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Mathematical models of epidemics are important tools for predicting epi-
demic dynamics and evaluating interventions. Yet, because early models
are built on limited information, it is unclear how long they will accurately
capture epidemic dynamics. Using a stochastic SEIR model of COVID-19
fitted to reported deaths, we estimated transmission parameters at different
time points during the first wave of the epidemic (March-June, 2020) in
Santa Clara County, California. Although our estimated basic reproduction
number (Rp) remained stable from early April to late June (with an overall
median of 3.76), our estimated effective reproduction number (Rg) varied
from 0.18 to 1.02 in April before stabilizing at 0.64 on 27 May. Between
22 April and 27 May, our model accurately predicted dynamics through
June; however, the model did not predict rising summer cases after shelter-
in-place orders were relaxed in June, which, in early July, was reflected in
cases but not yet in deaths. While models are critical for informing interven-
tion policy early in an epidemic, their performance will be limited as epidemic
dynamics evolve. This paper is one of the first to evaluate the accuracy of an
early epidemiological compartment model over time to understand the value
and limitations of models during unfolding epidemics.

1. Introduction

COVID-19, caused by the emerging virus SARS-CoV-2, rapidly expanded
across the globe, overwhelmed healthcare systems, and has led to just under
4.0 million deaths with the pandemic still underway as of July 2021 [1]. It is
just the latest and most widespread in a series of (re)emerging and expanding
infectious disease outbreaks, including SARS-CoV in 2003, HIN1 influenza
virus in 2009, Ebola virus in 2014 and Zika virus in 2016. Before effective
vaccines and specific drug therapies are available at the start of emerging
epidemics, non-pharmaceutical interventions such as social distancing, mask-
wearing, diagnostic and serological testing, contact tracing, and quarantine
are the best available tools to slow epidemics and to mitigate their health toll.
Early in the COVID-19 epidemic, when epidemiological information was
limited, governments and other decision-makers used models (e.g. [2-5]) to pre-
dict the spread of COVID-19 under various non-pharmaceutical interventions
and to show the benefits of social distancing for reducing and delaying the
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epidemic peak (i.e. flattening the curve) in an effort to pre-
vent medical systems from becoming overwhelmed and to
buy time for more effective treatments, testing capacity and
potential vaccines to become available.

Early models can and should inform policy decisions in an
epidemic as they are our primary tool for synthesizing early
knowledge of transmission in order to define a plausible
range of epidemic outcomes [6]. Such models also quantify
trade-offs among proposed intervention scenarios to identify
which responses will most efficiently slow exponential
growth. During the 2014 Ebola epidemic, for example, early
models promoted the use of contact tracing and sanitary burials
to reduce transmission [7]. At the beginning of the COVID-19
pandemic, models identified the critical importance of social
distancing to slow viral spread [2,8,9]. Early models also serve
to illuminate difficult-to-observe processes and to test the impli-
cations of new information; for example, in February 2020,
Hellwell et al. [3] showed that because of SARS-CoV-2 presymp-
tomatic and asymptomatic transmission, contact tracing would
be insufficient to curb the spread of the disease and strong social
distancing would also be necessary.

Early models must be built rapidly and calibrated to data
that are incomplete and of unknown quality, therefore it can
be difficult to appropriately quantify uncertainty and to assess
model accuracy in order to compare policy decisions. With
ample time, alternative transmission scenarios can be thought-
fully compared and uncertainty well characterized [10];
however, the need for rapid decisions in the face of exponential
epidemic growth makes such efforts infeasible for most early
models. Though such real-time model assessment is rare, post-
epidemic retrospective analyses of SARS [11-13], HINT1 influ-
enza [14-21], Ebola [22-28] and Zika [29-33] have illustrated
that much can be learned from emerging epidemics about the
fundamental principles of disease transmission and epidemic
modelling (e.g. the limits and utility of model complexity
[15,23,32], the effects of population and geographic heterogen-
eity on disease dynamics [20,21,27], and the importance of
stochastic models to capture uncertainty [13,25]). However,
few of these analyses focus on models developed early in the epi-
demics. The accuracy and appropriate use of early models is
rarely assessed, first because of a lack of emphasis and resources
while the epidemic is underway, and later because early models
tend to give way to more sophisticated and better-fitting models
as more information and data are acquired (e.g. moving from
using single transmission rate during the early COVID-19 lock-
downs [34] to continuous-time human movement data [35]).
Thus, we know less about the value and limitations of models
that are built and applied early in an epidemic when epidemio-
logical information is severely limited. Yet, this early model
assessment remains vitally important because such models
often inform policy and public opinion in real time, even if
they are later revised. To understand and anticipate problems
for future emerging infectious diseases, and to produce
models that will be taken up by policymakers, it is critical to
reflect upon the value and limitations of early models and to
assess their accuracy over time.

The need for rapid model development with incomplete
and uncertain data forces modellers to make a series of
decisions and assumptions, many of which must be made
with relatively little empirical evidence (e.g. about the propor-
tion of infections that are asymptomatic and the transmission
potential of asymptomatic infections). All early models of
COVID-19 dynamics, for example, were constrained by

limited: (1) observations of unmitigated epidemic dynamics [ 2 |

from which to inform key epidemiological parameters like
Ro; (2) information about the impact of preliminary interven-
tions and (3) availability of testing, which made case data an
unreliable indicator of epidemic magnitude and dynamics.
Further, because of regional differences in socio-economic con-
ditions and demography paired with difficult-to-observe case
importations, disentangling local epidemic dynamics from
policy interventions (and estimating the effectiveness of those
interventions) proved difficult [36]. Data limitations also
generate trade-offs between realistic complexity, parameter
identifiability, computational feasibility and accuracy (see
[37]), which require models to be designed around a targeted
purpose rather than comprehensively describing all aspects
of disease dynamics. Early in the COVID-19 pandemic, the
need for rapid model deployment resulted in some researchers
adopting a minimally complex statistical approach with the
aim of producing near-term (e.g. one to five month) epidemic
forecasts (e.g. [38,39]). However, because statistical models do
not capture the underlying mechanistic transmission process,
early COVID-19 statistical models were poorly suited to predict
the effects of non-pharmaceutical interventions. On the oppo-
site end of the spectrum, mechanistic, agent-based models
sought to more precisely estimate the potential effects of differ-
ent social distancing policies by incorporating population
structures and individual movement (e.g. [2]). Such models
were, however, computationally intensive, contained a large
number of parameters, and did not always have publicly
available code from the outset, making them infeasible to
rapidly fit and simulate in many locations and relatively inac-
cessible to outside research groups and decision makers.
Similar types of uncertainty and the need for rapid model
development also led to the mixed success of early models of
SARS [13], HIN1 pandemic influenza [14-17], Ebola [22-28]
and Zika [32].

