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Complex mixtures containing natural products are still an interesting source of novel drug candidates.
High content screening (HCS) is a popular tool to screen for such. In particular, multiplexed HCS assays
promise comprehensive bioactivity profiles, but generate also high amounts of data. Yet, only some
machine learning (ML) applications for data analysis are available and these usually require a profound
knowledge of the underlying cell biology. Unfortunately, there are no applications that simply predict if
samples are biologically active or not (any kind of bioactivity). Within this work, we benchmark ML algo-
rithms for binary classification, starting with classical MLmodels, which are the standard classifiers of the
scikit-learn library or ensemble models of these classifiers (a total of 92 models tested). Followed by a
partial least square regression (PLSR)-based classification (44 tested models in total) and simple artificial
neural networks (ANNs) with dense layers (72 tested models in total). In addition, a novelty detection
(ND) was examined, which is supposed to handle unknown patterns. For the final analysis the models,
with and without upstream ND, were tested with two independent data sets. In our analysis, a stacking
model, an ensamble model of class ML algorithms, performed best to predict new and unknown data. ND
improved the predictions of the models and was useful to handle unknown patterns. Importantly, the
classifier presented here can be easily rebuilt and be adapted to the data and demands of other groups.
The hit detector (ND + stacking model) is universal and suitable for a broader application to support the
search for new drug candidates.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Seeking for new bioactive compounds, natural product contain-
ing complex mixtures are an interesting sources [1,2]. Therefore,
many medicines are based on natural products [3] and it is still
possible to find novel biologically active substances in complex
mixtures as e.g. shown by Furner-Pardoe et al. [4] Thanks to tech-
nological developments in the omics disciplines, comprehensive
screenings of complex mixtures became more efficiently and faster
[5]. One of these technical developments is high-content screening
(HCS), a useful tool that for a comprehensive bioactivity analysis.
HCS has become very popular in in-vitro drug screenings or
development [6], as it allows to observe how compounds or mix-
tures affect the cellular morphology in high-throughput (HT) cam-
paigns. For this purpose, cells are cultured in multi-well plates (96,
384 or 1536 well format) and treated with different samples in
parallel. The cells are then stained with different fluorescent dyes
or antibodies to detect changes in cellular substructures and orga-
nelles. Depended on the HCS instrument several dyes can be mul-
tiplexed, which leads to a growing complexity and size of the
obtained data. Due to the rapid development of artificial intelli-
gence (AI) in the field of image recognition [7], it is possible to
analyse the generated microscopic images and convert them into
a multitude of numerical features [8] allowing an efficient screen-
ing for new compounds. However, the HT and high number of fea-
tures per sample results in large and multidimensional data sets
resulting complex data for subsequent data analysis. These data
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sets are often analysed with classical statistical methods [3,9–12],
or more recently also with machine learning (ML) approaches [13–
17], a subfield of AI. An example for an application using ML is the
classification of morphological differences. This can be done using
image data [8,18–21] or extracted morphological features [6,22–
23]. For such purposes, support vector machines (SVM) [24], ran-
dom forest classifiers [25] or voting models [25] are often used.
Applications using image data for analysis have an artificial neural
network (ANN) algorithm upstream of the classifier in order to
convert the images into numerical features. Based on the distinc-
tion of morphologies, there are applications that classify different
mechanism of action [26] or modes of action [27] with the help
of SVM. However, the major drawback for ML models is their lack
in recognition of new and unknown patterns. This is a major prob-
lem for screening approaches, as the models force the data in pre-
viously defined categories leading to missing or false detections.
One way to tackle this issue is to use novelty detection (ND)
[24,28–30]. ND can be understood as an outlier test, which tests
how similar new samples/data are to the already known samples/-
data. Unlike a classical outlier test, there is no need to adjust the
alpha error and therefore there is no need to know the final num-
ber of performed tests. This makes it suitable for an application
that will be used countless times.

