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RhoA/Rho kinase in spinal cord injury

Introduction
It is estimated that 1.5–5.2 million people suffer from spi-
nal cord injury (SCI) and 130,000 new patients are added 
around the world each year (Schwab et al., 2006). SCI is 
caused by trauma, a mechanical injury followed by a sec-
ondary injury process with much more complex molecular 
cascade responses (Borgens and Liu-Snyder, 2012). The out-
comes of SCI are pain, paralysis, and incontinence. To date, 
limited effective treatments are available.

RhoA is a small GTPase protein and belongs to Rho GT-
Pase family which contains seven subfamilies including Rho, 
Rac, Cdc42, Rnd, RhoD, RhoBTB, and RhoH. Among them, 
RhoA, Rac1, and Cdc42 are the most studied members. 
RhoA mediates the formation of focal adhesion and stress 
fibers, which are contractile acting bundles in non-muscle 
cells that regulate cell contractility, providing force for cell 
adhesion, migration, and morphogenesis (Stankiewicz and 
Linseman, 2014). RhoA and its downstream effector Rho 
kinase (ROCK) control and regulate cytoskeleton dynam-
ic. Rho kinase has two isoforms, ROCK1 and ROCK2, and 
belongs to the AGC (PKA/PKG/PKC) family of serine-thre-
onine kinase. ROCK1 and ROCK2 share an overall sequence 
similarity at the amino-acid level of 65% and in their kinase 
domains of 92% (Amano et al., 2000). The RhoA/Rho ki-
nase pathway regulates a wide range of fundamental cell 
functions including contraction, motility, proliferation, gene 
expression, and apoptosis (Loirand et al., 2006). Studies have 
shown that the RhoA/Rho kinase signal pathway is involved 
in many diseases, such as cardiovascular diseases (Loirand et 
al., 2006), cancer (Sahai and Marshall, 2002), and neurologi-
cal diseases (Mueller et al., 2005). RhoA/Rho kinase pathway 

plays a role in stroke, Alzheimer’s disease, neuropathic pain, 
multiple sclerosis, and SCI (Mueller et al, 2005). In this brief 
review, we will discuss the expression profile of RhoA/Rho 
kinase after SCI and the roles of activated RhoA/Rho kinase 
pathway in mediating inflammation, neuropathic pain and 
cell death in the acute phase and mediating axon degenera-
tion in the chronic phase. We will also discuss the therapeu-
tic strategies targeting these signal proteins.

RhoA/Rho Kinase Expression Profiles in SCI
Many studies have shown that RhoA/Rho kinase signal is 
activated after SCI (Dubreuil et al., 2003; Erschbamer et al., 
2005; Wei et al., 2014). After spinal transection or contusion 
injury in rats and mice, active RhoA is dramatically in-
creased (>10 fold). RhoA is active as early as 1.5 hours after 
injury and sustains at a high level at 1, 3, and 7 days. One 
week after injury, RhoA mRNA expression level is still 5-fold 
higher than normal animals and remains 3-fold higher up 
to 3 months. Active RhoA and its mRNA are detected in 
neurons, oligodendrocytes, and reactive astrocytes around 
the lesion area (Dubreuil et al., 2003). Four to fourteen days 
after contusion SCI, the signal intensity of RhoA mRNA is 
significantly higher in spinal cord segments below the injury 
center compared to segments above the injury center (Du-
breuil et al., 2003; Erschbamer et al., 2005). 

RhoA/Rho Kinase in Injury-induced 
Inflammation and Neuropathic Pain
As mentioned above, SCI includes a primary injury fol-
lowed by a secondary injury. The primary injury triggers 
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the secondary injury, which involves inflammation, reac-
tive oxidation, and excitotoxicity. The outcomes of SCI are 
mainly influenced by the secondary injury. Previous studies 
have shown that the RhoA/Rho kinase pathway regulated 
inflammatory responses (Bao et al., 2004) and mediated in-
flammatory cell infiltration and migration, and production 
of inflammatory cytokines, such as tumor necrosis factor-α 
(TNF-α), interleukin-1 beta (IL-1β), interleukin-2 (IL-2) 
and CXC chemokines (Angkachatchai and Finkel, 1999; 
Thorlacius et al., 2006; Impellizzeri et al., 2012). ROCK in-
hibitors reduced leukocyte infiltration into the injured spinal 
cord (Hara et al., 2000), decreased cytokine production (An-
gkachatchai and Finkel, 1999), and impaired lymphocyte (T 
cell) proliferation (Tharaux et al., 2003). 

