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In the present study, a novel read-across methodology for the prediction of toxicity related end-points of

engineered nanomaterials (ENMs) is developed. The proposedmethod lies in the interface between the two

main read-across approaches, namely the analogue and the grouping methods, and can employ a single

criterion or multiple criteria for defining similarities among ENMs. The main advantage of the proposed

method is that there is no need of defining a prior read-across hypothesis. Based on the formulation and

the solution of a mathematical optimization problem, the method searches over a space of alternative

hypotheses, and determines the one providing the most accurate read-across predictions. The

procedure is automated and only two parameters are user-defined: the balance between the level of

predictive accuracy and the number of predicted samples, and the similarity criteria, which define the

neighbors of a target ENM.
1 Introduction

The impact of nanotechnology is escalated with the develop-
ment of novel engineered nanomaterials (ENMs) and their use
in industrial applications and commercial products.1 However,
current research in the nanotoxicity eld raises awareness
concerning the potential adverse effects of the exposure of living
organisms in ENMs, including membrane rupture, DNA
damage, oxidative stress and cell death.2–4 Therefore, prior to
their broad release into the market, great effort should be
placed into the development of methods for ENM character-
ization, as well as for the assessment of environmental and
human health risks caused by the exposure to ENMs.5

A complete and systematic experimental approach for the
risk assessment of all variants of an ENM is practically impos-
sible both in terms of time and resources, taking into account
the amount and the variety of ENMs entering the market or
already available. At the same time, given the ethical questions
and the legislative requirements, animal testing should be
reduced and performed only under strict conditions.5–7

Over the past few years, the nanosafety community has
encouraged the development of alternative non-testing
methods for the toxicological investigation of ENMs intro-
ducing in vitro and in silico methods. The so called “nano-
informatics” eld includes novel, computational approaches
which can produce reliable predictions for the toxic and bio-
logical behavior of ENMs. These computer-aided methods aim
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to contribute to the prioritization of ENMs and to support the
regulatory decision-making. One successful approach is the
adaptation of the quantitative structure–activity relationship
(QSAR) modeling methodologies8 to the special requirements of
ENMs, which are due to their complex structures. The produced
models are presented in the literature as nano-QSARs or QNARs
(quantitative nanostructure–activity relationship) models.
Comprehensive reviews of nano-QSAR modelling methods and
produced predictive models have been published recently in the
literature.9,10 A repository of nano-QSAR models is included in
the nal report of the Nanocomput project and is freely avail-
able through the European Commission Science Hub.11

However, in order to ensure the functionality of the QNAR
approaches, sufficiently large (more than 20 samples) and
diverse datasets should be provided.5,12 European Chemicals
Agency (ECHA) through the Read-Across Assessment Frame-
work (RAAF) has introduced the alternative read-across non-
testing strategy,13,14 for the prediction of ENM toxicity, espe-
cially in the case of absence of sufficient large datasets for the
development of reliable nano-QSAR models.5 The read-across
concept is based on the empirical knowledge that similar
materials may exhibit comparable properties, thus the estima-
tion of the hazardous effects of non-tested ENMs can be ach-
ieved using data within a group of comparable ENMs.5,15,16

There are two approaches regarding the read-across frame-
work, supported by ECHA and OECD; the analogue and the
category/grouping approach. The denitions of the two
approaches slightly differ between ECHA and OECD,17 however
their eminent characteristics are presented in Table 1.

In the analogue approach the prediction is limited to a small
area of the data space; one source ENM can be used for the
Nanoscale Adv., 2019, 1, 3485–3498 | 3485
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Table 1 Overview of the two read-across approaches13,17

Analogue approach Grouping approach

Employed between a small number of structurally similar substances
(source and target substances)

Employed between several substances that have structural similarity

No trend or regular pattern in the properties A trend or a regular pattern is expected (in order to accept or reject the
grouping hypothesis)

Evaluation of each sample independently Evaluation of the category as a whole
Worst case: single source substance (one neighbor) Worst case: the strength of effects in a target sample within the group is

expected to be lower than the strength of effects observed for the source
sample
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endpoint estimation for a single or more target ENMs, or two or
more source ENMs can be used to make predictions for a single
or several target ENMs. The read-across methodologies apply an
interpolation strategy “locally” among similar samples which,
depending on the provided data – numerical or discrete –, can
be quantitative or qualitative.18 The methods for the prediction
of each endpoint range from simple average value calculations,
or simple linear interpolations to more complicated methods
applying QSAR methods locally (e.g. k-nearest neighbor, partial
least squares, random forests).5,19

In the categorical approach, the ENM samples are organized
into groups of similar compounds. Groups are formed consid-
ering structural similarities between samples, and it is assumed
that due to these similarities, the biological or toxic activity of
the ENMs within a group follows a regular pattern. Groups of
ENMs can be further divided into subgroups based on inter-
dependencies in nanodescriptors and the formation of these
subgroups can be “tuned” in order to gain satisfactory predic-
tions.20,21 Other studies have investigated alternative grouping
possibilities including principal component analysis (PCA),22

linear discriminant analysis (LDA),21 two-dimensional hierar-
chical clustering18 or considering the ENMmode-of-action.6 For
the estimation of the endpoint of a target ENM in a group, the
analogue approach can be applied.