In addition to limited information, unreliable data and
model trade-offs, a hurdle in the use of models early in the
COVID-19 epidemic was the rapidity and heterogeneity of
policy changes (especially in locations where interventions
varied at a local level, for example in the USA). These changes,
along with temporal variation in human behaviour (which
often changed in advance of government interventions [40])
and extrinsic factors (e.g. seasonality), quickly rendered
many models obsolete. Though many models were being con-
tinually updated (using, for example, more reliable case data
due to expanded testing and cell phone-based mobility
data), delays between changes in epidemic drivers and
model improvements, their uptake, and public health
decisions led to many models being used after the epidemio-
logical environment was no longer reflected in the model’s
underlying assumptions. Furthermore, in the USA, for
example, the fragmented COVID-19 response forced many
state and local governments to rely upon a few highly publi-
cized early models, which led to an outsized influence of
some early non-peer-reviewed models (e.g. [38]).

Here, we quantitatively evaluate the successes and failures
of an early epidemic model by retrospectively analysing an
epidemiological compartment model that we developed in
March 2020 for COVID-19 dynamics in Santa Clara County,
California during the first wave of the US pandemic. While
later development improved upon this model (see figure 1;
[42]), here we use the early model as a snapshot in time,
analysing it as an artefact rather than improving upon it
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Figure 1. Timeline of the early COVID-19 epidemic period in Santa Clara County, California between February and May 2020. Reported COVID-19 death data (top)
were used to estimate model parameters. The proportion of devices sheltering in place (bottom) [41] helps to illustrate how behaviour changed along the timeline
of public health interventions and epidemic dynamics; these data were not used in our early model. (Online version in colour.)

[43]. That is, we intentionally seek to evaluate our model in
light of the limited information and rapid decisions used to
build it as well as the sparse data used to fit it. We critically
gauge the strengths and limitations of this model by evaluat-
ing decisions that benefited and hindered model accuracy
and potential model mis-specifications, and by quantifying
the accuracy of predictions over time to understand why
inaccuracy increased.

We began development on the model on 13 March 2020,
4 days after the first reported death in Santa Clara County
and four days before the introduction of the San Francisco
Bay Area shelter-in-place orders that applied to this county,
which were initially proposed to last three weeks (figure 1).
Our first aim was to deploy (within approximately two
weeks) a public-facing user-friendly graphical model (http://
covid-measures.stanford.edu/) that would allow users to
adjust intervention parameters to help the public and local
decision-makers understand the potential for resurgence if
restrictions were lifted or relaxed too early and to evaluate
viable exit strategies. Like other early COVID-19 epidemic
models that were built for a specific purpose, we designed
the model with the following considerations in mind.
First, because we sought to compare the effects of various
non-pharmaceutical interventions, we chose to build a mecha-
nistic epidemiological compartment (susceptible-exposed—
infectious-recovered: SEIR) model. Second, given early work

showing the potential for asymptomatic transmission [44]
and our interest in symptomatic isolation as a potential inter-
vention strategy, we broke up the infected classes into
multiple compartments (asymptomatic, pre-symptomatic,
mildly symptomatic and severely symptomatic). Because we
were also interested in interventions triggered by hospital
capacity thresholds, we included model compartments (state
variables) for hospitalizations. Third, as we were interested
in the implications of both initial, short-term interventions
and longer-term exit strategies, we used a time-varying
transmission parameter, 3, to encapsulate the impact of non-
pharmaceutical interventions on epidemic dynamics and con-
trol. Fourth, as case data were significantly biased at the time
due to limits in testing capacity and access, we fit the model
to local epidemic dynamics using daily reported COVID-19
deaths in Santa Clara County (which we assumed were more
reliably reported than cases). We completed our first analyses
on 13 April and posted a preprint on 30 April 2020 (figure 1).
In the light of the narrow time window and these consider-
ations, like many other early models we made a series of
decisions (electronic supplementary material, table S1), some
of which we deemed to be sub-optimal and improved in our
later model, which we began developing on 1 May 2020 [42].

After developing the public-facing website, we originally
used this model to estimate key epidemiological metrics
and to evaluate the effectiveness of long-term intervention
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Figure 2. Epidemiological model structure. English letters in boxes designate state variables (model compartments), while the Greek letters 3, ¥, A and p refer to
transition rates between states; the Greek letters ¢, 1 and & designate transition probabilities between states. We assume that the per capita transmission rate (5;)
is directly proportional to the effectiveness of social distancing (o), such that 8, =, - o, where S, is the transmission rate prior to any social distancing (i.e.
o =1). The transition rate between the susceptible and exposed states is given by the force of infection (53, - l.s/N), where /¢ is the effective number infectious,
which is equal to the weighted sum of infectious classes (in which the weights are the relative infectiousness of the infected classes: ler = loicq + I,*K, + I +
lix). See electronic supplementary material, tables S3 and S4 for details on the relative infectiousness (k) parameters.

strategies, specifically focusing on Santa Clara County,
California as a case study. We estimated the transmission rate
under pre-intervention and shelter-in-place conditions, calcu-
lated reproduction numbers before and during interventions,
explored the impact of long-term intervention strategies,
and investigated counterfactuals to understand the impact
of early intervention decisions. We now seek to answer the
following retrospective questions: what did the model
suggest about epidemic metrics, dynamics, and the impact
of non-pharmaceutical interventions, and how did these
estimates change over time? How accurately did the model pre-
dict epidemic dynamics going forward? For how long was the
model accurate enough to be useful, and what limited its
longer-term accuracy?

