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Abstract: An efficient and facile strategy has been developed for bromination of nucleosides 

using sodium monobromoisocyanurate (SMBI). Our methodology demonstrates bromination 

at the C-5 position of pyrimidine nucleosides and the C-8 position of purine nucleosides. 

Unprotected and also several protected nucleosides were brominated in moderate to high 

yields following this procedure. 
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1. Introduction 

Over the past decades, 5-halopyrimidine nucleosides have been found to be of interest for their  

antiviral [1–3] and antineoplastic [4,5] properties. 5-Bromo-2'-deoxyuridine has shown in vivo 

antiviral activity through its incorporation into the DNA of replicating cells as a structural analogue of 

thymidine [6]. Radiolabeled 5-bromo- and 5-iodo-pyrimidine nucleoside analogues have been tested 

for their potential in diagnostic oncology [7]. In search of new potential agents with superior biological 

activity, a variety of structural and functional moieties have been introduced into pyrimidine and 

purine nucleoside analogues by palladium assisted routes [8]. Halonucleosides have been used 

extensively as starting material for these reactions. 8-Bromopurine nucleosides have been used as key 

intermediates for synthesizing fluorescently labeled nucleosides, which have promising applications in 
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the field of molecular biology [9,10]. In view of this relevance, development of efficient methodology 

for the synthesis of 5-bromopyrimidine and 8-bromopurine nucleosides is always of immense interest. 

Direct halogenation of nucleosides has been found to be a proficient approach for the synthesis of  

5-halopyrimidine, 6-halopurine [11–13] and 8-halopurine nucleosides [14]. Unprotected and protected 

nucleosides have been halogenated by direct reaction with halogens or halogenating agents. Bromination 

at C-5 of pyrimidine moieties was achieved by reaction of Br2/water [15], Br2/DMF [16], Br2/CCl4 [17], 

Br2/CCl4 in solvent mixture of anhydrous acetic acid and pyridine [18], N-bromosuccinimide (NBS) in 

DMF [19], NBS/NaN3 in DME [20], NBS in ionic liquids [21], m-chloroperbenzoic acid (MCPBA)/HBr 

in DMA or DMF [22], ceric ammonium nitrate (CAN)/LiBr in AcOH or MeCN [23], KBr/potassium 

monoperoxysulfate under aqueous conditions [24]. Bromination of C-8 of purine moieties has been 

attained by reaction of Br2 in glacial AcOH/NaOAc [25], NBS in DMF [19], Br2 in NaOAc 

buffer/dioxane [10] and Br2 in NaOAc buffer [26,27]. A thorough study of the literature procedures for 

bromination of nucleosides shows that most of these methods have some disadvantages, such as highly 

acidic reaction condition, handling of toxic reagents, longer reaction time, complicated work up 

procedure and low yield of the products. Noticeably, very few of these methods are general for 

bromination of pyrimidine nucleosides as well as purine nucleosides. 

In recent years, sodium monobromoisocyanurate (SMBI) has proven its capacity as an efficient 

brominating agent. It has been used in various solvents to brominate a range of aromatic moieties with 

both activating and deactivating substituents [28]. Bromination of azulene derivatives with SMBI was 

achieved in DCM and DCM/water [29]. Unprotected aromatic amino acids were also brominated with 

SMBI in aq. H2SO4 to produce mono-brominated products in good yield [30]. SMBI has also been 

found to act as a catalyst for the synthesis of aryl thiocyanates [31]. Following the literature on SMBI, 

we believed it to be an efficient brominating agent for nucleosides. In this report, we describe the 

ability of SMBI to brominate the C-5 of pyrimidine nucleosides and C-8 of purine nucleosides. Along 

with unprotected nucleosides of naturally occurring bases, we have also successfully brominated 

nucleosides with alkyl, silyl, dimethoxytrityl (DMTr)/monomethoxytrityl (MMTr) protection on the 

sugar moiety and/or acyl protection on the nucleobase. DMTr/ MMTr groups are among the most 

frequently used protective groups in nucleoside chemistry. Due to their high sensitivity towards acidic 

reaction conditions, there is no literature procedure available for bromination of DMTr/MMTr 

protected nucleosides. Here we report for the first time in literature bromination of DMTr/MMTr 

protected nucleosides. 