Several read-across tools and methods for the preliminary
hazard assessment of ENMs have been proposed in the litera-
ture.16 Gajewicz et al.5 proposed a novel quantitative read-across
approach for data gap lling of ENMs using the one-point-
slope, the two-point formula and the equation of a plane
passing through three points. Their nano-QRA model proved to
have high predictive capabilities, when tested with the same
dataset used by Puzyn et al.23 Helma et al.19 introduced recently
the nano-lazar framework for ENM read-across predictions. The
similarity levels for the selection of neighbors are based on the
Tanimoto/Jaccard index and on weighted cosine similarity. Three
local regression algorithms are available: weighted local average,
weighted partial least squares regression and weighted random
forests. Helma et al. tested the performance of their methods
using the dataset initially presented by Walkey et al.24 consisting
of 121 gold and silver ENMs that are characterized by physico-
chemical descriptors, the protein corona ngerprints (PCF) and
by MP2D ngerprints calculated for core and coating compounds
with dened chemical structures. They reported R2 values equal to
0.68, for the prediction of the cell association with human A549
3486 | Nanoscale Adv., 2019, 1, 3485–3498
cells, using only the protein corona ngerprints and the weighted
random forest algorithm, in a 10-fold cross validation scheme.
Varsou et al.20 presented the toxFlow web application, which
integrates physicochemical, omics and biology information data
for read-across toxicity prediction of ENMs. Neighbor selection is
based either on the cosine similarity between ENMs or a distance
metric (Euclidean, Manhattan). Using only the gold ENMs of the
Walkey et al.24 study and performing enrichment analysis to the
PCF data prior to read-across, Varsou et al. reported R2 values of
0.97 in the toxicity prediction, by employing a weighted average
algorithm and a leave-one-out validation scheme.

ECHA has recently presented a systematic ENM specic
workow for grouping and read-across in the document titled
“Recommendations for nanomaterials applicable to the guid-
ance on QSARs and grouping”.25 This workow was slightly
modied by Lamon et al.16 and Aschberger et al.26 who pre-
sented a simplied version consisting of four steps: (1) identify
the (nano)forms of the substance, (2) gather the available data,
evaluate them for adequacy and reliability and build the data
matrix, (3) develop a grouping hypothesis and assign the source
analogues to groups, (4) assess the applicability of the grouping
hypothesis and ll data gaps. The simplied workow was used
to develop case studies for the read-across prediction of hazard
endpoints of nanoforms of TiO2 and of Multi-Walled Carbon
NanoTubes (MWCNTs) respectively. The rst of these studies
has been released as an official OECD document.27

The read-across workow proposed by ECHA assumes
a hypothesis, which is evaluated and assessed in terms of its
adequacy to ll data gaps. The read-across hypothesis may
involve both the selection of the most informative descriptors
that can predict the endpoint of interest and the denition of
the source ENMs, which can be considered as neighbors to the
target ENM. This procedure is iterated in a trial-and-error
fashion until a hypothesis producing successful read-across
predictions is determined. The procedure is time-consuming
and due to the complexity of the problem, it does not guar-
antee that the produced read-across model is optimal.

In this paper we are presenting a novel read-across meth-
odology, which automates the procedure of searching for the
optimal read-across hypothesis. The proposed method
considers both key components of the read-across procedure as
optimization parameters: variable selection and the boundaries
that dene the neighborhood of the query ENM, for which
a read-across prediction is sought. Another advantage of the
This journal is © The Royal Society of Chemistry 2019
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proposed methodology is that it takes into account the multi-
perspective characterization of ENMs by grouping ENM
descriptors into categories (e.g. physicochemical, biological,
quantum mechanical, image or biokinetics) and by using
multiple similarity criteria for dening neighbors to the target
ENM. The proposed method is based on the formulation of
a mathematical Mixed Integer Non Linear Programming
(MINLP) problem. For the solution of this problem, we develop
an innovative Genetic Algorithm (GA), because conventional
MINLP solvers fail to solve efficiently the optimisation problem.
2 Methods
2.1 Development of the MINLP problem

For the development of a robust and reliable read-across
workow for the prediction of ENM undesired properties, we
focused on two separate goals: rst, the reduction of the avail-
able dataset, by removing the variables that add noise rather
than useful information to the analysis. Second, the denition
of the neighbor boundaries which indicate the source ENMs
that are considered similar to the target ENM. These two
different goals can be achieved simultaneously through the
development of an MINLP problem, where the objective is to
minimize the mean squared error (MSE) between the experi-
mental values and the produced predictions with respect to
selecting the most informative descriptors and dening the
neighbor boundaries. The problem is explained in detail below.

2.1.1 Available data. The methodology assumes the avail-
ability of a dataset containing the values of L descriptors and the
endpoint for N ENMs. The data are rst scaled using a stand-
ardisation (e.g. Gaussian normalization) or a normalisation
(e.g. min–max) method, to ensure that scaled descriptors
contribute equally to the overall prediction analysis.28 The
dataset is denoted by {xi, yi}, i ¼ 1, . N, where xi ¼ {xi,1, xi,2, .
xi,L} is a vector containing the values of the L descriptors and yi
is the endpoint value of the ith ENM.

2.1.2 Set of variables. The main results of the solution of
the MINLP problem are the following:

� attr‘: a binary variable indicating if the descriptor ‘ is
selected or not, ‘ ¼ 1;.; L.

� thr: a continuous variable that denes a threshold for the
selection of neighbor ENMs. Only if the Euclidean distance
between two ENMs is equal to or less than thr, these two ENMs
are considered as neighbors.

A number of additional variables are used for the construc-
tion of the MINLP problem:

� disti,j: a continuous variable containing the Euclidean
distance between ENMs i and j, i ¼ 1, ., N, j ¼ 1, ., N.

� neibi,j: a binary variable taking the value of 1 if ENMs i and j
are neighbors and 0 if they are not, i ¼ 1, ., N, j ¼ 1, ., N.