2. Methods

(@) Model structure

We developed a stochastic compartmental model using an SEIR
framework. We divided the population into states with respect
to SARS-CoV-2 infection: susceptible (S); exposed but not yet
infectious (E); infectious and pre-symptomatic (Ip), asymptomatic
(I4), mildly symptomatic (Ipy), or severely symptomatic (Is); hospi-
talized cases that will recover (Hg) or die (Hp); recovered and
immune (R); and dead (D). We assumed an underlying, unob-
served process model of SARS-CoV-2 transmission depicted in
figure 2. We used a Euler approximation of the continuous time
process with a time step of 4h. We assumed that transitions
between states were simulated as binomial or multinomial pro-
cesses, which treat periods within each state as being
geometrically distributed. Given that each period is geometrically
distributed with a different rate, transition times through multiple
states follow no named distribution but are unimodal (e.g. disease
onset-to-death: electronic supplementary material, figure S1). It is

also possible to divide each state (e.g. infectious classes) into mul-
tiple sub-stages to produce Erlang-distributed periods within
stages [45,46] (a change that we implemented in later iterations
of our model [42]); however, here we relied on single compart-
ments for each state for simplicity (electronic supplementary
material, table S1). The equations (electronic supplementary
material, Eq. S1-Eq. S8) describe in detail the stochastic transitions
between states. We assumed that the observed deaths are a
Poisson random variable with mean of total new deaths
accumulated over the observation period (1 day for this analysis).

The transmission parameter, 8;, describes the average per capita
contact rate, at time ¢, between susceptible and infectious people
multiplied by the per-contact transmission probability. We
defined B; as being directly proportional to the impact of social
distancing at time ¢, which is given by o;, such that g;=py- oy,
where g, is the transmission rate prior to any social distancing
(with oy =1). The degree to which a social distancing intervention
reduces the overall population contact rate is 1 — ;. While any
sequence of time-varying transmission rates can be implemented
in this framework, given the limited data to inform estimates of
different transmission rates, we model j; in three distinct segments
of time that are characterized by different social contact structures:
(1) baseline prior to any interventions (8= f-1), assumed to
occur at least until 29 February (2) the San Francisco Bay Area
‘work-from-home’ initiative, which we model as beginning
some time between 1 March and 9 March (Bwri =S owrn);
and (3) the San Francisco Bay Area shelter-in-place, which
began on 17 March (Bsip = fy - osp). We included owry and the
work-from-home start date as two of the parameters we sampled
across a plausible parameter range (see electronic supplementary
material, table S4) but allowed ogp to be estimated by the model
(see ‘Fitting the Model’ below). We did not fit owgy due to con-
cerns about identifiability as owgry modifies the transmission
rate for only a brief period of time prior to the first observed
death in Santa Clara County (figure 1).

By including asymptomatic and pre-symptomatic individuals,
we were able to track ‘silent spreaders’ of the disease, both of
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which have been shown to contribute to COVID-19 transmission
[47] (electronic supplementary material, table S1). Tracking
deaths allowed us to compare our simulations to a data source
that was likely more reliable than confirmed cases, particularly
in the absence of widespread rapid testing and case detection.
Mildly symptomatic cases were defined as those people that
show symptoms but do not require hospitalization, while we
assumed that all severely symptomatic cases would eventually
require hospitalization (figure 2). We also assumed that no
onward transmission occurred from hospitalized individuals. We
further assumed that all individuals not exposed to the virus
begin as susceptible to infection, and that all model compartments
other than susceptible and exposed began with zero individuals.

(b) Fitting the model

We fit 8y, which describes the initial transmission rate in the absence
of any interventions; ogp, which describes the proportional
reduction in fy under shelter-in-place; and E,, with which we
drew the initial number of exposed individuals as Poisson(Ey) + 1.
Fitting more than these parameters with only a few weeks of daily
deaths (our first model iteration was hosted online on 22 March
2020: figure 1), was unrealistic because parameters were not identifi-
able. To estimate these three parameters, we assumed point
estimates for parameters for which there was at least some conver-
gence in estimates in the literature (electronic supplementary
material, table S3); most notably these parameters include the aver-
age time individuals spend in infectious states. We use the inverse of
durations as average exit rates, but note the possibility that taking
the inverse of durations from individual-based studies (e.g. incu-
bation period [49] and time from symptom onset to death [59,62])
might not scale appropriately for use as rates in a population-level
model. For the remaining parameters, we drew 200 Sobol
sequences, a more efficient method than Latin hypercube for
sampling input parameters [64], across a range of plausible values
(electronic supplementary material, table S4) to form 200 plausible
parameter sets. While sampling over all non-fitted parameters
is possible, we decided against this strategy in an effort to focus
computation time on the areas of greatest uncertainty.

We note that we use A to refer to the exponential rates at
which individuals leave infectious classes and not force of infec-
tion as is common. The x parameters (electronic supplementary
material, table S3) scale fB; for individual infectious classes,
where x=1 indicates no scaling. For simplicity and in the
absence of better data, we assumed that only asymptomatic
transmission had a scaling factor different from one (specifically,
ks <1; see electronic supplementary material, table S4). For the
rates shown in electronic supplementary material, tables S3
and S4, the unimodal distribution for the time from first symp-
toms to death has a mean of approximately 23.5 days, a
median of 20 days, a mode greater than zero and a moderate
right-skew (electronic supplementary material, figure S1). This
median is between the mean value of 17.8 found by Verity
et al. [59,72] and the range of 3544 days observed in Bi et al. [73].

Using the pomp (statistical inference for partially observed
Markov processes) package [74] (function mif2) in the R program-
ming language [75], we fit By, osip and Ej to daily deaths for each of
the 200 parameter sets using six independent replicate particle fil-
tering runs. For each independent replicate, we perturbed the
starting values for fitted parameters among runs using random
samples from a lognormal distribution for g, (meanlog =1og(0.7),
sdlog =0.17) and ogjp (meanlog = log(0.2), sdlog =0.2) and a uni-
form distribution between 0 and 6 for Ey. Each individual mif2
replicate run used 300 iterations, 1000 particles, a cooling fraction
of 0.50, and a random-walk perturbation for all parameters of
0.02 (using the function ivp for Ey to designate it as an initial
value parameter). The optimization was constrained to positive
values for Ey and 3, and between zero and one for ogp. After the

filtering steps were completed, for each mif2 replicate run, log-
likelihoods were calculated using the function pfilter 10 times
with 10000 particles each to produce both mean and standard
errors for log likelihoods for each parameter set.