2. Results and Discussion 

Initially, we tried to brominate the C-5 position of uridine (1) and screened various reaction conditions 

(Scheme 1, Table 1). Treatment of 1 with SMBI (1.05 equiv.) in a solvent mixture of 10% H2O-CH3CN 

in presence of NaN3 (4.0 equiv.) at room temperature produced 5-bromouridine (2) [20,21,23,32] in 

94% yield within 30 minutes. Next, we tried another reaction with 1, where we added 2.0 equiv. of 

NaN3 keeping other conditions unaltered. Bromo nucleoside 2 was obtained in 88% yield in 2 h by this 

reaction. However, when 1 was treated with SMBI (1.15 equiv.) in 10% H2O-CH3CN in the absence of 

NaN3 at room temperature, the bromination reaction was slow and took a longer time (18 h) to afford 2 

in only 40% yield. 
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Scheme 1. Bromination of uridine and derivatives thereof. 

 

Table 1. Screening for appropriate bromination condition of uridine and bromination of 

uridine derivatives. 

Entry Substrate Product 
SMBI 

(eq.) 

NaN3 

(eq.) 
Solvent 

Reaction 

time (h) 

Yield (%) 

(NMR/TLC) 

Isolated 

yield (%) 

1 1 2 1.05 4.0 10% H2O-CH3CN 0.5 94 a 79 b 

2 1 2 1.05 2.0 10% H2O-CH3CN 1.5 88 a - 

3 1 2 1.15 0 10% H2O-CH3CN 18.0 40 c - 

4 1 2 1.15 0 20% H2O-DMF 18.0 15 c - 

5 3 4 1.05 4.0 10% H2O-CH3CN 1.2 90 a 86 d 

6 5 6 1.15 4.0 10% H2O-CH3CN 1.5 - 93 d 

7 7 8 1.1 4.0 10% H2O-CH3CN 1.0 86 a 81 d 

8 9 10 1.1 4.0 10% H2O-CH3CN 1.5 94 a 91 d 

9 11 12 1.1 4.0 10% H2O-CH3CN 1.2 - 92 d 
a Yield calculated by 1H-NMR spectroscopy of the crude reaction mixture. b Isolated yield after crystallization.  
c Yield judged by TLC. d Isolated yield after purification by column chromatography. 

We also investigated bromination of 1 in 20% H2O-DMF without addition of NaN3. Even after a 

prolonged reaction time (18 h) bromo-nucleoside 2 was only obtained in low yield. Analysis of these 

reaction conditions applied for uridine (entry 1/entry 2/entry 3/entry 4, Table 1) verifies the crucial role 

of NaN3 in the halogenation reactions (bromination reactions in our case) at the C-5 position of the 

pyrimidine nucleosides. The azido group plays the role of an excellent leaving group from the C-6 

position of the 5-halo-6-azido-5,6-dihydro intermediates to restore the 5,6-olefinic bond [20]. The 

bromination reaction conditions optimized for uridine (1) were next successfully employed for other 

uridine derivatives. Bromination of 2'-deoxyuridine (3) was carried out with SMBI (1.05 equiv.) and 

NaN3 (4.0 equiv.) in 10% H2O-CH3CN which produced 5-bromo-2'-deoxyuridine (4) [20,21,23] in 

90% yield (Table 1). 2'-O-Methyluridine (5) was treated under the same reaction conditions, followed 

by addition of 0.1 equiv. of SMBI after 1 h. The reaction was stopped after 1.5 h and purification of 

the product by column chromatography afforded 5-bromo-2'-O-methyluridine (6) in 93% yield. 
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Reaction of 5'-O-dimethoxytrityluridine (7) with 1.1 equiv. of SMBI in 10% H2O-CH3CN in the 

presence of NaN3 (4.0 equiv.) produced bromo nucleoside 8 [33] in 86% yield. Similar treatment of 

silyl protected nucleosides 3',5'-O-tetraisopropyldisilyl-uridine (9) and 5'-O-tert-butyldiphenylsilyl-

uridine (11) with 1.1 equivalent of SMBI afforded the corresponding bromonucleosides 10 [34] and 12 

in 94% and 92% yields, respectively. 