To best of our knowledge, this is the first paper benchmarking
algorithms for fast and easy hit detection. A proper hit detection
and selection takes a key position in any screening and allows a
sample prioritisation. Fig. 1 shows a general overview of the work-
flow of data analysis in HCS [31–33]. With the Hit Detector high-
lighted in green. We present a systematic analysis of different
models, from classical ML models (95 models) over an alternative
partial least square regression (PLSR) (44 models) to simple ANNs
with dense layers only (72 models). For the classical models (9
models), all classifiers of the scikit-learn [34] library were checked.
These included the already mentioned SVM and random forest.
Various voting models (15 models) were also examined, which
can be counted to the group of ensemble methods. For voting mod-
els, different models are combined to predict the class, each model
gives a vote and the prediction with the most votes wins. Stacking
models (68 models) which are also ensemble models were also
examined. A stacking model consists of two levels, the first consists
of several different models and are called the base estimators. It is
Fig. 1. A common workflow of high content screening data analysis and how this study fi
in this figure legend, the reader is referred to the web version of this article.)
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up to the user to decide how many models and which models to
use. These models are trained with the data and produce outputs
which are the input for the last level. The last level is a single
model that learns to combine the output/information of the lower
level in a meaningful way to improve performance. We also
decided to use PLSR (44 models) for classification, since it is the
most commonly used approach in different omics fields [35,36].
PLSR is similar to principal component analysis (PCA), which is
often used to discover classes and groups in the data. It also
reduces the dimension of the variables. The ability to discover
classes in data is ideal for the task of classification, as it supports
it. The PLSR can separate the data in such a way that mayor class
differences can be found, which can facilitate the classification of
the HCS data. The possibility of reducing the features has an addi-
tional advantage, because it decrease the required computing
resources of the computers. In the investigation of neural networks
(72 models), only dense layers were used, as other layers would go
beyond our scope. Dense layers are those layers where each unit is
connected to all units of the previous layer. Other layers include
the dropout layer (where random connections are removed), flat-
ten layers (where multi- dimensional data matrices are converted
into a one-dimensional one) and many more. Even with the use of
dense layers, there are countless architectures that can be built. For
example, one can vary the number of layers and the number of
nodes within a layer. In addition, neural networks with dense lay-
ers are the classical variants, which is why these architectures are
usually used as a starting point.

All built models were evaluated using five different metrics (ac-
curacy, precision, recall, specificity and optimised accuracy based
on Ranawana and Palade [37]).
2. Methods and materials

2.1. Hardware and software

The study was calculated on two computers. The first computer
uses an Intel processor i7 7800X with 16 Gb RAM and an Nvidia
RTX 1060 graphics card. The second computer has an AMD Ryzen
9 5900HX processor with 64 Gb RAM and an Nvidia Geforce RTX
3080 graphics card.
ts in the workflow (marked in green). (For interpretation of the references to colour
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The open-source software Python, scikit-learn, Jupyter Note-
book and Tensorflow were used in the Anaconda application
[34,38–41].

2.2. Experimental procedures and data sets

To capture a broad but defined set of phenotypes we decided to
analyse the SELECTCHEM Target Selective library in the Standard
Cell Painting procedure [42]. The library is a unique selection of
641 validated highly selective pharmaceutically relevant inhibitors
covering over 123 targets. Their selectivity is at least 100-fold
higher relative to their non-primary targets, leading to minimal
off-target activity. Furthermore, the compounds are structurally
diverse and highly cell permeable. We used U2OS cells for all anal-
ysis and dimethyl sulfoxide (DMSO) treated cells served as nega-
tive controls. The samples were treated following the procedure
of Brey et al. [42] except that the stains were divided into two
groups to avoid fluorescents overlapping. Each sample was mea-
sured in triplicate using 10 lM as final concentration. The DMSO
controls were positioned randomized between the three replicates,
but were in the same position on both plates for the staining pair.
Images were acquired on the PerkinElmer Operetta� High Content
Imaging System, and Perkin Elmer software Columbus (2.9.1532)
was used for feature extraction. In total 979 features were
recorded. These features consisted of the mean value of morpho-
logical (STAR and Shape) and texture (SER) characteristics, and if
possible their standard deviations.

Two additional data sets were used for the final verification of
the models. Both data sets were generated using the same experi-
mental procedure. The first contained drugs that affect the cell
cycle in different stages (mebendazole, nicolsamide and cladrib-
ine), each in a final concentration of 10 lm. The second validation
set contained staurosporines at different concentrations (10 nM
and 30 nM).

2.3. Data Processing

To process the data we used a Jupyter notebook as described
below [39]. First of all, the not a number (NaN) values were
replaced by 0. Then only the control samples were used and Z-
score transformed. For each sample, it was calculated how many
features were outliers using the Grubbs outlier test. If there were
more than 30 outlier features, the control sample was removed.
The complete data set, with cleaned controls, was then Z-score
transformed using the mean and standard deviation of the controls
[43]. Finally, single replicate data was kept and combined into one
data set, containing 1762 bioactive samples and 306 controls for
the first data set. For the cell cycle interfering compounds there
were 151 data with 32 controls and for the staurosporine data
set there were 146 values of which 41 are controls.

2.4. Metrics for evaluation

Accuracy, precision, recall and specificity were calculated to
check the quality of the models. In addition, an optimised accuracy
was used based on Ranawana and Palade [37]. This allows a better
evaluation of the performance of imbalanced data sets. Accuracy
indicates how well the model is predicting, but has a problem with
unbalanced data. For instance, a model that predicts everything as
the majority class automatically has a higher accuracy due to the
imbalance of the data. However, this falsely gives the impression
of having a good model, even though it cannot predict the minor
class. This problem is better handled with optimised accuracy.
The precision indicates how many of the predicted bioactive sub-
stances are indeed bioactive, whereas the recall gives how many
bioactive substances were indicated as bioactive substances. In a
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screening approach, it is therefore more important to have high
precision and, in contrast, the recall rate can be lower. Specificity
represents how many controls were actually predicted to be con-
trols, which is also important in a screening approach.