We computed weekly fits from 1 April through 24 June by
withholding data reported after the given fit date. We used
COVID-19 death data from The New York Times, based on reports
from state and local health agencies (available at https://github.
com/nytimes/covid-19-data, figure 3b). Daily deaths were calcu-
lated from differences in cumulative death reports. Using these
data, which are available for all counties in the USA, our model
can be used to fit fy, ogp and Ey in any county.

We calculated Ry as estimated S, times the duration and
infectiousness of an average infection (as defined by our model
structure) for each of the 1200 parameter sets (using all six esti-
mates from each of the mif2 replicate runs). For each of the
1200 parameter sets, we calculated the effective reproduction
number Rg for each weekly fit by modifying the calculation
for Ry to scale the estimated Sy by both ogp and the estimated
median proportion of the population remaining susceptible
across 200 simulated epidemics for the given parameter set.

For each fitted model parameter (5, osip and Ey), uncertainty
comes from two sources: variation in fitted values among replicate
mif?2 iterations (e.g. uncertainty in the value of fitted parameter
conditional on a given parameter set—a single given conceivable
state of the world), and variation in the estimated parameter value
across the 200 parameter sets (uncertainty in the value of the fitted
parameter given uncertainty in the state of the world). We com-
puted likelihood profiles for the three fit parameters over 30
uniformly spaced points (hereafter, fixed points): from 0.2 to 1.2
for By, 0.01 to 0.6 for ogp and 1 to 30 for E,. For each parameter
and each fixed point, we refit the model for each of 200 unique
Sobol-sequenced parameter combinations with the same mif2 set-
tings used in other model fitting steps (except with three mif2
replicates rather than six due to computational cost). We identified
the maximum log-likelihood for each fixed point among all 600
fits (200 parameter sets, each fit three times with random starting
values). We computed likelihood profiles for three fit dates only
(1 April, 13 May and 24 June 2020) because of computational
costs (18 000 model fits per profile).

() Simulating epidemics

While a set of parameters can produce many simulations, only
some of these trajectories are conceivable given the observed
data. To simulate using only trajectories that are plausible con-
ditional on the observed data, we drew trajectories from the
smoothing distribution using the filter.traj and pf functions in
pomp with 5000 particles for each particle filter. These filtering
trajectories can be viewed as weighted samples from the distri-
bution of unobserved state processes given the observed data,
where the weights are determined by the likelihoods from the
particle filtering [74]. All simulations were run forward in time
from filtering trajectories, which constrains forecasts to continue
from a present state matched to the observed epidemic dynamics
in order to avoid overly large forecast uncertainty. Unless other-
wise noted, all simulations used parameter sets within the top
two log likelihood units for each fit date. For all simulated trajec-
tories, we used 25 filtered trajectories and 25 forward simulations
from each filtered trajectory for a total of 625 total epidemic
forecasts for each of the parameter sets within the top two log-
likelihood units for each fit date (the number of which varied
by fit date). Unless noted otherwise, the uncertainty bands that
we display for all simulations prior to the fit date contain the cen-
tral 95% range of outcomes across parameter variation among
the fits within the top two log likelihood units and variation
among the 25 filtered trajectories. The uncertainty bands after
the fit date (forecasts) contain the same parameter variation
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and stochastic variation and include additional variation from
25 forward simulations for each of the 25 filtered trajectories.
The uncertainty bands on future simulations of deaths also con-
tain additional variation from the Poisson observation process.
These are simultaneously wide because of large numbers of sto-
chastic simulations, but narrow because we ignored uncertainty
in the parameters listed in electronic supplementary material,
table S3 as well as uncertainty in the estimated parameters for
each fit, and thus should be interpreted with caution.

(i) Model assessment

To assess model performance, we compared model-forecasted
deaths—simulated for 14 days forward in time from filtering tra-
jectories assuming that the existing levels of social distancing
were maintained—to observed deaths. Specifically, we quantified
model forecast performance for deaths using the ‘quadratic
score’. The quadratic score is a commonly used strictly proper
scoring rule (a forecasting evaluation metric with a unique maxi-
mum that is reached by increasing both the accuracy and the
concentration of the predictive distribution around the true
value) for a predictive model with a discrete (e.g. Poisson)
error distribution [76-79]. We calculated the quadratic score for
each simulation over the 14 days following the fit date as

1 N 00
5 D 2(Pr(wil) + > _(Pr(klix)?],
i=1 k=0

where i indexes the days since the fit date (from 1 to N =14), y; is
the observed new daily reported deaths, f; is the daily prediction
from the simulation, and Pr(y;|f;) is the probability mass on y;
given the prediction f;. The sum >, (Pr(k]| &;))* runs over all
positive integers (k) to measure the dispersion of probability
mass given the prediction fi;; for a Poisson distribution, we calcu-
late this sum analytically based on the following closed form
expression for any x >0: Z;":O(Pr(k\x)z) = e ZIy(x), where I, is
the Bessel function. For the model predictions f;, we used the
underlying new daily deaths from the simulation’s trajectory
(Dhpew), rather than the deaths arising from the Poisson obser-
vation process, given that the model-predicted distribution
of deaths for a given simulation is best characterized by
Poisson(D,,e,). For each fit date, we show the distribution of

quadratic scores across simulations from fitted parameter sets
within the top two log-likelihood units (one score per simula-
tion and 625 simulations—25 forecasts for each of 25 filtered
trajectories—per fitted parameter set).

We refrained from calculating a quadratic score comparing
the model’s predicted cases and the reported cases given that
we did not model incomplete case detection. Instead, we
simply relied on a visual comparison between the trajectory (cur-
vature) of the predicted cases and reported cases to qualitatively
assess the model’s predictive accuracy. Specifically, we compared
predicted new symptomatic infections to the cases reported one
week later in order to account for a week of reporting lag.

(i) Future interventions

Our modelling framework allows for different types, intensities
and durations of interventions, and thereby illustrates how
these interventions impact dynamics and the resulting number
of COVID-19 cases and fatalities through time. Here, we use
fits generated from deaths reported prior to 22 April to consider
three possible interventions that can be implemented at different
times during the simulation:

1. Social distancing for a set duration applied as a scaling of the
transmission rate for all individuals;

2. Isolation of symptomatic individuals applied as a scaling of the
transmission rate for only symptomatic individuals Is and
I\, we assume isolation paired with partially relaxed social
distancing;

3. Adaptive triggering applied as a tightening or relaxing of social
distancing, triggered by hospitalizations crossing a defined
threshold.

