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An exome array study of the plasma metabolome
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The study of rare variants may enhance our understanding of the genetic determinants of the

metabolome. Here, we analyze the association between 217 plasma metabolites and exome

variants on the Illumina HumanExome Beadchip in 2,076 participants in the Framingham

Heart Study, with replication in 1,528 participants of the Atherosclerosis Risk in Communities

Study. We identify an association between GMPS and xanthosine using single variant analysis

and associations between HAL and histidine, PAH and phenylalanine, and UPB1 and

ureidopropionate using gene-based tests (Po5� 10�8 in meta-analysis), highlighting novel

coding variants that may underlie inborn errors of metabolism. Further, we show how an

examination of variants across the spectrum of allele frequency highlights independent

association signals at select loci and generates a more integrated view of metabolite

heritability. These studies build on prior metabolomics genome wide association studies to

provide a more complete picture of the genetic architecture of the plasma metabolome.
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S
everal independent genome wide association studies
(GWAS) have identified dozens of common variants
associated with plasma or serum metabolite levels1–7. For

example, we recently tested the association between 217 plasma
metabolites measured in 2,076 participants of the Framingham
Heart Study (FHS) and common variants either directly
genotyped using the Affymetrix 500K mapping and 50K gene-
focused MIP arrays or imputed from HapMap5. This study
identified 31 common variants associated with 64 plasma
metabolites, and leveraging the family-based structure and rich
cardiometabolic phenotyping in FHS, outlined the relative
contribution of heritable, environmental and clinical factors to
plasma metabolite levels.

The study of low frequency and potentially functional variants,
not captured on standard GWAS arrays, has the potential to refine
and expand our understanding of the genetic determinants of
circulating metabolite levels. Thus, we analyzed the relationship of
plasma metabolites in FHS with coding variants captured on the
Illumina HumanExome Beadchip, which includes functional
exonic variants identified from exome and whole-genome
sequencing of over 12,000 individuals8. To replicate significant
associations, we examined serum metabolite data measured in
1,528 European-American participants in the Atherosclerosis Risk
in Communities (ARIC) Study who had been genotyped using the
same exome array. Here, we report four genome-wide significant
associations, including one identified using single variant analysis
and three identified using gene-based testing. In addition, we
isolate independent signals at genes highlighted in our prior
common variant study and shed light on how variants contribute
to metabolite heritability as a function of allele frequency.

Results
Single variant analysis highlights GMPS and xanthosine. As
detailed in the Methods section, we restricted our analysis to the
subset of variants that were (1) polymorphic, (2) nonsynonymous,
stop-altering or located in a splice site and (3) had a minor allele
frequency (MAF) r5% (Supplementary Table 1). Eight single
variant-metabolite associations reached a significance threshold
adjusted for the 81,021 examined variants (Po6.2� 10� 7 in
linear mixed effects models) in FHS. Six of these eight metabolites
were also measured in ARIC, and in the replication analysis, the
association between a missense variant in GMPS (rs61750370)
and xanthosine levels remained significant (P¼ 2.8� 10� 7 in
FHS, P¼ 6� 10� 4 in ARIC, P¼ 8.9� 10� 10 in meta-analysis)
(Table 1). This variant encodes p.Tyr528Ser in guanine mono-
phosphate synthase, the enzyme that catalyzes the oxidation of
XMP (the precursor of xanthosine) to guanosine monophosphate
(GMP). This finding complements the association between
GMPR, which encodes the enzyme responsible for the deamina-
tion of GMP, and xanthosine identified in our prior GWAS5.
Because cystathionine was not measured in ARIC, we were unable
to replicate the association between a missense variant in CTH

(rs28941785) and plasma cystathionine levels identified in FHS
(Table 1). However, this association reached genome-wide
significance in the discovery cohort (P¼ 5.4� 10� 14) and has
clear biologic and clinical underpinnings: the variant encodes
p.Thr67Ile in cystathionine gamma-lyase, a cytoplasmic enzyme
that converts cystathionine into cysteine, and even more
convincing, prior reports have identified homozygosity for this
same missense mutation as a cause of cystathioninuria
(MIM#219500)9,10, a benign autosomal recessive disorder
characterized by accumulation of plasma cystathionine and
increased urinary cystathionine excretion.