Our focus at the beginning of the model selection was on high
optimised accuracy. In the later tests, more attention was paid to
precision and specificity. As mentioned, for a screening approach
it is important that a model predict controls well (high specificity)
and only recognises biologically active samples as such when they
are (high precision).

Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP
Precision ¼ TP
TP þ FP
Recall ¼ TP
TP þ FN
Specificity ¼ TN
TN þ FP
OptimizedAccuracy ¼ Specificity � Nnð Þ þ Recall � Np
� �

� Specificity� Recallj j
Specificityþ Recall

� Nn: proportion of negative samples
� Np: proportion of positive samples
� TP: True Positive
� TN: True Negative
� FP: False Positive
� FN: False Negative

2.5. Splitting the data

When working with small data sets, the problem is how to train
the model and check it. There are several ways to tackle this prob-
lem, some examples can be seen at Gowen et al. [44] We decided to
use a classic train/test split. Splitting the data is important to verify
the performance of an ML model. Because two extreme cases can
occur when learning the models, the overfitting and the underfit-
ting. Underfitting can be recognized quickly, since the model can-
not even predict the training data. The model did not recognize any
meaningful patterns in the data. The other case, overfitting, can
only be recognized with an additional data set. Here the model per-
fectly predicts the training data but cannot predict the test data.
This shows that the model has learned too specific patterns from
the training data that do not contribute to solving the problem.
An ideal ML model learns patterns that are necessary to solve the
problem and that are applicable to all data in the domain.

For this, scikit-learn offers stratified shuffle splitting, where a
fixed random state can be set. This was done so that the generated
data sets were always the same. The data was divided into three
sets, a training set (70 % of the data), a validation set (10 %) and
a test set (20 % of the data). By keeping the data sets fixed, it
was easier to compare the models with each other. It also prevents
leakage of information. If one were to use randomly split data sets
repeatedly, all data is offered to the model during training at some
point. The test for generalisation would no longer be guaranteed,
since the information from all data went into the model.
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2.6. Modelling workflow

To give an overview, the modelling workflow is illustrated
schematically (Fig. 2). First, the data is pre-processed using a Z-
transformation and the Grubbs outlier test. Then the data was
divided into three sub-sets, the training set (70 % of the original
data), the validation set (10 %) and the test set (20 %). The training
set was used for hyperparameter optimisation with a grid search
cross-validation (GSCV). The models with adjusted parameters
were tested with the validation data. If the performance of the
models fulfilled certain criteria, the optimised models were used
for further investigation. For this purpose, the training set was
merged with the validation set and used to train the optimised
models. The performance of the models was checked with the
remaining test set. If the performance also fulfilled certain criteria,
the model was checked with a final cross-validation (CV). For this
purpose, all data sets were merged and used. This last validation
was done because the performance of the models depends strongly
on the data size and the used data. Since all data is usually used to
train the final model, a CV was performed with all data. This gives a
better overview of the performance of the final model.
2.7. Data availability

The extracted raw and processed data, as well as the Python
scripts that support the findings of this study are available in Men-
deley Data and found at: https://doi.org/10.17632/hctkwwzx5z.1
[45].
3. Results

3.1. Classical machine learning approaches

We began by testing the classifiers from the scikit-learn library,
which includes nine models. In the paper, we refer to these stan-
dard classifiers from the library as the classical classifiers, as they
are the most common approaches. The first step was to check
the models in their default settings to see how they perform. Mod-
Fig. 2. Schematic representation of the m
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els such as stochastic gradient descent (SGD) classifier, ridge clas-
sifier or logistic regression were already performing acceptably,
but there was still much potential for improvement (Fig. 3). A GSCV
with CV = 5 and fixed random state was therefore performed for
the hyperparameter optimisation. A GSCV takes a list of different
settings for the different parameters and tests all possible combi-
nations with a CV. It then returns the parameter setting that gave
the best performance. The models were thereafter tested with the
optimised parameters (Supplementary Materials 1). Apart from k-
nearest neighbours (KNN), SGD and the Gaussian Process Classifier
(GPC), all models improved. However, the performance was still
not sufficient, ranging between minimal 43 % (decision tree classi-
fier) to maximal 79 % (Ridge Classifier) optimised accuracy (Fig. 4).

As a consequence, we decided to evaluate the performance
using different ensemble models. Ensemble approaches combine
multiple models and can improve predictions. In the tested stan-
dard models of scikit-learn, an ensemble model is already included,
namely random forest. It is a model that uses multiple decision
trees to make its prediction. After optimizing the parameters, this
model gave the largest performance increase of almost 50 % for
optimised accuracy (Figs. 3 and 4). This shows the advantage of
ensemble models, when set up correctly; different models can sup-
port each other and improve performance. For the new ensemble
models we first investigated voting models, where one can choose
between hard voting (9 models) and soft voting (6 models). Hard
voting works by selecting the prediction with the highest number
of votes. In contrast, soft voting sums the probabilities of all the
predictions in each model and selects the prediction with the high-
est probability achieved. Nevertheless, there was neither an
increase in performance with the hard voting nor with the soft vot-
ing approach (Supplementary Material 1).