� predi: a binary variable taking the value of 1, if ENM i has at
least one neighbor and 0 if it has no neighbors, i ¼ 1, ., N.

� ŷi: a continuous variable containing the predicted read-
across endpoint value for the ith ENM, i ¼ 1, ., N.

2.1.3 Mathematical formulation. The mathematical formu-
lation of the optimisation problem consists of a set of well-dened
This journal is © The Royal Society of Chemistry 2019
constraints that should be satised by the solution of the problem
and the objective function to be minimised.

Eqn (1) computes the Euclidean distance between all pairs of
ENMs considering only the selected descriptors:

disti;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
‘¼1

attr‘
�
xi;‘ � xj;‘

�2vuut ; i ¼ 1;.;N; j ¼ 1;.;N; isj

(1)

The following set of equations ensures that two ENMs i
and j are considered as neighbors only if their Euclidean
distance disti,j is equal to or lower than the threshold. In this
case the corresponding binary variable neibi,j takes the value
of 1, otherwise the value of 0 is assigned to this variable. In
eqn (2) and (3), m is a very small positive real number
(equal to 10�3):

neibi,j $ m(thr � disti,j), c i,j ˛ {1, ., N}, i s j (2)

1 � neibi,j $ �m(thr � disti,j), c i,j ˛ {1, ., N}, i s j (3)

neibi,i ¼ 0, c i ˛ {1, ., N} (4)

Eqn (5) computes the read-across predictions as weighted
averages of the endpoint values of neighbor ENMs:

ŷi ¼

XN
j¼1

yj
neibi;j

1þ disti;jXN
j¼1

neibi;j

1þ disti;j

; ci˛f1;.;Ng (5)

For ENMs without any neighbor, read-across predictions are
not possible. An additional set of constraints (eqn (6)–(8))
guarantees that the percentage of ENMs with at least one
neighbor is greater than or equal to a predened percentage
denoted by predFactor. In these equations, predi is a binary
variable that becomes equal to 1, when a read-across prediction
is achieved for the ith ENM, and 0, if no prediction is possible:

XN
i¼1

predi $ predFactor N (6)

predi $ neibi,j, c i ˛ {1, ., N},c j ˛ {1, ., N} (7)

predi #
XN
j¼1

neibi;j ; ci˛f1;.;Ng (8)

Objective function: the objective function to be minimized
(eqn (9)) is the MSE between the end-point read-across predic-
tions and the actual endpoint values over all the ENMs with at
least one neighbor.

min
1XN

i¼1

predi

Xn

i¼1

prediðyi � ŷiÞ2 (9)
Nanoscale Adv., 2019, 1, 3485–3498 | 3487
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2.2 Extension of the MINLP problem to multiple similarity
criteria

Due to the complex structure of ENMs, different types of data and
descriptors are oen used for ENM characterization. These may
include physicochemical, biological, quantum-mechanical,
image, biokinetic descriptors etc. In a previous study,20 we
demonstrated the use of two similarity criteria for dening
different thresholds and for selecting the neighbors if different
types of data are available. In this approach, distances can be
calculated between all substances separately for the different
types of data, and two ENMs are considered as neighbors if both
distances are lower than the corresponding thresholds. The
MINLP formulation described before is extended in this subsec-
tion to account for multiple similarity criteria. For brevity and for
simplied notation, the extended formulation is presented for two
similarity criteria. Inclusion of additional criteria is trivial.

2.2.1 Available data. The descriptors are grouped into sets
A and B containing LA and LB descriptors respectively. The
dataset is presented to the algorithm in the form {xAi, xBi, yi}, i¼
1,., N, where xAi ¼ {xAi,1, xAi,2,., xAi,LA}, and xBi ¼ {xBi,1, xBi,2,
., xBi,LB}, i ¼ 1, ., N.

2.2.2 Set of variables. The main outcomes of the MINLP
problem are:

� attrA‘: a binary variable indicating if the descriptor ‘ in
group A is selected or not, ‘ ¼ 1;.; LA.

� attrB‘: a binary variable indicating if the descriptor ‘ in
group B is selected or not, ‘ ¼ 1;.; LB.

� thrA, thrB: two continuous variables dening the threshold
for the selection on neighboring ENMs for the two similarity
criteria. Only if both Euclidean distances between two ENMs are
equal to or less than the respective thresholds, these two ENMs
are considered as neighbors.

The following additional variables are used for the
construction of the MINLP problem:

� distAi,j, distBi,j: two continuous variables containing the
Euclidean distance between ENMs i and j for the two similarity
criteria, i ¼ 1, ., N, j ¼ 1, ., N.

� neibAi,j, neibBi,j: two binary variables taking the value of 1 if
ENMs i and j are neighbors with respect to similarity criteria A
or B and 0 if they are not, i ¼ 1, ., N, j ¼ 1, ., N.

� neibi,j: a binary variable taking the value of 1 if ENMs i and j
are neighbors and 0 if they are not, i ¼ 1, ., N, j ¼ 1, ., N.

� predi: a binary variable taking the value of 1, if ENM i has at
least one neighbor and 0 if it has no neighbors, i ¼ 1, ., N.

� ŷi: a continuous variable containing the predicted read-
across endpoint value for the ith ENM, i ¼ 1, ., N.