We then applied our methodology for the bromination of cytidine (13) (Scheme 2). Nucleoside 13 

was treated with 1.05 equiv. of SMBI in presence of NaN3 (4.0 equiv.) in 10% H2O-CH3CN at rt. The 

progress of the reaction was followed by TLC. Additional amounts of SMBI (0.2 equiv. each time) 

were added into the reaction mixture after 1 h and 2 h. This reaction produced 5-bromocytidine (14) in 

83% yield after 3 h (Table 2). In another reaction, 13 was dissolved in 20% H2O-DMF and treated with 

1.2 equiv. of SMBI, followed by further additions of the reagent (0.3 equiv. each time) after 3 h and 6 h 

stirring at rt. The reaction was stirred for 20 h, followed by the work up, which produced the brominated 

nucleoside 14 in 73% yield. The reaction time and yield for bromination of 13 (entry 1/entry 2, Table 2) 

were compared, which indicated the first conditions to be more efficient. 

Scheme 2. Bromination of cytidine and derivatives thereof. 

 

Table 2. Comparison of suitable bromination condition for cytidine and bromination of 

cytidine derivatives. 

Entry Substrate Product 
SMBI 
(eq.) 

NaN3 
(eq.) 

Solvent 
Reaction 
time (h) 

Yield (%) 
(NMR) 

Isolated 
yield (%) 

1 13 14 1.45 4.0 10% H2O-CH3CN 3.0 83 a 69 b 
2 13 14 1.8 0 20% H2O-DMF 20.0 73 a - 
3 15 16 1.6 4.0 10% H2O-CH3CN 3.5 73 a 66 c 
4 17 18 1.25 4.0 10% H2O-CH3CN 2.0 - 78 c 
5 19 20 1.25 4.0 10% H2O-CH3CN 2.5 - 59 c 

a Yield calculated by 1H-NMR spectroscopy of the crude reaction mixture. b Isolated yield after 

crystallization. c Isolated yield after purification by column chromatography. 

We then performed a reaction of nucleoside 15 with 1.2 equiv. of SMBI in 10% H2O-CH3CN and in 

the presence of NaN3. Following the progress of the reaction on TLC, an excess amount of SMBI  

(0.2 equiv. each time) was added after 1.5 h and 3 h. 5-Bromo-dC, 16, was obtained in 73% yield after 
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3.5 h stirring at rt. 2'-O-Methylcytidine (17) was treated with 1.25 equiv. of SMBI (entry 4, Table 3) 

which produced nucleoside 18 in 78% yield after 2 h. When N4-propanoyl-5'-O-dimethoxytritylcytidine 

(19) [35] was treated with 1.25 equiv. of SMBI, 5-bromo-N4-propanoyl-5'-O-dimethoxytritylcytidine 

(20) was obtained in 59% yield in 2.5 h. (entry 5, Table 2). 

Table 3. Bromination conditions for purine nucleosides. 

Entry Substrate Product 
SMBI 

(eq.) 
Solvent 

Reaction 

time (h) 

Yield (%) 

(NMR/TLC) 

Isolated 

yield (%) 

1 21 22 1.4 20% H2O-DMF 2.5 89 a  73 b 

2 23 24 1.3 20% H2O-DMF 2.0 93 a 88 d 

3 25 26 1.45 20% H2O-DMF 2.0 78 a  71 d 

4 27 28 1.2 20% H2O-DMF 4.0 <5 c - 

5 29 30 1.5 20% H2O-DMF 4.0 15 c - 

6 31 32 1.5 20% H2O-DMF 4.0 62 a  57 d 

7 33 34 1.25 20% H2O-DMF 2.0 - 96 d 
a Yield calculated by 1H-NMR spectroscopy of the crude reaction mixture. b Isolated yield after 

crystallization. c Yield judged by TLC. d Isolated yield after purification by column chromatography. 