Gene-based analysis identifies three additional associations.
Because the number of study participants harbouring any single
low-frequency or rare variant is limited, we performed gene-based
burden tests to identify additional locus-metabolite associations.
These gene-based tests can improve the power to detect associations
compared to single variant tests, provided that multiple variants
within the gene are causal11. To that end, we restricted our analysis
to polymorphic variants that are predicted to be damaging (see
Methods section). We tested up to 13,008 genes with at least two
damaging variants and applied a significance threshold adjusted for
the number of genes examined (Po3.8� 10� 6 in linear mixed
effects models). Using this approach, we identified six additional
gene-metabolite associations in FHS. Four of these six metabolites
were also measured in ARIC, and in the replication analysis,
three of the associations remained significant (Table 2),
with all three at established human disease loci: HAL and
histidine (P¼ 2.2� 10� 15 in FHS, P¼ 6� 10� 5 in ARIC,
P¼ 1.4� 10� 10 in meta-analysis)—mutations in HAL are known
to cause the autosomal recessive metabolic disorder histidinemia
(MIM # 609457)12; PAH and phenylalanine (P¼ 2� 10� 11 in
FHS, P¼ 5.7� 10� 6 in ARIC, P¼ 5.9� 10� 11 in meta-
analysis)—mutations in PAH cause the autosomal recessive
inborn error of metabolism phenylketonuria (MIM#612349); and
UPB1 and ureidopropionate (P¼ 9.8� 10� 7 in FHS,
P¼ 3� 10� 3 in ARIC, P¼ 3.4� 10� 8 in meta-analysis)—
mutations in UPB1 are the cause of the autosomal recessive
disorder Beta-ureidopropionase deficiency (MIM # 60667).

A more detailed variant-level examination of the gene-based
findings in FHS is instructive. As shown in Table 2 and Fig. 1,
individual damaging mutations with at least a nominal metabolite
association all had the same direction, and similar magnitude,
of effect. Whereas the most common of these variants in HAL
(Fig. 1a) was found in 19 individuals in FHS, a total of 57
individuals had mutations at any of these 8 variants (2 individuals
were compound heterozygotes with mutations at both
rs61937878 and rs140799551). Similarly, 6 distinct coding
variants in PAH predicted to be damaging had at least a nominal
association with plasma phenylalanine levels (Fig. 1b) in FHS;
whereas the most common of these variants was found in 7
individuals, a total of 24 individuals had any one of these variants

Table 1 | Single variants associated with plasma metabolites.

Trait Variant information Discovery cohort (FHS)
N¼ 2,076

Replication cohort
(ARIC) N¼ 1,528

Meta-analysis

Gene SNP Variant Chr Position Major/minor
allele

MAF Beta P-value MAF Beta P-value Beta P-value

Cystathionine CTH rs28941785 p.Thr67Ile 1 70881670 C/T 0.01 1.34 5.5� 10� 14 Metabolite not
measured

Xanthosine GMPS rs61750370 p.Tyr528Ser 3 155649576 A/C 0.01 0.95 2.8� 10� 7 0.01 0.61 6� 10�4 0.78 8.9� 10� 10

ARIC, atherosclerosis risk in communities study; FHS, Framingham Heart Study; SNP, single nucleotide polymorphism.
P-values derived from linear mixed effects models.
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(none had more than 1). For UPB1, the association with
ureidopropionate was driven primarily by a single splice variant.