2.2.3 Mathematical formulation. The set of constraints is
similar to the previous formulation.

The next equations (eqn (10) and (11)) compute the
Euclidean distances between all pairs of ENMs taking into
account only the selected descriptors for groups A and B.

distAi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXLA

‘¼1

attrA‘

�
xAi;‘ � xAj;‘

�2
vuut ;

i ¼ 1;.;N; j ¼ 1;.;N; isj

(10)
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distBi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXLB

‘¼1

attrB‘

�
xBi;‘ � xBj;‘

�2vuut ;

i ¼ 1;.;N; j ¼ 1;.;N; isj

(11)

The following set of equations ensure that two ENMs are
considered as neighbors with respect to the different similarity
criteria only if the Euclidean distances are lower than the
respective threshold. In this case the corresponding binary
variable takes the value of 1, otherwise the value of 0 is assigned
to this variable. In eqn (12), (13), (15) and (16) m is a very small
positive real number:

neibAi,j $ m(thrA � distAi,j), c i,j ˛ {1, ., N}, i s j (12)

1 � neibAi,j $ �m(thrA � distAi,j), c i,j ˛ {1, ., N}, i s j (13)

neibAi,i ¼ 0, c i ˛ {1, ., N} (14)

neibBi,j $ m(thrB � distBi,j), c i,j ˛ {1, ., N}, i s j (15)

1 � neibBi,j $ �m(thrB � distBi,j), c i,j ˛ {1, ., N}, i s j (16)

neibBi,i ¼ 0, c i ˛ {1, ., N} (17)

The set of equations, eqn (18)–(20) dene two ENMs i and j as
neighbors if they satisfy both similarity criteria, i.e. only if both
neibAi,j and neibBi,j are equal to 1.

neibi,j $ neibAi,j + neibBi,j � 1, c i,j ˛ {1, ., N} (18)

neibi,j # neibAi,j, c i,j ˛ {1, ., N} (19)

neibi,j # neibBi,j, c i,j ˛ {1, ., N} (20)

Eqn (21) computes the read-across predictions as weighted
averages of the endpoint values of neighbor ENMs by selecting
one distance metric (here we assume the metric based on
group A):

ŷi ¼

PN
j¼1

yj
neibi;j

1þ distAi;jPN
j¼1

neibi;j

1þ distAi;j

; ci˛f1;.;Ng (21)

Constraints 6, 7, and 8 are used again to guarantee that the
percentage of ENMs with at least one neighbor is greater than or
equal to a predened percentage denoted by predFactor.

Objective function: the objective function is the same as in
the previous MINLP formulation (eqn (9)).
3 Solution strategy

The above described MINLP problems cannot be solved effi-
ciently by conventional optimization methods. For the solution
of the problem, we developed a novel evolutionary algorithm
based on the concept of Genetic Algorithms (GAs) which is
This journal is © The Royal Society of Chemistry 2019



Table 2 Initialization parameters of the GA

Initial
parameter Details

nChrom The size of the population, total number of
chromosomes per generation

maxGenerations The total number of generations
initGeneProb The probability for a gene to have value 1 initially
crossProb The probability of crossover
mutProb The probability for mutation of each gene (uniform)
nonUnf The mutation probability of the threshold(s)

(non-uniform)
thrGAmin Lower bound of the threshold(s) value
thrGAmax Upper bound of the threshold(s) value
bGA Freezing parameter
predFactor Minimum number of samples with produced

prediction
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described in detail in this section. GAs have been used
successfully for the variable subset selection in different opti-
mization problems.29

The development of GAs is “bio-inspired” from the princi-
ples of species evolution, and is based on the concept that living
organisms are examples of successful optimization. The oper-
ational parameters of the GAs are summarised next and are
directly linked to the biological processes of selection, crossover
and mutation of genes:

� Potential solution (chromosome): the chromosome
contains a sequence of genes with a length equal to the total
number of variables.

� Group of potential solutions (population): a group of
chromosomes (an even number).

� Iterations (generations): a number of cycles of selection,
crossover and mutation between the potential solutions,
leading to an optimal solution.

� Fitness evaluation (selection): a process of selection of
chromosomes based on their calculated tness. The reproduc-
tion of the ttest chromosomes in the next generation must be
assured.

� Combination of two potential solutions (crossover):
reproduction operator is employed to exchange genes between
two chromosomes, in a random point of crossover.

� Alteration of a potential solution (mutation): a process of
alteration of the crossovered chromosomes. According to
a predened probability value, the procedure inverts the value
of each gene: 0 becomes 1 and vice versa (uniform mutation).30

� Ensuring desirable evolution (elitism): during the creation
of a new population with different biological processes, there is
a chance of losing the chromosome with the highest score. This
method forces the best chromosome to be included in the new
population.

� Optimal solution (genome): a chromosome containing the
combination of genes among the generations that leads to the
optimal solution.

The particular GA developed in this work uses the parame-
ters depicted in Table 2 and is explained next. The algorithm is
schematically described in Fig. 1.

Step I: an initial population of chromosomes is created.
The structure of the chromosomes is shown in Table 3. The
chromosome is actually a vector, whose length is equal to the
number of descriptors L plus the number of similarity criteria
used for dening neighbors to a target ENM. The threshold(s)
are placed in specic positions in the chromosome repre-
sentations. This creates hybrid chromosomes containing
binary genes for descriptors and real genes for thresholds.
The genes related to descriptors correspond to the attr‘ vari-
ables in the construction of the MINLP problem. A value of 1
means that the corresponding descriptor is selected for
dening the distance matrix, while a value of 0 means that the
descriptor has not been selected. The probability of a binary
gene to be coded as 1 is denoted by initGeneProb. The real
genes of the chromosomes contain the threshold values cor-
responding to the similarity criteria and their values are
selected randomly from the distance matrices of all samples,
considering all variables in each group. In case only one
This journal is © The Royal Society of Chemistry 2019
similarity criterion is used, the threshold is placed in the end
of the chromosome, whereas if two criteria are used, the two
thresholds are placed at the beginning and the end of the
chromosome (Table 3).