Other scenarios that can be modelled as a time-varying reduction in
Bo (such as contact tracing and quarantine, which we do not include
here) can be explored using the open-source code (available at
https:// github.com/marissachilds/COVID19_early_model) and
saved model fit data files (available on Dryad: https://doi.org/
10.5061/dryad.cvdncijt4t).

To visualize the dynamics of a single intervention scenario,
we simulated 25 epidemics from each of 25 filtered trajectories
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(for a total of 625 total simulations) from the parameter set with
the best likelihood using data up to 22 April. To quantify the
effectiveness of each intervention scenario, we estimated cumu-
lative deaths and the number of new symptomatic infections
over time from the simulated epidemics for parameters sets
within 2 log-likelihood units of the best for each intervention
(e.g. the effectiveness of infected isolation).

(iii) Counterfactuals

In addition to making forward projections under different interven-
tion scenarios, models can help compare past actions taken (e.g.
public health interventions) to alternative hypothetical scenarios
(e.g. alternative types and timings of non-pharmaceutical interven-
tions). Such comparisons can help to highlight which actions were
the most helpful and which could have been improved. Early in an
epidemic, a counterfactual analysis is particularly useful to assist
local policymakers and the public contextualize the impact of
early decisions relative to other possible decisions that could have
been made. To assess the impact that existing county orders and
resources had on the epidemic trajectory, we limited filtering trajec-
tories to the date in which the counterfactual scenarios diverged
(i.e. 17 March when the county shelter-in-place order went into
effect), then simulated forward assuming: (1) shelter-in-place
orders went into effect on 17 March; (2) shelter-in-place orders
went into effect one week later on 24 March and (3) testing and
isolation of infected individuals began in addition to the shelter-
in-place orders on 17 March (in reality, testing remained limited
in Santa Clara County and throughout the USA through the end
of April [80]). In particular, we assumed that testing and isolation
of symptomatic individuals further reduced their infectious con-
tacts by 80% for severely symptomatic individuals and 70% for
mildly symptomatic individuals.

3. Results

(a) Model estimates and performance over time

We iteratively fit our model each week from 1 April through
24 June 2020 using data on daily reported COVID-19 deaths
up to that date. For each fitted model, we first estimated Rg
and R to investigate how our understanding of epidemic
dynamics changed with increasing data availability, then
compared the fit of simulations to out-of-sample data to
evaluate how model performance changed over time.

The model consistently estimated that Ry was between 3
and 4 (with a median among all fits of 3.76), though Rg
varied considerably, especially among the fits throughout
April (figure 3). For example, Rg jumped from a confident esti-
mate below one on the 15 April fit to an uncertain estimate
spanning one on the 22 April fit, after a week of higher
deaths was included. After the April volatile period, R esti-
mates stabilized near 0.69 by mid-late May with very narrow
confidence intervals (e.g. on 27 May the model estimated a
median Rg of 0.642 with a 95% CI of 0.571-0.708 among fits
within two units of the top log likelihood) and continued to
vary little throughout June. Even as cases increased in June
(figure 3), deaths remained low, leading to little change in R
estimates. The estimated impact of social distancing (ogip)
and transmission rate in the absence of non-pharmaceutical
interventions (f,) followed a similar pattern of increased confi-
dence over time, while the initially exposed class (Ey) was
estimated with large uncertainty in all fits (electronic sup-
plementary material, figures S2 top panel and S3). Profiles
over the fitted parameters reflect these patterns: the §, and
ogp profiles showed clear peaks, the E, profile was flat across

the range of values examined, and the ogp profile began
showing jaggedness for the last fit date (24 June 2020) when
the model was no longer suited for the changing epidemio-
logical situation (electronic supplementary material, figure S2
bottom panel). The difficulty in identifying the initial value
parameter E; is not surprising given that only early time
points are expected to inform the initial state in a stochastic
process [81]; in the case of this dataset, the time between the
initial conditions (the start of the epidemic) and the first obser-
vation reached up to 68 days for some parameter sets. We ran
additional diagnostics to understand the effect of the model’s
difficulty in identifying E, (electronic supplementary material,
figure S3) on the other focal parameters and quantities of inter-
est. We found that altered mif2 settings (an expanded range of
starting values and random walk standard deviations; see elec-
tronic supplementary material, figure S3): (1) permitted larger
Ey values which allowed for overly late, biologically implausi-
ble, start dates (electronic supplementary material, figure S3A);
(2) did not lead to much better convergence (electronic sup-
plementary material, figure S3B) and (3) despite allowing for
much larger estimates of Ey, did not meaningfully impact the
values of other fitted parameters (electronic supplementary
material, figure S3C).

Despite the uncertainty in initial conditions, strong con-
vergence of the 10 replicate log-likelihood estimates (as
measured by small standard errors among them, electronic
supplementary material, figure S4), the six replicate mif2
runs in terms of log-likelihood (electronic supplementary
material, figure S5), and good convergence in estimates for
ogip and fy (electronic supplementary material, figure S6)
indicates that much of this uncertainty is due to the inability
of our model to differentiate among alternative parameter
sets (parameter identifiability issues) (electronic supplemen-
tary material, figures S7-510) and not a misuse or failure of
the fitting algorithm or log-likelihood calculations.