Independent common and rare variant associations. We
merged the exome chip and common variant data sets in FHS
and performed conditional analyses in order to test whether the
exome array is able to identify independent signals at loci high-
lighted by our prior metabolomics GWAS. We restricted our
analysis to exome variants not captured in our prior GWAS and
identified three coding variants that replicated prior locus-meta-
bolite associations at a genome-wide significant threshold in
linear mixed effects models. Results of conditional analyses,
whereby exome array variants were adjusted for previously
identified noncoding common variants and vice versa, are shown
in Table 3. At DMGDH, rs145258663 encodes p.Leu300Phe and is
independent of the intronic GWAS variant rs248386 (Pconditional

for association with dimethylglycine¼ 1.9� 10� 9, r2¼ 0.031). At
PRODH, rs5747933 encodes p.Thr167Asn and is independent of
the intronic GWAS variant rs2078743 (Pconditional for association
with proline¼ 3.4� 10� 10, r2¼ 0.001). By contrast, the asso-
ciation between rs3135506, which encodes p.Ser19Trp in APOA5,
and diacylglycerol (DAG) 36:2 was no longer significant
after adjusting for the intronic GWAS variant rs964184
(Pconditional¼ 4.9� 10� 2, r2¼ 0.39). Similarly, the common
variant signal at this locus was abrogated after adjusting for the
coding variant (Pconditional¼ 7.7� 10� 5). Given the plausible
functional effect at rs3135506, predicted to be damaging by
dbNSFP13, these data raise the possibility that it is the causal
variant that underlies the association between the APOA1/C3/
A4/A5 locus and DAG 36:2.

Interindividual metabolite variation and allele frequency.
Because we have now integrated metabolite data with both
common variant and exome variant arrays in the same 2,076
individuals, we next estimated the proportion of interindividual
metabolite variation captured across a broad range of allele
frequency (Fig. 2; Supplementary Table 2). Looking across all
non-redundant single nucleotide polymorphisms (SNPs)

captured across the two arrays, we confirmed that for many
metabolites, a substantial fraction of metabolite variability is
heritable4,5,14. When SNPs were then binned on the basis of allele
frequency, we found that for many metabolites, low frequency
(MAF 0.5–5%) and rare (MAFo0.5%) variants made moderate
contributions to overall heritability, although in general less than
the contribution made by common variants (MAF45%).

Discussion
To date, common variant association studies have shown that
many loci have relatively large effect sizes on circulating
metabolite levels, as compared to GWAS for common diseases
and most risk factor phenotypes. As a result significant findings
have emerged from samples as small as 284 subjects15. Many of
these loci encode enzymes or transporters directly involved with
the given metabolite’s disposition, providing a strong biologic
basis for both the strength and veracity of their associations.
In the present study, we extend our analysis of the genetic
determinants of plasma metabolite levels in the FHS from an
examination of common variants to include coding variants
captured on an exome array, followed by replication in ARIC. By
definition, statistical significance at this lower end of allele
frequency requires loci to have very large effect sizes. Indeed,
a major theme of our findings is the recapitulation, and in some
cases extension, of variants implicated in Mendelian disorders of
human metabolism.

Our data demonstrate significant associations between
variants in CTH, HAL, PAH and UPB1, and plasma cystathio-
nine, histidine, phenylalanine, and ureidopropionate levels,
respectively. Mutations in each of these genes are established
causes of autosomal recessive disorders characterized by the
defective catabolism and subsequent plasma accumulation of
these metabolites. With a MAF of 1% the association between a
mutation in CTH and plasma cystathionine levels could be
detected in single variant analysis. By contrast, the association
between the less common mutations in the other genes and their
respective metabolites were detected with gene-based testing.
Given widespread newborn screening for phenylketonuria,

Table 2 | Gene-based associations with plasma metabolites.