Unlike the pyrimidine nucleosides, purine nucleosides were not completely soluble in 10%  

H2O-CH3CN. This observation led us to carry out the reactions in 20% H2O-DMF. Adenosine (21) was 

treated with SMBI (1.1 equiv.) in 20% H2O-DMF at rt and the reaction was monitored by TLC 

(Scheme 3). Additional amounts of the reagent were added (0.2 equiv. after 1 h and 0.1 equiv. after 2 

h) to drive the reaction towards completion. Reaction was stopped after 2.5 h to afford the brominated 

nucleoside 22 [26,32,36] in 89% yield (entry 1, Table 3). 

Scheme 3. Bromination of adenosine and derivatives thereof. 

 

Deoxyadenosine, 23, was stirred with 1.25 equiv. of SMBI for 1 h followed by addition of 0.5 equiv 

of the reagent. Reaction was stopped after stirring for another 1 h when compound 24 [10] was obtained 

in 93% yield. Similarly, 2'-O-Methyladenosine (25) was treated with SMBI (1.25 equiv.), and the 

reaction mixture was stirred for 1 h, followed by addition of 0.2 equiv. of the reagent. Reaction was 

worked up after 2 h, and the bromonucleoside 26 [27] was obtained in 78% yield. However, the 5'-O- 

and base protected nucleoside 27 [35] was found to be unsuitable for bromination under these reaction 

conditions. We could trace the product by ESI-TOF mass spectroscopy, but it was difficult to isolate 

from the reaction mixture as most of the starting material remained unreacted. 
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Next, we extended the application of the SMBI reagent for guanine-based nucleosides. Guanosine 

(29) was treated with SMBI (1.25 equiv.) in 20% H2O-DMF at rt, followed by addition of another  

lot of SMBI (0.25 equiv.) after 2 h (Scheme 4). Reaction was stopped after 4 h to produce  

8-bromo-guanosine (30) [37], albeit in low yield (entry 5, Table 3). 

Scheme 4. Bromination of guanosine and derivatives thereof. 

 

Similar treatment of deoxyguanosine, 31, with SMBI (starting the reaction with 1.25 equiv. of 

reagent and then addition of 0.25 equiv. of the reagent after 2 h stirring) produced 62% of bromo 

nucleoside 32 [37] in 4 h. We did not get a very high yield for bromination of 29, so we explored these 

reaction conditions for a protected guanosine derivative. N2-Phenyloxyacetyl-5'-O-monomethoxytrityl-

guanosine (33) [35] was treated with 1.1 equiv. of SMBI and stirred at rt. After 1.5 h, a supplementary 

amount (0.15 equiv.) of the reagent was added to drive forward the reaction. Bromonucleoside 34 was 

obtained from the reaction in 96% yield after 2 h. 

3. Experimental 

3.1. General 

All solvents were of commercial analytical grade and reagents were of commercial reagent grade 

and used without further purification. Anhydrous reactions were carried out under nitrogen 

atmosphere. 1H-NMR (400 MHz) and 13C-NMR (100 MHz) spectra were recorded in D2O, DMSO-d6, 

CD3OD or CDCl3 on a Bruker DRX 400. Chemical shifts are reported in ppm relative to 

tetramethylsilane or the deuterated solvent as internal standard for 1H and 13C-NMR. Coupling 

constants (J values) are given in Hz. Structural assignments are based on DEPT-135 and COSY 

experiments. HRMS-ESI was recorded on a Micromass LCT in negative ion mode. TLC was run on 

analytical TLC plates (silica gel 60 F254), purchased from Merck (Stockholm, Sweden). Spots were 

visualized by UV light. 