Step II: the tness of each chromosome of the initial pop-
ulation is then calculated as follows:

� The Euclidean distances between all pairs of ENMs are
computed using eqn (1) for a single similarity criterion or eqn
(10) and (11) for two similarity criteria.

� For each ENM, neighbor ENMs are identied as the ones
whose distance from the reference ENM is equal to or lower
than the thr value (in the case of two similarity criteria both
distances should be equal to or lower than the respective
thresholds).

� The algorithm checks if eqn (6) is satised, i.e. if ENMs
with at least one neighbor are more than predFactor multiplied
by the total number of ENMs. If yes, the algorithm proceeds
with the next step. If not, the chromosome is rejected, and a new
chromosome is generated as described in Step I.

� The read-across predictions are computed using eqn (5)
(eqn (21) for two similarity criteria) for ENMs with at least one
neighbor. A schematic representation of how the read-across
prediction is computed is depicted in Fig. 2.

� The MSE over all ENMs with at least one neighbor is
computed using eqn (22).

MSE ¼ 1PN
i¼1

predi

Xn

i¼1

prediðyi � ŷiÞ2 (22)

� The tness function value of the chromosome is computed
using eqn (23):

score ¼
�
0 if MSE ¼ 0

1=MSE if MSEs0
(23)

� The chromosome with the highest (best) calculated tness
is saved for later analysis.
Nanoscale Adv., 2019, 1, 3485–3498 | 3489



Fig. 1 Schematic description of the proposed algorithm.

Table 3 Examples of chromosomes with one and two thresholds

1 0 0 1 0 . 1 1 2.718
2 1.772 1 0 0 . 0 1 1.618

Nanoscale Advances Paper
Step III: a natural selection process takes place and it is
iterated maxGenerations times. During each iteration, the
following procedure is repeated nChrom/2 times and in total
nChrom are selected that form the new generation.

� In order to assure the reproduction of the ttest chromo-
somes, a “roulette wheel” approach is used.30 The method
selects a pair of chromosomes from the previous population,
3490 | Nanoscale Adv., 2019, 1, 3485–3498
based on randomly generated numbers that indicate the “slots”
corresponding to the different chromosomes. The roulette
wheel is constructed so that the size of each slot is proportional
to the tness of the corresponding chromosome.30 The roulette
is “biased”, thus chromosomes with a reproductive advantage
(better tness scores) have higher probability to be selected. For
each pair of selected chromosomes, the one with the highest
score is saved as the bestParent for later use.

� The genetic operators of crossover are applied. According
to the crossProb value, it is decided if the chromosomes are
going to exchange strings of genes or not, in a randomly
selected point that indicates the position of crossover.

� The genetic operator of mutation is applied. With proba-
bility mutProb, binary genes that correspond to a descriptor,
invert their value from 0 to 1 and vice versa, while non-uniform
mutation is always performed to the threshold values, accord-
ing to eqn (24).

thrGAnew ¼

8>><
>>:

thrGAold þ �
thrGAmax � thrGAold

��
1� rð1�g=maxGenerationsÞbGA�

if a random digit is 0

thrGAold � �
thrGAold � thrGAmin

��
1� rð1�g=maxGenerationsÞbGA�

if a random digit is 1

(24)

In eqn (24), thrGAold is the old threshold value, thrGAnew the
threshold value that results from the non-uniform mutation,
thrGAmax and thrGAmin are the upper and the lower bounds of the
threshold values, r is a random number between 0 and 1, g is the
number of the current generation and bGA is a parameter which
determines the degree of dependency on the generation number.

The non-uniform mutation process searches the space
uniformly in the rst place avoiding stagnation, and as the
number of iterations approximates the maximum number of
generations, convergence is achieved.29

� The two new chromosomes are evaluated with the proce-
dure described in Step II and in case a chromosome does not
meet constraint 6, it is replaced by its bestParent.

In case the best chromosome of the previous generation is
not included in the new generation, the algorithm places it in
the position of the chromosome with the minimum score, in
order to ensure that the chromosome with the best performance
will always survive in the evolutionary procedure.

The best chromosome of the last generation is the result of
the algorithm. The selected variables and threshold(s)) cor-
responding to this chromosome will be used subsequently for
read-across predictions of unknown ENMs. For evaluating
the method, all the training examples are passed through
Step II described above to produce the read-across predic-
tions. The correlation coefficient among actual experimental
values and read-across predictions (R2) is calculated as
follows:
This journal is © The Royal Society of Chemistry 2019



Fig. 2 A schematic representation of the proposed read-across approach using the selected variables for determining the neighbors in the
multi-dimensional space and for obtaining the final read-across prediction. The optimal threshold value defines a circle around a reference ENM
(green particle) and ENMs inside the circle are considered as neighbors (blue particles) whereas the remaining ENMs (light blue particles) do not
belong to the reference ENM neighborhood and are not involved in the read-across prediction.
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R2 ¼

0
BBBB@

XN
i¼1

ðyi � yÞðŷi � ŷÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðyi � yÞ2ðŷi � ŷ

s
Þ2

1
CCCCA (25)

where, yi and ŷi are the experimental and predicted endpoint
values over the test set, �y and ŷ are the averages over the
experimental values and the read-across predictions
respectively.
4 Validation

An external validation approach is used to test the proposed
read-across methodology, by dividing the full dataset into
training and test subsets. This data partitioning can be achieved
either by applying a random partition or a partitionmethod (e.g.
Kennard-Stone).31 The training set is used in the GA workow
described above and determines the optimal set of descriptors
and threshold(s) values. For the test set, predictions are made
using the workow described in Step II of the algorithm, but
This journal is © The Royal Society of Chemistry 2019
now the selected descriptors and the threshold(s) are xed to
their optimal values. Eventually, the read-across predictions are
compared with the experimental endpoint values using the qext

2

statistic (eqn (26)).32

qext
2 ¼ 1�

Xn

i¼1

ðyi � ŷiÞ
Xn

i¼1

ðyi � ytrÞ2
(26)

where yi and ŷi are the experimental and predicted endpoint
values over the test set and �ytr is the averaged value of the
endpoint for the training set.