The next ensemble approach that was tested were stacking
models. A total of 68 different models were analysed in this study.
To this end, different combinations of basic models and final esti-
mators were built. For the stacking models, an improvement of
almost 7 % in performance was observed (Supplementary Material
1). The models were also checked with reduced features where the
standard deviations were omitted. For further testing, we selected
all models with a very high optimised accuracy (greater than80 %),
odelling workflow used in this work.

https://doi.org/10.17632/hctkwwzx5z.1


Fig. 3. Comparison of the performance of the standard models of the Scikit-learn library grouped by the metrics accuracy (blue), precision (orange), recall (green), specificity
(red) and optimised accuracy (purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparison of the performance of the optimised models of the Scikit learn library grouped on the metrics accuracy (blue), precision (orange), recall (green), specificity
(red) and optimised accuracy (purple). For the optimized settings see Supplementary Materials 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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in total 16 models for all features and 15 models for the features
without standard deviation. For these tests, the training and vali-
dation data were combined into one large training set to train
the models. They were then validated with the test set (Supple-
mentary Material 1). The best 16 stacking models of the approach
with all features were also examined with reduced features
obtained by different algorithms. The used algorithms were e.g.
select from model, select k best or the recursive feature elimina-
tion, which were all used with different settings (Supplementary
Material 1). A total of 13 reduced feature sets were investigated,
which were obtained through the algorithms. The tests were per-
formed with the training set and tested against the validation
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set. Only the 16 best models of the approach with all features were
checked, since the algorithms, including the standard deviations,
retain all possible features. In this way, 208 (16 best
Models � 13 reduced feature) additional examinations were car-
ried out. For the further investigations of these models, only those
were selected that showed an improvement in their optimised
accuracy (Supplementary Material 1). The models with reduced
features were not significantly better or worse than the models
with all features. There are many approaches where more features
lead to better ML models. This can be seen in the work of Siegis-
mund et al. [16] Nevertheless, this does not always have to be
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the case, as some features, unless excluded, could potentially lead
to noisy data.

Since the final model is intended to be integrated in a work pro-
cess where one wants to find strong bioactive substances. This
means that only substances that are really bioactive should be pre-
dicted as bioactive and that false positive samples should be kept
as low as possible (high precision). In addition, controls should
be correctly predicted (high specificity) in a searching process
where many samples are tested. It is more important to get only
strong hits and it can be neglected if some minor bioactive sub-
stances are predicted as controls (small recall). As the performance
of the models strongly depends on the selected training data and
usually the whole/unfiltered data set is used for the final model,
one wants to get a better estimate of the performance of the final
model. For this purpose, after the further tests (training with the
large training set and tests with the test set), the models were
finally validated by a 10-fold CV with the full data. In this way,
the models are trained with 9-folds (90 % of the data) and are thus
closer to the final models. When selecting the models for the final
CV, not only the optimised accuracy was considered, but also the
precision and specificity. Only models with an optimised accuracy
of over 80 % or with precision and specificity over 98 % were used.

The 10-fold CV was performed with a fixed random state, so
that all models can be compared. A total of 84 models (with and
without reduced features) were examined with the final CV.

For the choice of the final model, only models with a standard
deviation below 4 % for all metrics were considered. This left only
nine candidates out of the original 84 models. The best model,
Stack 1, was a stacking model with support vector classifier, SGD
classifier and KNN Classifier as basic models with basic settings
and logistic regression as the final estimator with the optimised
settings from Logistic Regression 2 (Supplementary Material 1).
The model was trained with reduced features obtained by recur-
sive feature elimination with the model logistic regression. The
settings were from Logistic Regression 2 except for the tolerance
(tol) which was set to tol = 0.001. This classifier Stack 1 was chosen
because it has the highest optimised accuracy, the smallest stan-
dard deviation in optimised accuracy and the smallest standard
deviations in specificity and precision (see Fig. 5).

3.2. Partial least square regression as a classifier

Since partial least square algorithms are one of the most widely
used algorithms in the field of omics [35,36], an approach using
PLSR was tried. Also because it is similar to PCA, which is a suitable
method to detect classes in data. The PLSR is not designed as a clas-
sifier in the scikit-learn library [34]. Moreover, it does not output
discrete numerical values, but only continuous numbers. Thus, a
threshold value was used to classify the data. Since GSCV cannot
be used for classification problems with PLSR, a separate GSCV
was written. This sought for the most adjustable parameters of
the PLSR and a threshold at which the best classification results
for optimised accuracy, precision or specificity were obtained.
For precision and specificity, we looked for the maximum values
that were less than 100 %. Since the search is time intensive, all
cores of the processor were used in the computation through the
multiprocessing library [41]. In addition, the principal components
were divided into several sets and analysed separately on two
computers. For the own GSCV, 5-folds and a fixed random state
were used again. The results from each set were then used for fur-
ther investigation. For the outcomes that had the best optimised
accuracy, precision and specificity, an additional grid search with
finer thresholds was performed (Supplementary Material 2).