Rho pathway plays a role in SCI-induced neuropathic pain 
as well. Inflammatory mediators are potential candidates for 
the induction of neuropathic pain. Lysophosphatidic acid, 
present at the lesion sites both in the peripheral nervous sys-
tem and the central nervous system, has been shown to initi-
ate neuropathic pain (Inoue et al., 2004). The mechanism of 
lysophosphatidic acid-induced neuropathic pain is through 
its binding with G-protein-coupled LPA receptors that acti-
vate RhoA/Rho kinase signaling. Blocking RhoA (with Clos-
tridium botulinum C3 transferase) or ROCK (with Y27632) 
prevented the initiation of neuropathic pain after nerve 
injury or lysophosphatidic acid injection (Inoue et al., 2004). 
ROCK inhibitors, Y27632 and H-1152, relieved neuropathic 
pain in mouse dorsal root injury and spinal nerve transec-
tion models (Ramer et al., 2004; Tatsumi et al., 2005) (Figure 
1). A recent study found that RhoA/Rho kinase pathway me-
diates p38 MAPK activation and morphological changes by 
ATP receptors, P2Y12/13, in spinal microglia in neuropathic 
pain (Tatsumi et al., 2015).

RhoA/Rho Kinase and Cell Death 

After SCI, both neurons and glial cells in and around the 
lesion area undergo apoptosis induced by the secondary in-
jury. The cell death leads to the formation of a lesion cavity 
(Liu et al., 1997; Shuman et al., 1997). Although mice do 
not develop cavitation, apoptotic neurons, astrocytes, and 
oligodendrocytes are still detected (Dubreuil et al., 2003). 
Many studies show that RhoA/Rho kinase pathway is highly 
related to cell death. Inhibition of RhoA, both in mice and 
rats, can significantly reduce the number of apoptotic cell 
deaths after SCI. The cells that contain RhoA inhibitor are 
not apoptotic (Dubreuil et al., 2003). This study also shows 
that activated RhoA promotes the synthesis of proapoptotic 
protein such as p75NTR, which contributes to the initiation 
of apoptotic cascades. Reducing p75NTR decreases apoptosis 
in a contused spinal cord (Brandoli et al., 2001) and pro-
tects neurons and glia cells (Dubreuil et al., 2003). Other 
studies have shown that active RhoA activates p38α and 
triggers p38α-dependent excitotoxic neuronal death. RhoA 
is sufficient to induce excitotoxic cell death (Semenova et 
al., 2007). 

Additionally, a number of studies have shown that Rho 
kinase is very important in the regulation of cell death (Shi 

and Wei, 2007). Rho kinase regulates myosin light chain 
phosphorylation and stimulates actomyosin contractility, 
which induces apoptotic cell membrane blebbing, nuclear 
disintegration, and cellular fragmentation (Coleman et al., 
2001; Croft et al., 2005). ROCK2 can promote apoptosis by 
increasing erin phosphorylation, which increases Fas, the 
death receptor, clustering, and expression (Piazzolla et al., 
2005). In addition, Rho kinase stimulates phosphatase and 
tensin homologue (PTEN) and inhibits insulin receptor 
substrate 1(IRS1) signaling to inactivate Akt, which plays an 
important role in cell survival (Begum et al., 2002; Li et al., 
2005) (Figure 1). Lastly, Rho kinase mediates inflammation 
and reactive oxygen species production to induce cell death 
(Higashi et al., 2003).

RhoA/Rho Kinase and Axon Degeneration  
During SCI secondary injury, growth inhibitory proteins 
such as myelin-associated molecules and glial scar-associ-
ated extracellular matrix molecules converge at the RhoA/
ROCK pathway to prevent axon regeneration (Forgione 
and Fehlings, 2014; Fujita and Yamashita, 2014). To date, 
three myelin-associated growth inhibitors, i.e., Nogo, my-
elin-associated glycoprotein, and oligodendrocytemyelin 
glycoprotein (OMgp) (Mckerracher et al., 1994; Chen et al., 
2000; Wang et al., 2002), have been reported to block axonal 
regeneration. For Nogo, there are at least three isoforms: 
NogoA, NogoB, and NogoC. NogoA is mainly expressed in 
the nervous system. Two transmembrane domains of Nogo 
are separated by a 66 amino acid loop, Nogo-66. Nogo-66 
is the inhibitory domain that causes growth cone collapse 
(Fournier et al., 2001). Myelin-associated glycoprotein is 
required for the formation and maintenance of myelinin 
normal condition and is identified as a potent inhibitor of 
neurite outgrowth (Mckerracher et al., 1994). Myelin-asso-
ciated glycoprotein inhibits axonal growth in older neurons 
but promotes axonal growth in young neurons depending 
on the intracellular level of cyclic AMP (cAMP) (Cai et al., 
2001). OMgp is a glycosylphophatidylinositol-anchored 
glycoprotein. It is expressed in both oligodendrocytes and 
neurons. Notably, all three myelin-associated inhibitory 
proteins bind to the same receptor, the Nogo receptor. Nogo 
receptor associates with neurotrophin receptor p75NTR to 
form a receptor complex. This complex activates RhoA/Rho 
kinase pathway. Activation of the RhoA/Rho kinase pathway 
phosphorylates the myosin light chain, LIM kinase, and 
collapsing response mediator protein-2 to regulate the cyto-
skeleton dynamics and growth cone collapse, and to inhibit 
neurite outgrowth (Ohashi et al., 2000; Fukata et al., 2002; 
Hsieh et al., 2006) (Figure 1).

