. The extract was subsequently fractionated into ethyl acetate and
n-hexane. The obtained n-hexane solution was centrifuged, and the supernatant was used
in further analysis.

4.3. Gas Chromatography-Mass Spectrometer (GC-MS) Analysis

Compound analysis was performed using GC-MS (Shimadzu QP 2010 SE). This GC-
MS uses an electron ionizing system (EI) with helium as the carrier gas at a constant flow
rate of 1 mL/minute for a total time of 60 min at a temperature of 280 ◦C. The column was
a DB-1 (100% dimethylpolysiloxane) with a length of 30 m and a diameter of 0.25 mm. The
temperature of the column was set at 40–270 ◦C, with a temperature increase of 10 ◦C every
5 min.

4.4. In Silico ADMET Analysis

The studied compounds underwent pharmacokinetic and drug-like as well as toxicity
analysis. The pharmacokinetic properties and drug-like nature were predicted by the
Supercomputing Facility for Bioinformatics and Computational Biology (SCFBIO) (http:
//www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp; accessed on 23 July 2021) [40].
The toxicity prediction was carried out on ProTox-II (https://tox-new.charite.de/protox_
II/; accessed on 23 July 2021) [41].

4.5. Computational Molecular Docking Analysis
4.5.1. Preparation of the Receptors

The receptor preparation procedure followed the steps of Tallei et al. [42]. The
plasmepsin-1 (PDB ID: 3QS1) and plasmepsin-2 (PDB ID: 1LEE) macromolecules, which
serve as receptors for targets in molecular docking, were downloaded from the Protein
Databank (http://www.rscb.org/pdb/; accessed on 29 July 2021). These receptors were
opened using BIOVIA Discovery Studio Visualizer 2020 and separated from solvents and
nonstandard ligands or residues. The cleaned receptors were stored in pdb format and
used for the docking process, and then optimized using Autodock Tools [43]. Optimization
included adding hydrogen atoms and setting the grid box parameter. These results were
saved in pdbqt.

4.5.2. Preparation of the Ligands

The ligands used were bioactive compounds isolated from betel leaves that were
produced by the GC-MS analysis and the artemisinin drug as a control. The structures of
these ligands were downloaded from http://pubchem.ncbi.nlm.nih.gov (accessed on 29
July 2021) in the sdf format. The procedure for ligand preparation followed the steps by
Tumilaar [44]. The file format of these ligands was converted to pdb using Open Babel [45]
and optimized using Autodock Tools [43]. The optimization includes setting the number
of active torsions. The optimization results were saved in pdbqt format.

4.5.3. Molecular Docking

Molecular docking steps followed the procedure of Sailah et al. [46]. Ligands and
receptors in the pdbqt format were copied into the vina folder. The Vina configuration file
was typed in notepad and saved as ‘conf.txt’. Vina was run via the command prompt. The
docking calculation results were viewed in the output in notepad format. Determination
of the ligand conformation resulting from docking was performed by selecting the ligand
conformation that had the lowest binding free energy (best pose). The binding free energy
value was displayed in the log.txt file. The position and orientation of the ligands on the
receptor macromolecules and the amino acids bound to the ligands were visualized using
BIOVIA Discovery Studio Visualizer 2020 software. Receptor and ligand files in pdbqt
format were displayed in the application, and then the ligand–receptor interactions were
displayed in 2D and 3D conformations.

http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
https://tox-new.charite.de/protox_II/
https://tox-new.charite.de/protox_II/
http://www.rscb.org/pdb/
http://pubchem.ncbi.nlm.nih.gov
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4.6. Molecular Dynamics Simulation

Molecular dynamics simulations to investigate protein–ligand stability and interac-
tion energy were performed using the GROningen MAchine for Chemical Simulations
(GROMACS) [47] according to the protocol of Celik et al. [48]. The androstan-17-one,
3-ethyl-3-hydroxy-, (5 alpha)–ligand topology file was created with the CGenFF server
(https://cgenff.umaryland.edu/; accessed on 14 August 2021) and the topology file of plas-
mepsin 1 and 2 protein structures with the pdb2 gmx script using the Charmm36-Jul2020
force field [49]. System energy was minimized, and canonical ensembles (amount of sub-
stance (N), pressure (P), and temperature (T)-NVT) and isothermal-isobaric ensembles
(amount of substance (N), volume (V), and equilibrium step temperature (T)-NPT) were
performed at 0.1 ns and 1 ns, respectively. Molecular dynamics simulations of a standard
50 ns duration were performed. The RMSD, RMSF Rg, and SASA analyses were performed.
Finally, the average interaction energy between the protein and ligand was calculated
according to the short-range Lennard-Jones energy. All trajectory analysis graphics were
created using QtGrace tools.

5. Conclusions

This in silico study evaluated the inhibition activity of betel fruit compounds against
plasmepsins, which are aspartic proteases found in the malaria parasite P. falciparum. The
compound androstan-17-one, ethyl-3-hydroxy-, (5 alpha) (referred to as AND) exhibited
the highest binding affinity against plasmepsins. Additionally, the compound exhibited
hydrogen bond, hydrophobic, and electrostatic interactions with the receptors, indicating
that these compounds interact strongly with plasmepsins. Furthermore, the AND binding
site on the receptor was right at the active site of plasmepsins, indicating that this compound
could inhibit plasmepsin activity. Dynamics simulations study validated the stability of
the bond between AND and plasmepsins. However, the present work is only an initial
screening to facilitate further research on the potential of AND as a lead compound.
Furthermore, beyond a pharmacoinformatics approach, in vivo proof-of-concept testing is
required to ensure that the proposed compound is truly effective against malarial proteases
while not targeting human proteases.
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