The implementation of the GA algorithm was performed in
the Matlab™ programming language. The source code is
available at GitHub considering a single threshold (extension to
two or more criteria is trivial) (https://github.com/
DemetraDanae/optimized-read-across, DOI: 10.5281/
zenodo.3295498). Minor modications are needed to make
the code compatible with GNU Octave and these are marked as
comments.
Nanoscale Adv., 2019, 1, 3485–3498 | 3491



Table 4 Values for the operational parameters of the proposed read-
across method

Parameter Value

nChrom 100
maxGenerations 1000
initGeneProb 0.6
crossProb 0.7
mutProb 0.01
nonUnf 0.1
thrGAmin 0.1
thrGAmax Mean value of the maximum distances

between samples
bGA 1
predFactor 0.3–0.6–0.9

Fig. 3 R2 values for 10 runs of the GA and three levels of predFactor,
using a single threshold.
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5 Results and discussion

The proposed read-across method is demonstrated on publicly
available data for 84 gold anionic and cationic ENMs, which
were included in the publication of Walkey et al.24 For each
ENM, the original dataset contains 40 physicochemical
descriptors (PDs), 129 protein corona ngerprints (biological
descriptors, BDs) and the log2 transformed numerical values for
cell association with human A549 cells (in mL/mg (Mg)), where
Mg is the total magnesium content to determine the total
number of cells, which is considered as the toxicity index to be
predicted. We used the ltered dataset derived in the toxFlow
web application by Varsou et al.20 aer applying the Gene Set
Variation Analysis (GSVA)33 method to BDs, which reduced the
biological descriptors to 63 statistically signicant proteins. The
availability of two different types of descriptors renders this
dataset suitable for testing the proposed method with one or
two similarity criteria.

The GAmethod was applied with the operational parameters
shown in Table 4. Due to the stochastic nature of the proposed
GA strategy, different runs of the algorithm may produce
different output results, even if the starting conditions are
exactly the same. We selected three levels of the predFactor, and
we executed the complete workow 10 times in the following
three variations of the method:

� Considering a single threshold, corresponding to the full
set of descriptors.

� Assuming two different thresholds, one for the group of
PDs and one for the group of BDs and obtaining the read-across
predictions using the distances between PDs.

� Assuming two different thresholds, one for the group of
PDs and one for the group of BDs and obtaining the read-across
predictions using the distances between BDs.

Fig. 3 and 4 present the R2 values produced by individual
runs of the GA algorithm using one threshold and two thresh-
olds respectively. The results are summarized in Table 5.† As
expected, by increasing the value of the predFactor parameter,
the optimal threshold values determined by the GA are larger
(Fig. 5), which means that read-across predictions are obtained
for more ENMs, because there are more ENMs having at least
one neighbor (Fig. 6). On the other hand, the accuracy of the
read-across predictions measured by the R2 statistic is
decreased because additional ENMs with higher distances are
considered as neighbors to the reference ENM and are involved
in the calculation of the read-across prediction. An illustrative
example is presented in Fig. 7. By comparing the results
between using one or two thresholds, we do not observe
signicant differences in the number of ENMs with read-across
predictions, in the number of selected variables, or in the
accuracy of the predictions expressed by R2 statistic. The results
obtained by using the PD and BD distances for computing the
read-across predictions are almost identical.

The prediction accuracy of the proposed method, using the
60% predFactor level, is similar to the application of toxFlow20
† Summarized results of 10 runs of the GA algorithm are depicted.

3492 | Nanoscale Adv., 2019, 1, 3485–3498
on the same dataset, in terms of the R2 statistic (toxFlow
produced a 0.973R2 value). However, the method proposed in
this work was able to produce read-across predictions for
Fig. 4 R2 values for 10 runs of the GA and three levels of predFactor,
using two thresholds. Black and redmarkers correspond to predictions
using PD and BD distances respectively.

This journal is © The Royal Society of Chemistry 2019



Table 5 Overview of the produced results and statistics from the GA workflow using a single threshold or two thresholds

Single threshold

Two thresholds

PD distances BD distances

Min Max Average Min Max Average Min Max Average

predFactor: 30%
Thresholds 0.5561 1.0134 0.8846 0.4400 0.7579 0.5339 0.3436 0.7440 0.5803

0.5399 0.8806 0.7499 0.5373 0.8738 0.7455
Selected variables 46 61 53.6 43 56 49.5 48 59 52.1
Predicted samples 26 31 28.8 25 29 25.7 25 28 26.2
R2 0.982 0.993 — 0.980 0.993 — 0.984 0.994 —

predFactor: 60%
Thresholds 0.9846 1.1728 1.0843 0.2497 1.0554 0.7806 0.4841 0.8822 0.6844