In addition to the own GSCV, a simple search for the number of
principal components was carried out. Here, we looked which
number of principal components achieved the highest coefficient
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of determination. The result was then used to search for a suitable
threshold value in the own GSCV. Since the number of iterations or
the tolerance was the same for all previous results, these settings
were used. The search was only for the appropriate threshold value
(Supplementary Material 2).

All parameter combinations, in total 44 models, were then
checked by training the models with the training set and testing
them with the validation set. For further investigations, models
were taken that had an optimised precision greater than 80 % or
where precision and specificity were above 90 % with a recall
above 60 %. Again, a large data set from the training and validation
set was used to train the classifier. The model was verified with the
test set (Supplementary Material 2).

For the final test, the entire data set was used for a CV with 10-
folds. The models that were tested also had either an optimised
accuracy of over 80 % or specificity and precision of over 90 %
and recall of over 60 %. Altogether seven models were examined
in this way. The best model, PLSR 1, was the one with a principal
component number of 13 and a threshold of 0.65. Which was the
result of the simple principal component search with the aim of
achieving the highest coefficient of determination. It had the high-
est value in optimised accuracy with the smallest standard devia-
tion. It also had a smaller standard deviation for specificity and
precision than other models with comparable optimised accuracy
(Fig. 6).

3.3. Artificial neural networks

The ANNs were all created with the GPU supporting library of
Tensorflow [40]. Only dense layers were used for the architectures,
as other types of layers would go beyond the scope of this work.
We have tested different combinations of number of layers and
the units they contain. In addition, as with PLSR, a threshold was
used where a sample belongs to a class, since ANNs only output
probabilities of class membership.

The training of the ANNs was carried out with the training data
and tested with the validation data. Different numbers of layers
were systematically examined. For a certain number of layers,
loops were used to analyse which number of units is the best per
layer. Callbacks were used to optimise the training in the loop.
The training was designed to stop after 100 training epochs, when
the accuracy in the validation set no longer increased, and save the
best model. This best model is then loaded to check which thresh-
old gives the highest optimised accuracy. The model must be
reloaded because the old model was over trained with the 100
additional epochs. After the loop has been run, the settings are
obtained that have achieved the highest optimised accuracy. These
are used to check which thresholds give the highest optimised
accuracy, precision and specificity. Further examinations were also
carried out with the ANNs using the large training set and the test
set for validation. For this, the different models were tested with
the different settings obtained from the loop runs. In the case of
ANNs, 72 different architectures were tested (Supplementary
Material 3).

In order to be able to compare the ANNs better with the other
models, the final test was also carried out under the same criteria.
Even though it is unusual in the field of ANNs, there are a few stud-
ies that have used a CV [23,46–49]. Models that over fitted in the
CV were rejected, this left 16 models (Supplementary Material 3).
The best model, ANN 1, was one that consisted of 6 layers with
5,5,5,7,8 and 1 unit in the layers. Only 47 epochs were needed to
train the model, and the threshold for the best result was 0.83
(see Fig. 7).

If you compare all the previous models (see Fig. 8), you can see
that the ANN has the best performance with 95 % Optimised Accu-
racy. While the stacking model (87 % Optimised Accuracy), the



Fig. 5. The best 9 stacking models of the cross-validation where the standard deviations were less than 4 %. The performance of the models is grouped by the metrics accuracy
(blue), precision (orange), recall (green), precision (red) and optimised accuracy (purple). For the structure of the stacking models see Supplementary Material 1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

E. Kupczyk, K. Schorpp, K. Hadian et al. Computational and Structural Biotechnology Journal 20 (2022) 5453–5465
classic ML approach, and the PLSR (86 % Optimised Accuracy) are
similarly good. The ANN has better scores in all the used metrics.
Looking at the optimised accuracy in Fig. 8, we see that even the
outliers in the boxplot are within the range of the other models.
3.4. Novelty detection

A well-known problem with supervised ML is that the models
cannot handle new, unknown patterns. They make a prediction
for new patterns, but assign them to one of the known classes.
But it is precisely the target to find novel patterns in the search
for new, unknown bioactive compounds. So the idea was to use a
kind of outlier test. In a routine work process with a fixed pipeline,
it is not possible to use an outlier test. This is because the alpha
error would have to be adjusted for each outlier test performed.
Also, one would need to know how many tests are performed in
total to correctly adjust the alpha error. Since this is not possible,
another solution must be chosen. In the field of ML, there is such
a solution, namely ND [50].

In contrast to the classic outlier test, which is an unsupervised
procedure, ND is a supervised procedure. It learns patterns of the
data and compares new samples with the learnt pattern. A density
function is used to determine whether or not new samples belong
to the known data set.