Trait Gene Variant information Discovery cohort (FHS) N¼ 2,076 Replication cohort (ARIC) N¼ 1,528 Meta-
analysis

SNP Variant MAF n0 n1 n2 Beta SNP
P-value

Gene
P-value

MAF n0 n1 n2 Beta SNP
P-value

Gene
P-value

Gene
P-value

Histidine HAL 2.2� 10� 15 2� 10�4 1.4� 10� 10

rs61937878 p.Val549Met 0.0061 1,721 19 0 0.86 1.9� 10� 4 0.0039 1,513 12 0 0.77 9� 10� 3

rs117991621 p.Arg369Gln 0.0046 1,724 17 0 0.88 3� 10�4 0.0039 1,516 12 0 0.74 1.1� 10� 2

rs143854097 p.Arg108Trp 0.0018 1,738 3 0 1.49 9� 10� 3 0.0016 1,523 5 0 0.72 1.1� 10� 1

rs34457757 p.Arg322[stop] 0.0009 1,739 2 0 1.82 9.1� 10� 3 0.0003 1,527 1 0 �0.66 5.1� 10� 1

rs143844261 p.Thr229Ile 0.0007 1,738 3 0 1.39 1.5� 10� 2 0.0000 1,528 0 0 NA NA
rs201646460 p.Arg9Cys 0.0004 1,738 3 0 1.37 1.8� 10� 2 0.0000 1,528 0 0 NA NA
rs150591434 pTrp537Arg 0.0013 1,734 7 0 0.80 3.6� 10� 2 0.0000 1,528 0 0 NA NA
rs141634423 splice 0.0009 1,738 3 0 1.18 4.3� 10� 2 0.0007 1,525 2 0 0.85 2.4� 10� 1

rs148214250 p.Arg584His 0.0012 1,739 2 0 1.37 5.1� 10� 2 0.0013 1,524 4 0 0.49 3.3� 10� 1

rs142371886 p.Ser96Phe 0.0013 1,739 2 0 1.21 8.4� 10� 2 0.0003 1,527 1 0 0.27 7.9� 10� 1

rs140799551 splice 0.0009 1,734 7 0 0.59 1.4� 10� 1 0.0003 1,527 1 0 �0.85 4� 10� 1

rs200270904 p.Thr528Met 0.0002 1,740 1 0 1.14 2.5� 10� 1 0.0000 1,528 0 0 NA NA
rs138504011 p.Leu449His 0.0004 1,740 1 0 1.01 3.1� 10� 1 0.0000 1,528 0 0 NA NA
rs145831585 p.Leu242Met 0.0006 1,739 2 0 0.24 7.3� 10� 1 0.0003 1,527 1 0 1.10 2.8� 10� 1

Phenylalanine PAH 2� 10� 11 3.7� 10�6 5.9� 10� 11

rs62642926 p.Phe39Leu 0.0005 1,739 2 0 2.80 5.6� 10� 5 0.0007 1,526 2 0 1.30 6.3� 10� 2

rs5030849 p.Arg261Gln 0.0010 1,736 5 0 1.76 7.6� 10� 5 0.0000 1,528 0 0 NA NA
rs5030858 p.Arg408Trp 0.0012 1,734 7 0 1.48 8.2� 10� 5 0.0023 1,521 7 0 0.61 1.1� 10� 1

rs118092776 p.Arg53His 0.0006 1,738 3 0 1.77 2.3� 10� 3 0.0016 1,523 5 0 0.58 1.9� 10� 1

rs5030857 p.Ala403Val 0.0017 1,735 6 0 0.94 2.1� 10� 2 0.0003 1,527 1 0 � 1.99 4.4� 10� 2

rs5030861 splice 0.0003 1,740 1 0 2.02 4� 10� 2 0.0016 1,523 5 0 1.37 2� 10� 3

rs5030853 p.Ala300Ser 0.0004 1,739 2 0 1.14 1� 10� 1 0.0007 1,526 2 0 0.83 2.4� 10� 1

rs62642937 p.Thr380Met 0.0008 1,736 5 0 0.69 1.3� 10� 1 0.0003 1,527 1 0 2.13 3.1� 10� 2

rs76212747 p.Val245Glu 0.0013 1,738 3 0 �0.80 1.7� 10� 1 0.0013 1,524 4 0 1.33 7.1� 10� 3

rs62516152 p.Val230Ile 0.0006 1,739 2 0 �0.30 6.7� 10� 1 0.0003 1,527 1 0 �0.16 8.7� 10� 1