Additionally, repulsive guidance molecule (RGM) also 
acts as an inhibitor of axon growth. Three homologs of 
RGM, i.e., RGMa, RGMb, and RGMc, have been identified. 
Among these molecules, RGMa plays a role in inhibiting 
axon regeneration (Mueller et al., 2006) and its expression 
is enhanced around the lesion site after SCI. Treatment with 
neutralizing anti-RGMa antibodies after SCI in rats pro-
motes axonal regeneration and functional recovery (Hata et 



25

Wu X, et al. / Neural Regeneration Research. 2016;11(1):23-27.

al., 2006). RGMa binds with receptor neogenin and activates 
the RhoA/Rho kinase pathway, leading to neurite outgrowth 
inhibition (Kubo et al., 2008; Hata et al., 2009).
     SCI also triggers a cascade of reactive astrogliosis, which 
leads to the formation of a glial scar. Reactive astrocytes pro-
duce inhibitory extracellular matrix molecule proteoglycans. 
Chondroitin sulfate proteoglycans  are the key component 
of the glial scar and play important roles in inhibiting ax-
onal regeneration (Yiu and He, 2006). Chondroitin sulfate 
proteoglycans (CSPGs) bind to a transmembrane protein 
tyrosine phosphatase (PTPσ) (Shen et al., 2009), leukocyte 
common antigen-related phosphatase (Fisher et al., 2011), 
and Nogo receptor 1 and 3 (Dickendesher et al., 2012). These 
complexes activate the RhoA/Rho kinase signal and, through 
this pathway, inhibit neurite outgrowth (Dergham et al., 
2002; Monnier et al., 2003). 

Inhibiting RhoA/Rho Kinase Pathway as a 
Novel Strategy for SCI Repair
Since the RhoA/Rho kinase pathway is involved in multiple 
pathophysiologic processes and is a convergence pathway 
for many inhibition proteins that prevent axon regeneration 
after SCI, pharmacologic inhibition of RhoA or Rho kinase 
could be a promising strategy to prevent cell death and pro-
mote axon regeneration. 

For RhoA inhibition, Clostridium botulinum C3 exoen-
zyme is the prototype of bacterial ADP-ribosyltransferases. 
C3 selectively modifies RhoA by covalent attachment of an 
ADP-ribose moiety, which results in inactivation of cellular 
functions of RhoA (Just et al., 2010). In mouse models of 
SCI, C3 treatment promoted axonal sprouting, locomotor 

function recovery and prevented p75NTR dependent cell 
death after hemisection of the thoracic spinal cord (Dergham 
et al., 2002; Dubreuil et al., 2003). The next generation of 
C3 is a cell permeable version which was commercially de-
veloped into a clinical grade Rho inhibitor known as BA210 
(Trademarked as Cethrin). In rat models of SCI, BA-210 has 
been shown to penetrate the dura of the spinal cord and cell 
membrane in a nonspecific, receptor independent manner 
(Lord-Fontaine et al., 2008). 

Based on the promised studies in animal models, BA-
210 has been evaluated in a phase I/II clinical trial (Fehlings 
et al., 2011; McKerracher and Guertin, 2013; Nagoshi et al 
2015). In this study, Cethrin was applied to the injury site 
intraoperatively with a noninvasive, fibrin-mediated delivery 
system. Forty-eight patients with cervical or thoracic injury 
were enrolled in this study. Five different doses of Cethrin 
(0.3–9 mg) were tested. The results showed that the largest 
neurological recovery occurred in cervical injury patients, 
whereas patients with thoracic injuries received modest 
benefits. In the 3-mg dose of Cethrin, 66% of the cervical 
injured patients changed their ASIA grade from A to C or D 
(Fehlings et al., 2011). 