The scikit-learn library offers two different NDs, the One-
ClassSVM and the LocalOutlierFactor (LOF) [34]. For our approach,
two novelty detectors were used, one trained with the data from
the control groups and one trained with the bioactive samples. A
new sample does only account as ‘‘novel” if it is classified as such
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by both detectors. As for the classifier, the same training, validation
and test set was used for verification. One detector was trained
only with the controls from the training set and the other only with
the compounds. When checking the ND, it was important that as
few samples as possible were counted as outliers. The focus was
on the control samples, which should be kept as good as possible,
because outliers are handled as possible unknown bioactivities.
This is because outliers are different from the bioactive com-
pounds, but also from the control groups. Since they are different
from the controls, it means that they are bioactive.

For the first analysis of the models, the models were trained
with the training set and checked with the validation set. This
showed that the LOF performed better than the OneClassSVM. In
LOF only 5 % of the validation data were classified as outliers in
the best case; while in OneCLassSVM it was 59 % (Supplementary
Material 4). Therefore, further tests were only carried out with
the LOF. For this purpose, the data set for training was extended
with the validation set and tested against the test set. The best set-
ting was obtained with a LOF for the control groups with the
parameters p = 1 and n_neighbors = max. For the LOF trained with
the compounds, the best setting was p = 1 and n_neighbors = 1000.
In these settings, there were only 9.66 % outliers, of which all
belonged to the bioactive compounds (Supplementary Material
4). The LOF did keep all the controls.
3.5. Validation with independent data

For the final verification of the models, two new data sets were
used, with compounds that were previously unknown to the mod-



Fig. 6. The best 7 PLSR models in the cross-validation. The performance of the models is grouped on the metrics of accuracy (blue), precision (orange), recall (green), precision
(red) and optimised accuracy (purple). For the settings of the PLSR models see Supplementary Material 2. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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els, except for mebendazole. One data set contained cell cycle
interfering drugs (mebendazole, nicolsamide and cladribine) at a
fixed concentration of 10 lM, the other set consisted staurosporine
in different concentrations (10 nM and 30 nM). The best models of
the above presented approaches were tested without and with
upstream ND. This was done to test how the models generally han-
dle new, unknown patterns and how the ND performs.

During the first evaluation, which was without ND (Fig. 9), ANN
performed worst. It had a performance for both data sets that is
more like a random predictor. Looking at the PLSR, almost all sam-
ples were predicted as controls for the cell cycle interfering drugs.
For the staurosporine data, the predictions were much better and
within an acceptable range. In contrast, the stacking model per-
formed well for both data sets. The stacking model is best suited
to search for new compounds, as it was able to handle unknown
data. In addition, the accuracy of the predictions is very high,
which is ideal for the screening approach. It achieved an optimised
accuracy of 78 % for the cell cycle data. The precision is 97 % and
the specificity is 91 %. For the staurosporine data, the model
achieved an optimised accuracy of 92 %. The precision is 96 %
and the specificity is 90 %. All values are ideal for a screening
approach (Supplementary Material 5).

The models were thereafter tested with an upstream ND. All
models benefited from the detector and their performance
increased (Fig. 10). In ANNs the performance improved for the
bioactivity predictions, as these are recognised by the ND. The con-
trols remain in the pipeline and are predicted by the ANN, so the
predictions here are the same as above and are more like those
of a random predictor. The PLSR benefited greatly from the ND
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because the predictions of cell cycle interfering agents perform
well. The unknown drugs are detected through the ND and the
controls remain in the pipeline. The controls are predicted by the
PLSR, which works well. For staurosporines, the performance also
improved thanks to the ND. The performance of the stacking model
also increased and achieved the best results in the predictions. For
the cell cycle data, the optimised accuracy increased by 15 % to
93 %. Specificity and precision remained at their values, but recall
improved from 82 % to 100 %. For the staurosporine data, the per-
formance of the model remained the same (Supplementary Mate-
rial 5). There is a great advantage in using the ND as all models are
improved and it helps to handle known bioactivities. This is clearly
visible in the PLSR and ANN and their predictions for bioactivity.
4. Discussion

Thanks to HCS in conjunction with the suitable data analysis
workflow, there is a new possibility to discover bioactive sub-
stances quickly and easily. This involves a lot of data that can have
many variables. In many studies, these large data sets are analysed
with classical statistics, but ML is finding more and more applica-
tions such as the classification of morphology [22,23,29,51–55],
mechanism of action [26], modes of action [27] or clustering
[28–30,56–57]. These classifications require deeper knowledge of
cell biology. To best of our knowledge, there are no ML applications
that are suitable for simple hit detection of whether samples are
biologically active or not. In this work, we have systematically
tested different ML models for use as binary classifier. The used
data were HCS data acquired following the cell painting protocol



Fig. 7. The best 10 ANN models in the cross-validation. The performance of the models is grouped on the metrics of accuracy (blue), precision (orange), recall (green),
precision (red) and optimised accuracy (purple). For the construction of the ANN see Supplementary Material 3. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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[42]. In total, we had 645 compounds with known pharmaceutical
activities, which were labelled as the bioactive class. The other
class, labelled as the control group, were the control groups of
the HCS measurements. The data were pre-processed (Z-
transform and Grubbs outlier test) and divided into three data sets
(train, validate and test set). Different metrics were used as quality
criteria for the models (accuracy, precision, recall, specificity and
optimised accuracy [37]).