Ureidopropionate UPB1 9.8� 10� 7 1� 10� 3 3.4� 10� 8

rs143493067 splice 0.0029 1,729 12 0 1.38 3.2� 10�6 0.0013 1,524 4 0 1.45 3.1� 10� 3

rs34035085 p.Ala85Glu 0.0001 1,740 1 0 1.96 5� 10� 2 0.0000 1,528 0 0 NA NA

ARIC, atherosclerosis risk in communities study; FHS, Framingham heart study; SNP, single nucleotide polymorphism.
P-values derived from linear mixed effects models.
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dozens of mutations in the PAH locus have now been identified,
and indeed the three variants most strongly associated with
phenylalanine in our data have been extensively reported in the
literature. By contrast, the missense mutation at rs118092776,
which encodes p.Arg53His has not been published (it has been
catalogued in an online database)16. For UPB1, the mutation
associated with ureidopropionate levels has only been described
in one patient in the literature17. Similarly, whereas mutations in
HAL are known causes of histidinemia, the mutations we

highlight in association with plasma histidine levels in FHS are
novel. Prior reports have identified seven other mutations in HAL
as either a cause of histidinemia or associated with plasma
histidine levels, including four in Japanese individuals18 and three
among African Americans19. Thus taken together, our results
illustrate how population-based metabolomic studies are able to
supplement decades of biochemical and genetic studies to
confirm and potentially even expand the list of coding variants
that underlie human disease.

Compared to studies of complex diseases, the study of
quantitative phenotypes—in some cases immediately downstream
of gene function—can dramatically lower the sample size required
to detect statistically significant associations. Nevertheless, the
sample sizes examined in FHS and ARIC constrain our power to
detect weak associations, a limitation that is mitigated but not
eliminated by gene-based testing. It is likely that numerous
biologically important associations did not reach statistical
significance because of limited effect size and/or limited allele
frequency. For example, using established disease loci as a
positive control, we highlight the examples of types I and II
citrullinemia (MIM#215700, #603859), which are caused by
mutations in ASS1 and SLC25A13, respectively. The most
commonly reported mutation in type I citrullinemia,
rs121908641, demonstrated a trend for association with higher
citrulline levels (b¼ 1.20, P¼ 0.09), despite being present as a
single copy in only two individuals in FHS. In SLC25A13, we
identified a loss-of-function splice mutation at rs150021522
nominally associated with citrulline (b¼ 1.33, P¼ 0.02). This
mutation, present in three individuals in FHS, has not been
reported in the literature, perhaps because type II citrullinemia is
primarily described in East Asian populations20. In order to
maximize the utility of our data set, we have made complete
exome array results for each of the 217 metabolites surveyed by
our platform, as well as complete results of our gene-based
analyses, publicly available. We believe that this will facilitate
interrogation of the genetic determinants of select metabolites of
interest, including biologically meaningful associations of modest
statistical significance herein (but potentially of high statistical
significance in hypothesis-driven analyses). Further, we note that
this data can be queried in conjunction with the catalogue
of associations between commons variants and metabolites that
we have already published5, thus providing a resource for
metabolomics research across a broad range of allele frequency.