Near-term forecasts and model performance also varied
substantially over time. Simulations based on the model fit to
deaths through 1 April show that while the bulk of simulations
predicted declining deaths (figure 4, corresponding to the
majority of the R density being below 1, see figure 3), some
simulations show rapidly increasing daily deaths over time
(corresponding to an Rg > 1). With the 22 April model fit,
uncertainty in whether Rg was above or below 1 (figure 3)
resulted in very large uncertainty in epidemic trajectories
(figure 4). Simulations from later model fits (e.g. those from
late May through early June) projected a decline in deaths
through the end of June; model fits in June consisten-
tly suggested epidemic fade-out by the end of the month,
assuming that the existing non-pharmaceutical interven-
tion regime had remained in place. Weekly model fits
(electronic supplementary material, figure S11) show that the
model tended to under-predict deaths early in the study
period (early to mid April) when a period of low daily
deaths led to low estimates of Rg (figure 3, gold shaded
violin plots). The model then equally under- and over-
predicted deaths in the middle of the study period (late April
to mid-May), when sufficient data had likely allowed for
more accurate estimates of the shelter-in-place effectiveness.
Finally, the model under-predicted deaths again at the end of
the study period (mid-May to late June) after shelter-in-place
orders were relaxed on 4 May (figure 1) and the single esti-
mated value for the effectiveness of social distancing was no
longer realistic.
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The model qualitatively matched the curvature in the cases
reported within the time window used to fit the model for fits
through 13 May (figure 5, blue points), although, as expected,
the model predicted far more new symptomatic infections than
reported cases (figure 5, difference in left and right vertical
axes). Estimates of daily cases through the date of fitting pro-
duced realistic estimates of the proportion of the population
remaining susceptible (electronic supplementary material,
figure S12). However, all future projections failed to capture
the trajectory of future, out-of-sample, reported cases; in most
instances the model predicted declining cases despite the
increase in cases observed starting in late May. By 3 June, the
model began to fail to capture the increasing cases even
within the observed time period for which death data were
used to fit the model (figure 5, blue points). This inaccuracy
in predictions was likely due to both the changing epidemiolo-
gical environment (figure 1) that made model assumptions
unrealistic (i.e. a constant effectiveness of social distancing,
ogip, and constant mortality rate) and the fact that changes in
epidemic dynamics will be apparent in cases prior to deaths.

(b) Scenario analysis
We originally designed and fitted our model (and accompany-
ing interactive website) in part to communicate to local
policymakers and the public the impact of the early social
distancing interventions in Santa Clara County and the impor-
tance of continuing strong non-pharmaceutical interventions
for saving lives and preventing an epidemic resurgence. To
achieve these goals, we used counterfactual analyses to com-
pare what transpired to alternative unrealized scenarios and
to forecast the epidemic under alternative future scenarios
with different non-pharmaceutical interventions. We revisit
these analysis here, in brief, to illustrate this use of our model.
We estimated that a second peak would have been inevi-
table in the absence of any non-pharmaceutical interventions
even if shelter-in-place had been maintained until 1 June
2020, as illustrated here for the single best-fitting parameter
set (figure 6, red lines). Across all parameter sets within 2
log-likelihood units of the MLE and stochastic epidemic
simulations, we estimated that in this scenario Santa Clara
County would have had a median of 6140 deaths (95% CI:
546-19494) and a peak number of daily new symptomatic
infections of 33193 (95% CI: 12536-58259) occurring on
5 July 2020 (95% CI: 26 June 2020-18 July 2020).
Maintaining shelter-in-place until 1 June, followed by less
stringent social distancing (50% of baseline contacts), com-
bined with strong symptomatic case isolation (removing an
additional 80% and 70% of contacts from severe and mild
symptomatic infections, respectively), would have allowed
for higher background contact rates (e.g. more businesses
reopening) and yet fewer deaths, as predicted by our single
best model fit (figure 6). For a range of possible combinations
of symptomatic case isolation efficiencies and background
social distancing (electronic supplementary material, figure
S13), we found an overlap in confidence intervals for deaths,
but higher median estimated deaths at the weakest levels of
social distancing in the general population. For reference,
the median number of estimated deaths under maintained
shelter-in-place is shown by the horizontal black line, with
80% and 95% Cl in dashed and dotted lines, respectively (elec-
tronic supplementary material, figure S13). These confidence
intervals span a wide range because our estimated Rg values

as of 22 April ranged from 0.76-1.34, which led to some [ 8 |

epidemics growing and some declining through time.

We proposed that, without widespread testing availability
before the end of shelter-in-place, a hypothetical alternative
strategy would have been adaptive triggering, in which
social distancing orders are intensified and relaxed as hospital-
izations exceed and fall below critical thresholds, respectively.
However, because the estimated Rg for Santa Clara County
was approximately one (and the confidence interval included
one on 22 April), a strategy that periodically reduces the
strength of social distancing may have led to an overall increase
in cases that would not be reversed when the shelter-in-place
was reinstated. We found that an adaptive triggering strategy
that alternates between social distancing that reduces trans-
mission to 20% and 80% of baseline could be effective in
keeping cases and deaths low (electronic supplementary
material, figure S14). This method would have kept the epi-
demic within the capacity of the healthcare system, but
resulted in prolonged cycles of epidemic resurgence and con-
trol, continuing until herd immunity was reached through
recovery of infected individuals or vaccination.

In simulations of counterfactual scenarios, we found that
an additional 57 (95% CI: 10-143) lives would have been lost
if shelter-in-place orders had been delayed even a week, and
26 (95% CI: 3-51) deaths could have been averted if testing
and isolation of symptomatic individuals was available from
the time of the shelter-in-in place (electronic supplementary
material, figure S15).

4. Discussion

During an unfolding pandemic, modelling is an essential
tool for tactical decision-making, strategic planning and com-
municating qualitative scenarios [17]. Many early COVID-19
models played a critical role in highlighting the importance of
social distancing to governments and to the public (e.g. [2-5]).
Models like our own helped communicate to the public that
‘flattening the curve’ and slowing transmission was not a
short-term endeavour, but also that early and sustained inter-
ventions had major benefits for local public health. Despite
their importance, it is often unclear how quickly and for what
reasons early models become obsolete given that retrospective
analyses are not usually conducted on the first iterations of
models. Here, we presented an example retrospective analysis
on our early COVID-19 model to ask the following questions:
(1) what did the model suggest about epidemic metrics,
dynamics, and the impact of non-pharmaceutical interventions,
and how did these estimates change over time? (2) How accu-
rately did the model predict epidemic dynamics going
forward? (3) For how long was the model accurate enough to
be useful, and what limited its longer-term accuracy?