The first models examined were classical ML models. For the
basic settings of the classical models, the SGD classifier had the
best result. In the default settings, it corresponds to a linear SVM
and the achieved results fit to other SVM models in a similar task
area [55]. After the hyperparameter optimisation, the optimised
accuracy decreased. Since the hyperparameters are determined
with a CV, the settings are taken that gave the best result in the
average of all tests. In the case of the used test set, it may turn
out worse. However, it is usually more stable for a larger variety
of other data sets. We found that the simple models Logistic
Regression, Ridge Classifier, MLP Classifier or Random Forest Clas-
sifier produced the best results. However, since the results were
not yet satisfactory, ensemble methods were tested. This showed
that voting models, whether hard or soft voting, did not improve
the performance. This is probably due to the fact that the models
made the same predictions and thus no additional information
was gained from the variation. The next approach was to use stack-
ing models, which gave the best results. The achieved perfor-
mances are so good that the models can be used for screening.
The best model was one that was trained with reduced features.
However, it was only slightly better than the best model that used
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all features (Supplementary Material 1). As a rule, it is assumed
that more features are more useful [16], but more features are only
useful if they really provide information and not noise. Since fea-
ture selection has helped somewhat, many features are probably
orthogonal to each other or cause unnecessary noise. Ensemble
models often perform well because they use the information of
several models and thus models help each other with their
weaknesses.

The second model examined was the PLSR. Actually, it is only
used for regression problems but in this work it was used for clas-
sification. This was possible through a threshold that served to sep-
arate the class membership. All results greater than the threshold
were classified as bioactive and all results less than or equal to
the threshold were classified as controls. We decided to test PLSR
because it is the most frequently used algorithm in the different
omics diciplines [35,36]. Also, good results were obtained with
PCA for HCS [58], which is very similar to PLSR. For hyperparame-
ter optimisation, two different approaches were evaluated. One
was a search for the principal components that should give the lar-
gest coefficient of determination and the other a self-written grid
search CV, looking for the highest optimal accuracy, precession or
specificity. The best result was obtained with the model that had
the largest coefficient of determination. One possibility for the
result is that the model was forced to have the smallest average
error. Which means that it is generally forced to make the smallest
deviations in the predictions. This allows the model to better gen-
eralise, which is an important attribute in ML.

The last model examined was an ANN, which consisted only of
dense layers. The best model found consisted of 6 layers with



Fig. 8. Comparison of the different model approaches in their achieved scores for (A) Accuracy, (B) Precision, (C) Recall, (D) Specificity and (E) Optimised Accuracy.
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5,5,5,7,8 and 1 units. The ANN had the best performance of the
found models with the highest optimised accuracy, which was
96 %. This is probably caused by the very flexible architecture of
the ANN, which can be adapted very well to different problems.
ANNs can learn patterns very well, but one has to be careful.
Because they are very good at learning patterns, they can quickly
tend to overfit [59]. They may learn very specific patterns that
are disadvantageous for generalising. As a result, they may not pre-
dict new, unknown data as well as the others. With ANNs, one
must therefore pay close attention to the balancing act between
very good predictions on the training data and the ability to gener-
alise and predict new data well. On the other hand, learning speci-
fic patterns can also be beneficial, as with samples that don’t vary
much or don’t show batch effects. This behaviour can be helpful
during routine investigations.

Since the classifier is to be used to search for new active com-
pounds, a ND was tested to be connected upstream of the classifier.
It should enable the model to deal with new and unknown pat-
terns, similar approaches existed in other HCS applications
[24,28–30]. Patterns should be filtered out that are very different
from the known patterns of bioactive substances and controls.
Since such patterns differ from the controls, they are also bioactive.
Two detectors were trained, one with the active substances and the
other with the controls. If a sample was detected as an outlier with
both, it was first counted as an outlier and was classified as
unknown bioactivity. Two NDs were tested that were in the
scikit-learn library, the OneClassSVM and the LOF. For HCS data,
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the best ND was the LOF. Here, most samples could be kept and,
most importantly, all controls could be maintained. The most
important thing is that the controls are maintained. Since all out-
liers are classified as bioactive. So, it is not tragic for bioactive sub-
stances to be detected via the ND instead by the classifier. The LOF
is a general algorithm that uses a density function to determine the
outliers. Samples that have a density lower than a certain number
of neighbours are counted as outliers. It is a function that compares
how much a new sample differs from its neighbours. It could be
counted as one of the Nearest Neighbour algorithms and they work
well for similar problems [27,28].