In our analysis of the estimated proportion of interindividual
metabolite variation captured by SNPs across both common variant
and exome arrays, we found that low frequency and rare variants
made moderate contributions to overall heritability. Although a
larger sample size would be required to capture the full contribution
of rare variants to metabolite heritability21, these findings are
consistent with a recent whole-genome sequence-based analysis
demonstrating that common variation contributes more to high-
density lipoprotein cholesterol heritability than rare variation22, We
note, however, that our analyses need to be interpreted with
caution, as many point estimates for total interindividual variation
explained by genetic factors had relatively wide confidence intervals
(Supplementary Table 2). Nevertheless, our examination of two
genotyping arrays applied to a uniform population demonstrates
the heterogeneous relationship between allele frequency and
explained variance across 217 different phenotypes.

In summary, we have extended our prior study of the common
genetic determinants of plasma metabolites to now include an
analysis of lower frequency coding variants sequenced using an
exome array. Notably, metabolites were measured using different
LC–MS platforms in discovery and replication, to our knowledge
the first time this has been done in a study of the genetic
determinants of the metabolome, providing increased confidence

3

2

1

0

–1

–2

–3

P
he

ny
la

la
ni

ne

rs
62

64
29

26
 (
n

=
2)

rs
50

30
84

9 
(n

=
5)

rs
50

30
85

8 
(n

=
7)

rs
11

80
92

77
6 

(n
=

3)

rs
50

30
85

7 
(n

=
6)

rs
50

30
86

1 
(n

=
1)

rs
50

30
85

3 
(n

=
2)

rs
62

64
29

37
 (
n

=
5)

rs
76

21
27

47
 (
n

=
3)

rs
62

51
61

52
 (
n

=
2)

a

b

3

2

1

0

–1

–2

–3

H
is

tid
in

e

*

rs
61

93
78

78
 (
n

=
17

)

rs
11

79
91

62
1 

(n
=

17
)

rs
14

38
54

09
7 

(n
=

3)

rs
34

45
77

57
 (
n

=
2)

rs
14

38
44

26
1 

(n
=

3)

rs
20

16
46

46
0 

(n
=

3)

rs
15

05
91

43
4 

(n
=

7)

rs
14

16
34

42
3 

(n
=

3)

rs
14

82
14

25
0 

(n
=

2)

rs
14

23
71

88
6 

(n
=

2)

rs
14

07
99

5 
(n

=
5)

rs
20

02
70

90
4 

(n
=

1)

rs
13

85
04

01
1 

(n
=

1)

rs
14

58
31

58
5 

(n
=

2)

(n
=

2)

Figure 1 | Box plot visualization of gene-based associations at HAL and

PAH in FHS. (a) Plasma histidine levels and damaging mutations in HAL

and (b) Plasma phenylalanine levels and damaging mutations in PAH,

with corresponding rs numbers on x axis. Each data point represents an

individual’s plasma metabolite level (standardized along the y axis). Farthest

left box plots show metabolite levels among individuals with no damaging

mutations. The lines in the boxes represent median metabolite levels; the

lower and upper boundaries of the boxes represent the 25th and 75th

percentiles, respectively; the lower and upper whiskers represent the

minimum and maximum values, respectively. *compound heterozygotes

at rs61937878 and rs140799551. SNPs with Po0.05 are underlined;

P-values derived from linear mixed effects models.
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in our significant findings. By integrating GWAS and exome
array data, we also highlight independent association signals at
select loci and provide a more granular view of metabolite
heritability. Finally, all of our single variant and gene-based
analyses have been made publicly available as a resource to the
scientific community. Future efforts will seek to examine larger
data sets, both in regards to the number of individuals genotyped
and the number of metabolites assayed.

Methods
Study sample. The FHS Offspring cohort is a prospective, observational,
community-based cohort23. These children of the initial FHS participants and their
spouses were recruited in 1971 and have been followed with serial examinations.
A total of 2,076 Offspring participants who attended the fifth examination
(1991–1995) and underwent metabolite profiling and exome array genotyping were
included in this analysis (Supplementary Table 3). All participants provided
informed consent and the study protocol was approved by the Boston University
Medical Center IRB.