(a) Epidemic dynamics over time (Q1)

Our model stably estimated R between April and June with
an overall median of 3.76 (figure 3), comparable to values esti-
mated elsewhere (e.g. [82]), and identified that R declined
substantially after the shelter-in-place order was enacted, to
near or below one. However, predicted future epidemic
dynamics were highly uncertain given that many model par-
ameters had large uncertainty (especially for the 1 April
model fit, see electronic supplementary material, figures S2
and S7), estimated credible intervals on Rz spanned one in
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Figure 4. Model accuracy at predicting deaths over time peaked in mid-May to early June, as 7R stabilized near 0.69. Top panels are simulations of the model fitted to
reported deaths (black points) up to dates spanning from 1 April (left) to 24 June (right) and compared to future reported deaths (red points for deaths within two
weeks, which were used for quadratic scoring, blue points for future deaths beyond two weeks). For future simulations (right of dashed line), medians of simulated
observed deaths for each parameter set are shown as lines and a 95% confidence interval over all simulations from all parameter sets are shown in grey ribbons. For past
filtered trajectories (left of dashed line), grey lines show medians of new deaths based on the underlying state process filtering trajectories (i.e. without a Poisson
observation process) for each parameter set and grey ribbons show 95% central intervals among all trajectories for all parameter sets. Gold violin plots (middle)
show the distribution of 7R values on each fit date; violins on a grey background correspond to the trajectories in the top panels (matched by date). Blue-to-red
coloured violin plots (bottom) illustrate the distribution of the quadratic score across simulations for the two weeks following each model fit. A lower quadratic
score reflects better model predictions. Red shading and an up arrow indicate a higher percentage of overestimates (above 50%) and blue shading and a down
arrow indicate a higher percentage of underestimates. All parameter sets within two log-likelihood units are included for each each fitting date, with 25 filtered tra-
jectories for each parameter set and 25 forward simulations for each filtering trajectory resulting in 625 simulations for each parameter set. (Online version in colour.)

model fits until early-mid-May (figure 3), and Rg estimates
were variable from week to week when data were sparse
(figure 3). For example, the inclusion of a week with higher
deaths (most of which occurred in long-term care facilities
[83], a distinction that is not captured in our model that
assumes a homogeneous population), led estimated Rg to
jump to span one on 22 April (figure 3). The volatility and
uncertainty in R estimates highlight the difficulty in inferring
epidemic metrics from deaths alone, which are a noisy and
lagged indicator of the underlying epidemic dynamics. Despite
these limitations, early models like ours play a critical role in
estimating coarse epidemiological metrics and dynamics (e.g.
Ro and R), which are fundamental for quantifying and com-
paring the efficacy of various intervention scenarios and
predicting the future course of the epidemic.

(b) Forecasting accuracy (Q2)

Our model initially gained accuracy in predicting epidemic
dynamics as additional data increased parameter identifiability
(April to mid-May 2020, figure 4, bottom panel) but then began
to decline in performance as the model assumptions became too
simplistic to capture the changing epidemiological context (late
May to June 2020). Out-of-sample predictions of deaths suffered
from high uncertainty during the early period (e.g. on 22 April)

while predictions during the end of the study window (e.g. on 3
June) became overly confident that the epidemic would die out.
Because of limited and variable testing capacity, we relied on a
visual comparison of the curvature in model predictions of new
symptomatic infections to observed daily cases (lagged one
week for a plausible reporting lag). Model fits through
13 May qualitatively match the curvature in the reported
cases within the time window used to fit the model, but by 3
June the model failed to capture even the increasing cases
within the observed time period (figure 5, blue points). Thus,
our model illustrates that trajectories of cases can be captured
in relatively simple mechanistic models based on only reported
deaths, but only for a limited period of time until epidemiologi-
cal conditions change.

() Limitations to long-term accuracy (Q3)

Predictions deteriorated as the epidemiological environment
(figure 1) began to deviate further from our model assump-
tions. We fit a simple step function for the impact of
non-pharmaceutical interventions with the aim of balancing
identifiability in the face of limited data and accuracy of
early predictions. However, this assumption restricted the
utility of our model once Santa Clara County began to
relax social distancing orders (figure 1). Additionally, the
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@ .

5000 L

1000 1 M
" T
<
<
3
1) 100 1
B
=]
E intervention
§ 101 = Jift
° / = maintain

| = test and isolate
1 i
)
Z 10000 A
8
3
E 1000 {
.2
E
5 100 1
=%
)
2 10 1
z
(]
=
Apr July Oct Jan Apr July

date

Figure 6. Maintaining non-pharmaceutical interventions after 1 June, when early shelter-in-place restrictions were relaxed, is critical for preventing a devastating
resurgence. Maintaining shelter-in-place at the oxp value predicted by the model (here o = 0.40) (gold) or test-and-isolate (o5 = 0.50 plus an additional 80%
effectiveness of test and isolate for severe infections and 70% for mild infections) (blue) strategies over long periods are necessary to prevent a major epidemic
resurgence (red) following the end of the initial shelter-in-place order on 1 June (dashed vertical line) in Santa Clara County. Grey lines prior to 22 April show 25
filtered trajectories; coloured lines after 22 April show 25 simulated trajectories from each of the 25 filtered trajectories for each of three intervention scenarios. Black
points in a show ohserved data. Cumulative deaths are plotted for visualization only; model is fit using raw death counts. For ease of visibility, only simulations from
the parameter set with the maximum likelihood from the 22 April fits are shown here. (Online version in colour.)

relationship between cases and deaths fundamentally chan- the US during the summer resurgence [84] and may reflect
ged between the first and second waves. COVID-19 deaths some combination of differences in personal protective beha-
remained relatively flat through July and August even viours and social distancing adherence across disease severity
while reported cases surged above 300 per day by the third risk groups, resulting in a larger share of cases occurring in

week in July [83]. This pattern occurred in many places in people less vulnerable to severe disease and death. Improved
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standards of care, safety protocols and the availability of per-
sonal protective equipment in long-term care facilities, as well
as increased testing to improve the detection of asymptomatic
or mildly symptomatic cases all likely played a role as well.

Generally, real-time models face opposing forces: additional
time means additional data to aid in parameter estimation;
however, as more time passes the epidemiological environ-
ment deviates further from that which the early model was
built to address, eventually reducing model accuracy [17,19].
Our case study and others (e.g. [85]) clearly demonstrate
these opposing forces. Rapidly changing US policy forced
many COVID-19 models to consider continuous-time esti-
mates of movement (e.g. [42,86-89]) instead of constant
intervention strengths. Yet, even these more detailed models
faced a changing epidemiological context, which included
the implementation of mask mandates and other behavioural
changes (e.g. [90,91]), seasonality modifying viral kinetics and
behavioural contact patterns, holidays altering mixing and
travel patterns, and emerging virus variants with new epide-
miological properties. In general, changes such as these
cause unexpected variation in disease dynamics across time
and space, limiting the accuracy of long-term forecasts
[13,17,19,20] and potentially reducing the accuracy of
our model, which relied partially on fixed parameters
derived from early outbreaks in other locations (e.g. China
[51,57,61,66], Italy [44] and Singapore [50]).