3.2. Typical Procedure for the Bromination of Pyrimidine Nucleosides and Their Derivatives 

2'-O-Methyluridine (5, 0.103 g, 0.4 mmol) was dissolved in aqueous acetonitrile solution 

(H2O:CH3CN 1:9, 5 mL) under stirring. NaN3 (0.104 g, 1.6 mmol) was added, followed by addition of 
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SMBI (0.101 g, 0.44 mmol) at r.t. and the mixture was stirred. Progress of the reaction was followed 

by TLC. On completion of the reaction after 1.5 h, the reaction mixture was filtered, evaporated to 

dryness under reduced pressure and coevaporated with acetonitrile (2 × 2 mL). The crude reaction 

mixture was purified by column chromatography (4%–6% MeOH in DCM, v/v) to afford bromo 

nucleoside 6 (0.117 g, 93%) in pure form as a white solid. 

5-Bromo-2'-O-methyluridine (6). M.p. Turns brown above 200 °C; Rf = 0.42 (20% methanol in 

dichloromethane); 1H-NMR (DMSO-d6): δ = 3.39 (s, 3H, OCH3), 3.57–3.60 (m, 1H, C-5'Ha), 3.69–3.73 

(m, 1H, C-5'Hb), 3.81 (t, J = 4.4 Hz, 1H, C-2'H), 3.86–3.87 (m, 1H, C-4'H), 4.12 (q, J = 5.6 Hz, 1H,  

C-3'H), 5.12 (d, J = 6.4 Hz, 1H, C-3'OH), 5.32 (t, J = 4.4 Hz, 1H, C-5'OH), 5.80 (d, J = 3.6 Hz, 1H,  

C-1'H), 8.53 (s, 1H, C-6H), 11.82 (s, 1H, NH). 13C-NMR (DMSO-d6): δ = 57.5 (OCH3), 59.5 (C-5'), 

67.6 (C-3'), 82.9 (C-2'), 84.7 (C-4'), 86.6 (C-1'), 95.6 (C-5), 140.0 (C-6), 149.6 (C-2), 159.0 (C-4). 

HRMS-ESI (m/z): calcd. for C10H12BrN2O6 [M−H]−, 334.9884; found 334.9881. 

5-Bromo-5'-O-tert-butyldiphenylsilyluridine (12). White solid (0.103 g, 92%), M.p. Turns black above 

185 °C; Rf = 0.35 (5% methanol in dichloromethane); 1H-NMR (CD3OD): δ = 1.11 (s, 9H, (C(CH3)3), 

3.84 (dd, J = 11.6, 3.2 Hz, 1H, C-5'Ha), 3.98 (dd, J = 11.6, 2.4 Hz, 1H, C-5'Hb), 4.07–4.09 (m, 1H,  

C-4'H), 4.23–4.28 (m, 2H, C-2'H and C-3'H), 6.02 (d, J = 5.6 Hz, 1H, C-1'H), 7.40–7.48 (m, 6H,  

C-3''H, C-4''H, C-5''H, C-3'''H, C-4'''H and C-5'''H), 7.72 (d, J = 7.2 Hz, 4H, C-2''H, C-6''H, C-2'''H and 

C-6'''H), 7.97 (s, 1H, C-6H). 13C-NMR (CD3OD): δ = 20.2 (C(CH3)3), 27.7 (C(CH3)3), 65.1 (C-5'), 

71.7 (C-2'), 76.1 (C-3'), 86.6 (C-4'), 90.2 (C-1'), 99.3 (C-5), 129.0 (C-3'', C-5'', C-3''' and C-5'''), 131.1 , 

131.2 (C-4'' and C-4'''), 133.8 , 134.1 (C-1'' and C-1'''), 136.7 , 136.8 (C-2'', C-6'', C-2''' and C-6'''), 

140.0 (C-6), 156.8 (C-2), 167.4 (C-4). HRMS-ESI (m/z): calcd. for C25H28BrN2O6 [M−H]−, 559.0905; 

found 559.0927. 