The ARIC study is a prospective cohort originally designed to assess risk factors
for cardiovascular disease in the general population24. A total of 15,792 men and
women age 45–64 years old were recruited from four communities (Forsyth County,
North Carolina; Jackson, Mississippi; northwest suburbs of Minneapolis, Minnesota;
and Washington County, Maryland) in 1987–89. Participants were mostly white in
the Minneapolis and Washington County sites, white and African-American in
Forsyth County, while only African-American individuals were recruited in Jackson.
After the baseline examination, participants were invited for four follow-up visits in
1990–92, 1993–95, 1996–98 and 2011–13. Metabolite profiling was performed on
serum samples obtained at baseline, between 1987 and 1989. The ARIC study has
been approved by the Institutional Review Board at the University of Minnesota,
Johns Hopkins University, Wake Forest University, University of North Carolina,
University of Texas Health Sciences Center at Houston, and University of
Mississippi Medical Center and participants provided written informed consent.

Metabolite profiling. Blood samples were collected after an overnight fast,
immediately centrifuged and stored at � 80 �C until assayed.

For FHS samples, metabolites were measured at the Broad Institute. For amino
acids, amino acid derivatives, urea cycle intermediates, nucleotides and other
positively charged polar metabolites, 10 ml of plasma were extracted in nine
volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid25. After
centrifugation, supernatants underwent chromatography on a 150� 2.1 mm
Atlantis HILIC column (Waters); mobile phase A: 10 mM ammonium formate and
0.1% formic acid, v/v; mobile phase B: acetonitrile with 0.1% formic acid, v/v. The
column was eluted isocratically with 5% mobile phase A for one minute followed
by a linear gradient to 60% mobile phase A over 10 min. MS analyses were carried
out using electrospray ionization (ESI) and multiple reaction monitoring (MRM)
scans in the positive ion mode. The ion spray voltage was 4.5 kV and the source
temperature was 425 �C. For the measurement of organic acids, sugars, bile acids
and other negatively charged polar metabolites, 30 ml of plasma were extracted with
the addition of four volumes of 80:20 v/v methanol/water5. After centrifugation,
supernatants underwent chromatography on a 150� 2 mm Luna NH2 column
(Phenomenex); mobile phase A: 20 mM ammonium acetate, 20 mM ammonium
hydroxide; mobile phase B: 10 mM ammonium hydroxide in 25:75 methanol/
acetonitrile v/v. The column was eluted isocratically with 10% mobile phase A for
1 min followed by a linear gradient to 100% mobile phase A over 9 min. MS data
were acquired using a 5500 QTRAP triple quadrupole mass spectrometer
(AB SCIEX) using ESI and MRM in the negative ion mode. The ion spray voltage
was � 4.5 kV and the source temperature was 500 �C. For lipids, including
lysophosphatidylcholines, lysophosphatidylethanolamines, phosphatidylcholines,
sphingomyelins, cholesterol esters, DAGs and triacylglyerols, 10 ml of plasma were
extracted in 190 ml of isopropanol26. After centrifugation, supernatants were
separated by reverse phase chromatography using a 150� 3 mm Prosphere HP C4

column (Grace); mobile phase A: 95:5:0.1 10 mM ammonium acetate/methanol/
acetic acid, v/v/v; mobile phase B: 99.9:0.1 methanol/acetic acid, v/v. The column
was eluted isocratically with 80% mobile phase A for 2 min followed by a linear
gradient to 20% mobile phase A over 1 min, a linear gradient to 0% mobile phase A
over 12 min, then 10 min at 0% mobile phase A. MS analyses were carried out using
ESI and Q1 scans in the positive ion mode. Ion spray voltage was 5 kV, and source
temperature was 400 �C. For each lipid analyte, the first number denotes the total
number of carbons in the lipid acyl chain(s), and the second number (after the
colon) denotes the total number of double bonds in the lipid acyl chain(s).