While simplifying assumptions are necessary in early and
real-time models, those assumptions must be frequently re-
evaluated to ensure continuing accuracy [11,19,22,24,27,32,33].
We made a series of simplifying assumptions for our early
model in an attempt to overcome a lack of data (electronic
supplementary material, table S1). While we relaxed some of
these in a follow-up model [42], several alternative technical
decisions could have improved our model from the beginning.
For example, we used single compartments for each state
rather than subdividing the infectious states into multiple com-
partments, resulting in geometrically distributed transition
periods instead of more realistic Erlang-distributed periods
[45,46]. Though it saved us only one parameter, we also assumed
a Poisson observation process rather than the more flexible nega-
tive binomial observation process which is often estimable
without too much difficulty (e.g. [25,72]). Finally, we did not
consider uncertainty in the estimated parameter values, for
example by using importance sampling [92].

Our case study highlights key lessons for the practice of
early, real-time modelling of emerging epidemics. In our
analysis, we focused on quantifying near-term forecast accu-
racy, a common strategy for evaluating model performance
[85,93], which could be used more frequently from the
outset to monitor changes in model performance over time.
We also advocate tracking variation in parameters and signs
of declining parameter identifiability. Together, systematically
applying these approaches will provide warning signs of
model inaccuracies sooner and help to ensure that hidden
mis-specifications are identified and corrected promptly.
Early models will inevitably be imperfect reflections of reality
constrained by limited data; using them responsibly requires
considering and communicating uncertainty, a benefit of sto-
chastic frameworks like that employed here [25]. Our model

struggled to fit a relatively complex structure with a short
time series of available data, particularly early in the epidemic,
which resulted in some implausible epidemic dynamics (for
example, unrealistically rapid depletion of susceptible indi-
viduals for some parameter sets from 1 April fits, electronic
supplementary material, figure S12). This further highlights
the difficulty of fitting complex models early in an epidemic
and reinforces the importance of thorough evaluation of
early predictions in order to avoid making biologically
implausible claims. Our model was also particularly limited
in its ability to estimate the initial number of infected individ-
uals (electronic supplementary material, figures S2 and S3). In
light of our and others’ struggles with estimating E, for
COVID-19 and other emerging infectious diseases [24,29,65],
surveillance programmes (including genomic surveillance
[94]) may assist with both disease control and modelling in
early stages of an epidemic.

Regularly updated, centralized databases for parameter
estimates (e.g. [95]) and relevant time series data on epide-
miology and mobility (e.g. [41,96,97]) are major assets for
modelling in emerging epidemics. These tools facilitate
more rapid development of early models and streamline
comparisons among models [16]. Changes to any model,
especially those addressing flaws in previous versions,
should be clearly communicated and shared with adequate
documentation to ensure that outdated versions of the
model are not used and do not guide others’ model develop-
ment [17]. However, especially in early stages of a pandemic,
a relatively common and simple mechanistic modelling fra-
mework with a long and robust history, as outlined here,
may be able to provide quicker and more reliable insight
into disease dynamics than developing new model structures
from scratch. For example, SIR-type models can do surpris-
ingly well predicting epidemic metrics even with limited
data [98-100]. Furthermore, simple transmission functions
can be an effective alternative to more complicated functional
forms, as illustrated here for the period of strong social dis-
tancing between approximately mid-March and mid-May
2020 (figure 1). Simple mechanistic models, unlike phenom-
enological models (e.g. statistical curve fits), also allow for
scenario analysis through alterations in inputs and par-
ameters, which allows for longer-term forecasts comparing
alternative interventions.

Given the similarity between our model and others
developed concurrently (e.g. [91]), we recommend developing
infrastructure to facilitate collaboration, rapid communica-
tion, and workflows to minimize duplication of effort,
facilitate troubleshooting, and aggregate and analyse projec-
tions across sets of models [101]. Further, we identified
human behavioural changes as a key source of inaccuracy in
our model predictions, suggesting the importance of collabor-
ation between disease modellers and behavioural scientists, as
well as guidelines for proper incorporation of mobility data
[88]. Greater engagement between policymakers and scientists,
particularly to clarify types and timings of interventions being
considered, the importance of key modelling decisions, and the
differences between early models considered in policymaking
(e.g. the strengths and weaknesses of both phenomenological
and mechanistic models) would ensure that a model is appro-
priately designed (e.g. distinguishing between symptomatic
and asymptomatic infections to capture the dynamical impli-
cations of testing and isolating only symptomatic infections)
and applied to relevant scenarios.



Despite all that has been learned about the impact of non-
pharmaceutical interventions such as social distancing and
mask wearing, and the approval of effective clinical therapies
and vaccines, the US experienced two additional major epi-
demic waves within a year that each dwarfed the one in the
early epidemic and control period we studied here. Given the
order-of-magnitude difference in deaths and over three
orders-of-magnitude difference in cases observed between
the spring 2020 and winter 2021 periods [83], it may be tempt-
ing to conclude that non-pharmaceutical interventions and
public health orders did not work, or were too economically
and socially costly to justify their use. However, this is a
dangerous conclusion. Mechanistic models like those we pre-
sent here make it clear that, however imperfect, these
interventions saved large numbers of lives: as of 1 July 2021,
Santa Clara County has seen 2201 total deaths [83], a terrible
toll, but one that is only 30% of our median prediction occur-
ring from an unmitigated epidemic. As of July 2021,
vaccination coverage in adults in Santa Clara County has
reached approximately 75%, which, combined with the antici-
pated eligibility for younger children [102], portends an end to
the epidemic locally in the coming months. Even during the
peak of the winter surge, the county saw just over 700 concur-
rent hospitalizations, far shy of our median estimated value of
12975 (95% CI: 760-28 927) that could have occurred without
control measures in place. Although the US COVID-19
response clearly could have been better at controlling trans-
mission, illness, and death, mechanistic models make it clear
that the situation also could have been much worse without
the control measures that remained in place, which were at
least in part motivated by early models. Moving forward
with COVID-19 and in future epidemics, models that incorpor-
ate changes in contact behaviour, population immunity
derived from natural infection and vaccination, population het-
erogeneity in behaviour and immunity, and changes in

immunity over time due to natural waning and emerging
immune-evading variants will be critical for determining
how to safely transition between initial and long-term
interventions.
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