Another study showed a C3 protein-derived 29 animo-ac-
id (154–182) peptide also significantly improved locomotor 
functional recovery, enhanced regeneration of corticospinal 
tract fibers and raphespinal fibers, and improved serotoner-
gic input to lumbar alpha-motoneurons (Boato et al., 2010). 
A recent study has shown that RhoA siRNA was delivered 
through intraspinal and lumbar intrathecal approaches (Ot-
suka et al., 2011). The intraspinal delivery improved hind-
limb walking over 6 weeks. Although the lumbar intrathecal 

Figure 1 Schematic representation 
of RhoA/Rho kinase pathway in 
the pathogenesis of SCI.
The RhoA/Rho kinase pathway is 
activated by multiple signals and 
triggers a series of downstream 
events including inflammation, 
neuropathic pain, demyelination, 
cell death, and axon degeneration, 
all of which contribute to function-
al deficits. SCI: Spinal cord injury; 
MAG: myelin-associated glycopro-
tein; OMgp: oligodendrocytemyelin 
glycoprotein; LPA: lysophosphatidic 
acid; CSPG: chondroitin sulfate 
proteoglycans; LAR: leukocyte 
common antigen-related phos-
phatase; ROCK: Rho Kinase; GTP: 
guanosine triphosphate; GDP: gua-
nosine diphosphate; GEF: guanine 
nucleotide exchange factor; GAP: 
GTPase-activating protein; PTPσ: 
protein tyrosine phosphatase σ; 
NgR: Nogo receptor; NgR1/3: Nogo 
receptor 1 and 3; PTEN: phospha-
tase and tensin homologue; cPLA2: 
cytosolic phospholipase A2; LIMK: 
LIM kinase; MLC: myosin light 
chain; CRMP2: collapsing response 
mediator protein-2. 
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delivery did not promote locomotion recovery, it decreased 
tactile hypersensitivity significantly and improved the white 
matter sparing. The siRNA approach also decreased the 
accumulation of ED1+ macrophages, increased PKC-γ im-
munoreactivity in the corticospinal tract rostral to the injury 
and, increased serotonergic fiber innervation in the caudal 
site of injury (Otsuka et al., 2011).

Besides RhoA inhibition, Rho kinase inhibition also shows 
promise in axonal regeneration and functional recovery. In-
hibitors of Rho kinase such as Y27632 and Fasudil have been 
tested on rat or mouse models of SCI. High doses or locally 
applied Y27632 enhanced the sprouting of corticospinal 
tract fibers and locomotor function recovery (Fournier et al., 
2003; Tanaka et al., 2004; Chan et al., 2005). However, with 
oral delivery, Y27632 showed no effect (Sung et al., 2003). 
Immediate treatment with Fasudil resulted in increased 
sprouting and improved locomotor scores, whereas delayed 
treatment at 4 weeks post-SCI was not effective (Nishio et 
al., 2006).

Watzlawick et al. (2014) conducted a systematic review 
and meta-analysis on RhoA/Rho kinase blocking-related 
reference to analyze the impact of bias and determine the 
normalized effect size of functional locomotor recovery after 
experimental thoracic SCI (Watzlawick et al., 2014). Thirty 
studies (725 animals) examined the effect of RhoA or Rho 
kinase inhibition on spinal cord injuries including hemisec-
tion, contusion, and transection. Locomotor recovery was 
measured using the Basso, Beattie, and Bresnahan (BBB) lo-
comotor rating score or the Basso Mouse Scale. According to 
the published work, RhoA/Rho kinase inhibition improved 
locomotor outcome by 21%. In this study, eight different 
strategies were used to target the RhoA/Rho kinase pathway 
including RhoA-GTPase inhibitors (BA-210), C3-peptides, 
C3-ADP-ribosyltransferase, siRNA, ibuprofen, and ROCK 
inhibitors (fasudil, Y27632 and p21). Additionally, different 
routes of drug administration were employed such as intra-
thecal injection, and topical, intraperitoneal, and oral ap-
plication. The time of drug administration ranged from 30 
minutes before the injury up to 4 weeks after SCI. All these 
elements may affect the variation of outcome assessments. 
Finally, different animal species and injury models may also 
influence the outcomes.

Summary
The RhoA/Rho kinase pathway has been shown to play a 
unique role in the pathogenesis of SCI. Numerous studies 
have shown that blocking RhoA/Rho kinase pathway pro-
tects cell survival and enhances axonal regeneration leading 
to functional recovery after SCI. Thus, this pathway is a 
promising target for SCI treatment in patients. Continued 
research should be conducted to determine the delivery 
methods, the dose, and the treatment time window for 
reaching optimal outcomes.
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