5-Bromo-2'-O-methylcytidine (18). White solid (0.052 g, 78%), M.p. 86–89°C; Rf = 0.36 (2.5% 

methanol in dichloromethane); 1H-NMR (D2O): δ = 3.49 (s, 3H, OCH3), 3.77 (dd, J = 9.0, 3.6 Hz, 1H, 

C-5'Ha), 3.88–3.91 (m, 1.6H, C-5'Hb(1) and C-2'H), 3.94 (d, J = 2.4 Hz, 0.4H, C-5'Hb(2)), 4.01–4.04 (m, 

1H, C-4'H), 4.22 (dd, J = 7.2, 5.2 Hz, 1H, C-3'H), 5.85 (d, J = 2.8 Hz, 1H, C-1'H), 8.27 (s, 1H, C-6H). 
13C-NMR (D2O): δ = 58.7 (OCH3), 60.1 (C-5'), 68.0 (C-3'), 83.7 (C-2'), 84.1 (C-4'), 88.9 (C-1'), 89.2 

(C-5), 142.5 (C-6), 156.5 (C-2), 163.3 (C-4). HRMS-ESI (m/z): calcd. for C10H13BrN3O5 [M−H]−, 

334.0044; found 334.0049. 

5-Bromo-5'-O-monomethoxytrityl-N4-propanoyl-2'-deoxycytidine (20). White solid (0.037 g, 59%), 

M.p. 96–101 °C; Rf = 0.59 (25% methanol in dichloromethane); 1H-NMR (CDCl3): δ = 1.12 (t, J = 7.2 Hz, 

3H, COCH2CH3), 2.18–2.27 (m, 1H, C-2'Ha), 2.43 (br s, 1H, C-3'OH), 2.68–2.71 (m, 1H, C-2'Hb), 

3.03–3.08 (m, 2H, COCH2CH3) , 3.32 (dd, J = 10.6, 3.2 Hz, 1H, C-5'Ha), 3.36 (dd, J = 10.6, 3.2 Hz, 

1H, C-5'Hb), 3.73 (s, 3H, OCH3), 4.09–4.10 (m, 1H, C-4'H), 4.49 (brs, 1H, C-3'H), 6.19 (t, J = 6.4 Hz, 

1H, C-1'H), 6.77 (d, J = 9.2 Hz, 2H, C-3''H and C-5''H), 7.15–7.24 (m, 8H, C-2''H, C-6''H, C-3'''H,  

C-4'''H, C-5'''H, C-3''''H, C-4''''H and C-5''''H), 7.33 (d, J = 7.6 Hz, 4H, C-2'''H, C-6'''H, C-2''''H and  

C-6''''H), 7.78 (s, 1H, NHCO), 8.25 (s, 1H, C-6H). 13C-NMR (CDCl3): δ = 8.5 (COCH2CH3), 32.0 

(COCH2CH3), 42.4 (C-2'), 55.4 (OCH3), 63.4 (C-5'), 72.2 (C-3'), 87.0 (C-4'), 87.5 (OC(Ar)3), 87.8  

(C-1'), 88.2 (C-5), 113.5 (C-3'' and C-5''), 127.4 (C-4''' and C-4''''), 128.4 (C-2'', C-6'', C-3''', C-5''',  
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C-3'''' and C-5''''), 130.5 (C-2''', C-6''', C-2'''' and C-6''''), 135.0 (C-1''), 143.5 (C-1'''), 143.9 (C-1''''), 

144.0 (C-6), 153.5 (C-2), 157.2 (C-4''), 159.0 (C-4), 175.7 (NHCOCH2). HRMS-ESI (m/z): calcd. for 

C32H31BrN3O6 [M−H]−, 632.1402; found 632.1411. 