For the final testing of the models, two data sets were used with
completely new compounds which are unknown to the models.
One of the data sets contained drugs that affect the cell cycle
(mebendazole, nicolsamide and cladribine) and the other con-
tained staurosporines in different concentrations (10 nM and
30 nM). Two approaches were tested, one with and one without
ND. Without the ND, the stacking model performed best in the pre-
dictions. The PLSR predominantly predicted all samples for the
cycle data as controls. The staurosporine data predicts the PLSR
well. The ANN was very poor and made predictions almost ran-
domly. The ANN’s poor discrimination is because it has learned
patterns that are too specific. For biological data, batch problems
are common [60]. Results of experiments that are conducted on
different days with other batches of reagents, cells and multi-
well plates can slightly differ from previous experiments. The
ANN has learned the patterns of the training data too specifically



Fig. 9. Comparison of the predictions of the different models, without Novelty Detection, for (A) Cell Cycle Data and (B) Staurosporine Data.

Fig. 10. Comparison of the predictions of the different models, with Novelty Detection, for (A) Cell Cycle Data and (B) Staurosporine Data.

E. Kupczyk, K. Schorpp, K. Hadian et al. Computational and Structural Biotechnology Journal 20 (2022) 5453–5465

5463



E. Kupczyk, K. Schorpp, K. Hadian et al. Computational and Structural Biotechnology Journal 20 (2022) 5453–5465
and can no longer handle the deviations due to the batch effect.
This is evident in the controls, which cannot be predicted correctly.
The new bioactive substances are different from the previously
learned ones, which is why it cannot handle them properly either.
The ANN is not able to generalise well. With the PLSR, you can see
that it is also worse at dealing with unknown patterns. The cell
cycle data is different from the previous learned patterns and for
PLSR it is probably closer to the controls. Unlike the staurosporines,
these are closer to the bioactive compounds for the PLSR and that is
why they are predicted well. The stacking model shows very good
results. It shows that it can handle unknown patterns and gener-
alise well. This is probably due to the used base models, as the
SVM [22,26,29,52–55] or KNN [27,52] were often used in other
works for similar problems. With the ND upstream, the perfor-
mance of all models improved. Again, the stacking model was
the best. The performance of the PLSR has greatly improved thanks
to the upstream ND and comes within the range of the stacking
model. The ANN is also the worst model here, as it still predicts
the control groups like a random predictor. The test with the ND
shows that the ND filters out patterns that are unknown to the
models well. The reasons why the ANN is also bad here are the
same as above. Since the ND only filters out bioactive substances,
the controls still enter the model for prediction. As explained
above, the ANN has learned the patterns of the controls too specif-
ically and can no longer generalise to new controls. But the tests
with the ND also show how well it supports the models and makes
them more robust. The predictions of all models became better
with the ND.

The results of the models also provide an insight into the struc-
ture of the data. Usually, non-linear models such as SVM
[22,24,26,29,52–55] or Random Forest [25] are used for HCS data.
Here too, non-linear models have been found that perform well,
such as Random Forest. Two other models that allow to approxi-
mate non-linear relationships are MLP and the ANNs, which also
performed well. This suggests non-linear relationships in the data.
In this work, however, there were also linear models, such as PLSR,
ridge regression or logistic regression, that performed good. It gets
interesting when we look at the best model, the stacking model. In
this two basic models are non-linear (SVM and KNN) and the other
linear (SGDC). These mainly non-linear models produced an output
that served as input for the final model (Logistic Regression), which
is a linear model. This shows that HCS data are very complex and
have an ambivalent behaviour, because they can be solved well
with linear models and non-linear ones.

It should be noted that the results are only very certain for the
data used here. The evaluation and verification of the stability of
the stacking model requires a lot of additional data. While the hit
detector is more robust thanks to the ND, one should consider
the hit detector as a complementary analysis method for the
moment.

When the results are summarised again, it is clear that the
Stacking Model is best suited for screening. It has the best ability
to generalise and can also deal well with unfamiliar patterns. In
addition, the ND was found to serve very well and to support
and improve the models in their predictions. The stacking model
in combination with the ND provides a solid pipeline to analyse
HCS data whether they are biologically active or not. The current
results show that ANNs with dense layers are not well suited for
a screening/untargeted approach. Perhaps other architectures
would be better suited. However, the good results of the ANNs in
modelling suggest a good application in a targeted approach. In
which the samples are known, do not vary greatly and do not have
batch effects.

For future work, it would be worth checking how the stacking
model performs for other HCS data that have different features.
Of course, one would have to adapt the hyperparameters of the
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classifiers to the other data. The stacking model might be a way
to improve the existing ML models that only use the SVM for mor-
phology or MoA prediction. Since the performance of the basic
models, where an SVM was also present, has improved in the
stacking approach. In addition, a deeper investigation of the HCS
data would be interesting, as they can be predicted well with linear
and non-linear models. As a better understanding of the data leads
to better models, and therefore it can improve the development of
drugs.
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