0.6766 1.2691 0.9550 0.9780 1.1909 1.0801
Selected variables 46 59 52.3 39 62 50.6 50 62 53.7
Predicted samples 50 53 50.6 50 51 50.3 50 53 51
R2 0.966 0.979 — 0.956 0.983 — 0.947 0.967 —

predFactor: 90%
Thresholds 1.5764 1.7488 1.6251 0.9931 1.2318 1.1266 0.9834 1.3869 1.2383

1.1806 1.3546 1.2671 1.1084 1.4729 1.2399
Selected variables 55 65 60.3 47 64 54.0 48 58 55.2
Predicted samples 76 78 77.0 76 78 77.1 76 79 76.6
R2 0.874 0.903 — 0.882 0.918 — 0.878 0.922 —

Fig. 5 Average threshold values for different predFactor levels. Five
columns are shown at each level. The first column shows the single
threshold. The two next columns depict the thresholds corresponding
to the groups of PDs and BDs respectively, when distances between
PDs are used for the read-across predictions. The last two columns
present the two thresholds again, when read-across predictions are
performed using the distances between BDs.

This journal is © The Royal Society of Chemistry 2019
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signicantly more ENMs (average 50 to 51 ENMs compared to
21 ENMs in toxFlow).

For the 60% predFactor level, we alsomeasured the frequency
of appearance of the different descriptors in the selected sets of
descriptors. It is clear that there exist descriptors which are
selected in most runs, whereas some other descriptors are
Fig. 6 Average number of ENMs for which prediction is obtained per
different predFactor levels.

Nanoscale Adv., 2019, 1, 3485–3498 | 3493



Fig. 7 An example of the effect of the predFactor on the threshold, the
number of neighbors and the predictive accuracy. The reference ENM
is depicted with green color and the orange ENMs are candidate
neighbors. By increasing the predFactor value, the threshold is
increased, more ENMs with higher distances to the reference ENM are
considered as neighbors and less accurate predictions are obtained.
The single threshold variant is considered and a 2D projection of the
multi-dimensional space is presented.

Fig. 9 qext
2 values for 10 runs of the GA and three levels of predFactor,

using two thresholds. Black and redmarkers correspond to predictions
using PD and BD distances respectively.
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chosen very rarely. The descriptors appearing in more than 70%
of the runs are considered as the most signicant descriptors.
The most frequently selected PDs and BDs are presented in
Fig. 10 and 11 respectively.

The presented descriptors in Fig. 10 are extracted from ENM
characterization assays24 and are further described next:

� lspri_rel_ch: ({LSPRi aer serum exposure} � {LSPRi aer
synthesis})/{LSPRi aer synthesis}

� zav_serum: Z-average hydrodynamic diameter (HD) aer
serum exposure.

� vol_synth: volume mean HD aer synthesis.
Fig. 8 qext
2 values for 10 runs of the GA and three levels of predFactor,

using a single threshold.
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� num_serum: number mean HD aer serum exposure.
� int_serum: intensity mean HD aer serum exposure.
The localized surface plasmon resonance index (LSPRi) for

each sample is computed from collected absorbance spectra,
and is an empirical measure of the local dielectric environ-
ment surrounding plasmonic ENMs. The rest of the presented
descriptors are measured by Dynamic Light Scattering (DLS)
characterization, using the available commercial soware of
the instrument (ZetaSizer Nano ZS, Malvern Instruments).24

The HD parameter expresses “the size of a hypothetical hard
sphere that diffuses in the same fashion as that of the particle
being measured”.34 The HD diameter is an important factor
for ENM characterization as it helps understand migration of
ENMs into the (biological) media. Within a liquid (biological)
medium, an electric dipole layer (in our case the protein
corona) is formed around the dispersed ENM due to the
surrounding macro-molecules and inuences its Brownian
diffusion into the medium.35–38 Therefore, the HD diameter
encloses information of the ENM core along with any attached
coating and formed solvent layer, a type of information that is
based on resembled exposure conditions and cannot be esti-
mated by other methods (e.g. size measured by TEM
microscopy).

The hypergeometric test was applied to the most frequently
selected BDs shown in Fig. 11, considering all genes (ENTREZ
IDs) included in the molecular function category of the gene
ontology (GO) at the time of writing this paper (45 099).22 The
most statistically signicant GO terms (p-value < 0.001) are
depicted in Table 6.

Finally, the full dataset was divided into training and test
sets in a ratio of 66 : 33 (55 training and 29 test ENMs) using
the Kennard and Stones method.39 We applied all three vari-
ations of the method described in the beginning of this
section to the training data only. The selected variables and
optimal threshold value(s) obtained by the solution of the
optimisation problems were applied for computing read-
This journal is © The Royal Society of Chemistry 2019



Fig. 10 Selected physicochemical variables in frequency greater than 0.7, at predFactor ratio equal to 0.6.
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across predictions for the test ENMs. The results are
summarized in Table 7† and in Fig. 8 and 9 for the single
threshold and the two-threshold cases respectively. We
observe that the predFactor does not play a major role, obvi-
ously because the Kennard-Stone algorithm forces the vali-
dation samples to be within the space dened by the training
Fig. 11 Selected biological variables in frequency greater than 0.7, at pr

This journal is © The Royal Society of Chemistry 2019
data. Even with the 30% predFactor level, read-across predic-
tions were obtained for most ENMs in the test set. The best
results in terms of the qext

2 statistic were produced with the
60% predFactor level using two thresholds and the BD
distances for calculating the read-across predictions. The
prediction accuracy drops down signicantly when applying
edFactor ratio equal to 0.6.