3.3. Typical Procedure for Bromination of Purine Nucleosides and Their Derivatives 

5'-O-Monomethoxytrityl-N2-phenoxyacetylguanosine (33, 0.138 g, 0.2 mmol) was dissolved in 

aqueous DMF solution (H2O:DMF 1:4, 5 mL) under stirring. SMBI (1.1 equiv., 0.051 g, 0.22 mmol) 

was added at r.t. and the mixture stirred. Progress of the reaction was followed by TLC. An additional 

amount of the reagent (0.15 equiv., 0.007 g) was added into the reaction mixture after 1.5 h. On 

completion of the reaction by 2 h, the reaction mixture was filtered, evaporated to dryness under 

reduced pressure and coevaporated with water (2 × 2 mL). The crude reaction mixture was purified by 

column chromatography (4%–5% MeOH in DCM, v/v) to afford nucleoside 34 (0.148 g, 96%) in pure 

form as a white solid. 

8-Bromo-5'-O-monomethoxytrityl-N2-phenoxyacetylguanosine (34). M.p. 136–139 °C; Rf = 0.60 (10% 

methanol in dichloromethane); 1H-NMR (CD3OD): δ = 3.18 (d, J = 2.4 Hz, 0.5H, C-5'Ha), 3.33 (dd,  

J = 10.0, 6.4 Hz, 1H, C-5'Hb), 3.59 (s, 3H, OCH3), 4.04–4.09 (m, 1H, C-4'H), 4.44 (t, J = 5.6 Hz, 1H, 

C-3'H), 4.58 (d, J = 15.2 Hz, 1H, COCH2(a)O), 4.64 (d, J = 15.2 Hz, 1H, COCH2(b)O), 5.14 (t, J = 4.8 Hz, 

1H, C-2'H), 5.91 (d, J = 4.4 Hz, 1H, C-1'H), 6.58 (d, J = 8.8 Hz, 2H, C-3'''H and C-5'''H), 6.86–6.91 

(m, 3H, C-2''H, C-4''H and C-6''H), 7.01–7.06 (m, 6H, C-3''''H, C-4''''H, C-5''''H, C-3'''''H, C-4'''''H and 

C-5'''''H), 7.10 (d, J = 8.8 Hz, 2H, C-2'''H and C-6'''H), 7.18 (t, J = 8.0 Hz, 2H, C-3''H and C-5''H), 

7.23–7.25 (m, 4H, C-2''''H, C-6''''H, C-2'''''H and C-6'''''H). 13C-NMR (CD3OD): δ = 55.7 (OCH3), 65.6 

(C-5'), 68.3 (COCH2O), 72.0 (C-2'), 72.8 (C-3'), 85.7 (C-4'), 87.6 (OC(Ar)3), 92.9 (C-1'), 113.9 (C-3''' 

and C-5'''), 116.1 (C-2'' and C-6''), 122.9 (C-5), 123.3 (C-4''), 127.4 (C-8), 127.9, 128.0, 129.6, 129.7, 

130.8, 131.6 (C-2'', C-3'', C-5'', C-6'', C-2''', C-6''', C-2'''', C-3'''', C-4'''', C-5'''', C-6'''', C-2''''', C-3''''', C-4''''', 

C-5''''' and C-6'''''), 136.6 (C-1'''), 145.8, 146.0 (C-1'''' and C-1'''''), 148.3 (C-2), 151.1 (C-4), 156.3 (C-6), 

159.0 (C-4'''), 160.1 (C-1''), 172.5 (NHCOCH2). HRMS-ESI (m/z): calcd. for C38H33BrN5O8 [M−H]−, 

766.1518; found 766.1553. 

4. Conclusions 

In summary, we report here the development of an efficient and facile methodology for the 

bromination of nucleosides. We have applied this process successfully for both purine and pyrimidine 

nucleosides. Our process presents an efficient methodology of bromination for ribonucleosides,  

2'-deoxynucleosides, silyl protected and DMTr/MMTr protected nucleosides. We believe this 

methodology may be applied for the bromination of a wide range of nucleoside derivatives. 
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