Nanoscale Adv., 2019, 1, 3485–3498 | 3495



Table 6 Significant GO terms containing the proteins selected by at least seven GA runs in all three variations. The size of the gene sets is placed
in parenthesis next to their GO term name

GO term name GO term ID ENTREZ IDs UNIPROT p-value

Acrosin binding (4) GO: 0032190 5104 P05154 0.00080
Acyl-L-homoserine-lactone lactonohydrolase activity (3) GO: 0102007 5444 P27169 0.00060
Aryldialkylphosphatase activity (3) GO: 0004063 5444 P27169 0.00060
Heparin binding (220) GO: 0008201 283 P03950 0.00082

5104 P05154
Phosphatidylcholine binding (24) GO: 0031210 341 P02654 0.00001

5104 P05154
Phosphatidylcholine-sterol O-acyltransferase activator activity (5) GO: 0060228 341 P02654 0.00100
Protease binding (143) GO: 0002020 5265 P01009 0.00035

5104 P05154
Serine-type endopeptidase inhibitor activity (202) GO: 0004867 5265 P01009 0.00070

5104 P05154

Table 7 Overview of the GA validation results and statistics using a single threshold or two thresholds

Single threshold

Two thresholds

PD distances BD distances

Min Max Average Min Max Average Min Max Average

predFactor: 30%
Thresholds 1.0680 1.4009 1.2682 0.3336 0.7728 0.6158 0.4084 0.7793 0.5826

1.0302 1.8066 1.3124 0.9279 1.8881 1.3770
Selected variables 43 62 56.4 44 61 52.8 43 60 52.1
Predicted samples 27 29 28.0 22 29 26.2 24 28 26.3
qext

2 0.748 0.836 — 0.667 0.813 — 0.698 0.817 —

predFactor: 60%
Thresholds 1.3923 1.7148 1.4889 0.6779 1.3573 0.9772 0.8416 1.3832 1.0055

1.1047 1.5270 1.3093 1.1309 1.4679 1.2805
Selected variables 50 57 55 47 62 55.6 48 62 54.6
Predicted samples 29 29 29 28 29 28.7 27 29 28.4
qext

2 0.693 0.790 — 0.736 0.831 — 0.724 0.860 —

predFactor: 90%
Thresholds 1.6594 1.9079 1.7494 1.1468 1.9579 1.4414 1.1214 1.5443 1.3407

1.0865 1.7443 1.3872 1.1924 1.5521 1.3985
Selected variables 52 63 56.8 45 64 55.0 50 67 58.5
Predicted samples 29 29 29.0 29 29 29.0 29 29 29
qext

2 0.664 0.806 — 0.610 0.824 — 0.618 0.748 —
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the 90% predFactor level, because in this case, as indicated
before (Fig. 5–7), the optimal threshold values are increased
and the algorithm considers as neighbors source ENMs with
higher distances (not very similar) to the target ENM.
6 Conclusions

In this work, a novel read-across method to predict toxicity
related endpoints of ENMs has been developed. The method
offers two important advantages compared to standard read-
across approaches. First, it considers explicitly the multi-
perspective characterisation of ENMs, by dening multiple
thresholds relative to different similarity criteria and
ensuring that two ENMs are considered as neighbors only if
3496 | Nanoscale Adv., 2019, 1, 3485–3498
they satisfy all similarity requirements. Secondly, it performs
an automatic extensive search over the solution space in order
to nd the read-across hypothesis that produces the best
possible results in terms of prediction accuracy and number
of ENMs for which predictions are obtained. Thus, it over-
comes a main drawback of existing time approaches, which
are based on manually trying different read-across hypoth-
eses in an iterative, inefficient and time-consuming trial and
error fashion. The main outcomes of the method are:
a reduced set of signicant descriptors and a single or
multiple threshold values which rigorously dene the
boundaries around a query ENM, where neighboring ENMs
are located. The presented workow is rather exible and can
be extended or modied in the future to accommodate
This journal is © The Royal Society of Chemistry 2019
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additional similarity criteria, alternative prediction functions
(other than the weighted average) and solve classication
read-across problems where the end-point is a discrete rather
than a continuous variable.
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1 M. Fojtü, W. Z. Teo andM. Pumera, Environ. Sci.: Nano, 2017,
4, 1617–1633.

2 I. L. Gunsolus and C. L. Haynes, Anal. Chem., 2015, 88, 451–
479.

3 B. He, Y. Shi, Y. Liang, A. Yang, Z. Fan, L. Yuan, X. Zou,
X. Chang, H. Zhang and X. Wang, Nat. Commun., 2018, 9,
2393.

4 A. Gajewicz, B. Rasulev, T. C. Dinadayalane, P. Urbaszek,
T. Puzyn, D. Leszczynska and J. Leszczynski, Adv. Drug
Deliv. Rev., 2012, 64, 1663–1693.
is © The Royal Society of Chemistry 2019
5 A. Gajewicz, K. Jagiello, M. T. Cronin, J. Leszczynski and
T. Puzyn, Environ. Sci.: Nano, 2017, 4, 346–358.

6 J. H. Arts, M. Hadi, M.-A. Irfan, A. M. Keene, R. Kreiling,
D. Lyon, M. Maier, K. Michel, T. Petry and U. G. Sauer,
Regul. Toxicol. Pharmacol., 2015, 71, S1–S27.

7 EU Directive, Official Journal of the European Union, 2010,
276, 33–74.

8 D. A. Winkler, E. Mombelli, A. Pietroiusti, L. Tran, A. Worth,
B. Fadeel and M. J. McCall, Toxicology, 2013, 313, 15–23.

9 J. J. Villaverde, B. Sevilla-Morán, C. López-Goti, J. L. Alonso-
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