For ARIC samples, metabolites were measured using fasting serum, sampled at
the baseline ARIC examination. Following receipt at Metabolon Inc. (Durham, NC,
USA), untargeted gas chromatography-mass spectrometry and liquid
chromatography-mass spectrometry-based metabolomic quantification protocols
were used to detect and quantify metabolites27,28. Compounds were identified by
comparison to an in-house generated authentic standard library that includes
retention time, molecular weight, preferred adducts, in-source fragments and
associated fragmentation spectra of the intact parent ion.

Exome array. Genotyping was performed using the Illumina HumanExome
BeadChip, which captures putative functional exonic variants selected from over
12,000 individual exome and whole-genome sequences. In order to be included,
nonsynonymous variants had to be observed two or more times in at least two
datasets, and stop-altering and splice variants had to be observed two or more times
in at least two datasets. In addition to nonsynonymous, stop-altering and splice
variants, additional array content included tags for previously described GWAS hits,
ancestry informative markers, random synonymous SNPs, mitochondrial SNPs and
human leukocyte antigen tags. In sum, 4240,000 variants were included on the
exome array. Of these, 109,911 variants were polymorphic in the FHS sample, and a
further subset of 81,021 was nonsynonymous, nonsense, or located in a splice site
and had a MAFr5% (Supplementary Table 1). Details on the exome array design
can be found at: http://genome.sph.umich.edu/wiki/Exome_Chip_Design.

Statistical analysis. Due to right-skewed distributions of metabolite levels and
differences in scaling, genetic analyses were conducted using normalized residuals
of metabolite levels, adjusted for age and sex. The association of genetic variants
and metabolite concentrations was tested using linear mixed effects models to
accommodate pedigree structure under an additive genetic model. Population
stratification was accounted for by adjusting for PC1 if Po0.0001, and the final
genomic control parameter lambda was between 0.92 and 1.11 with a median of
1.02 for all analyses.

Single variant analysis. Analyses were performed using the R GWAF package29.
For discovery, results were considered significant at a significance threshold
adjusted for the number of loci examined, that is, adjusted for the 81,021
polymorphic variants with MAFr5% that were nonsynonymous, stop-altering or
located in a splice site (Po6.2� 10� 7). For replication, results were considered
significant if (1) they reached a significance threshold adjusted for the number of
associations examined (Po8� 10� 3) and (2) following meta-analysis across the
discovery and replication cohorts, the P value of association reached genome-wide
significance (Po5� 10� 8).

Gene-based analysis. The effects of single variant association within a gene were
aggregated by summing up the score statistics using the collapsing method in Li and
Leal11. A variant was considered damaging if it is (1) a stop gain/loss, (2) splice
altering or (3) missense and predicted to be damaging by 2 of the 4 algorithms in
dbNSFP (Mutation Taster, Polyphen 2 HDIV, SIFT, LRT)13. The analysis was carried
out using the R seqMeta package across a total of 13,008 genes, and the significance
threshold in discovery was adjusted for the number of genes examined
(Po3.8� 10� 6). For replication, results were considered significant if (1) they
reached a significance threshold adjusted for the number of associations examined
(Po1.2� 10� 2) and (2) following meta-analysis across the discovery and replication
cohorts, the P value of association reached genome-wide significance (Po5� 10� 8).

Meta-analysis. Single variant meta-analysis was carried out using the inverse
variance weighted method: the meta-analysis beta was the sum of betas from the
two cohorts weighted by the inverse of respective variances. To combine the gene-
based results from the two cohorts, meta-analysis of each single variant was done

Table 3 | New exome variants at loci previously identified by GWAS.

Metabolite Gene Chr Position SNP SNP type MAF Major/minor
allele

P-value Conditioning
SNP

Pconditional

Dimethylglycine DMGDH 5 78340223 rs145258663 Nonsynonymous 0.005 G/A 7� 10� 22 rs248386 1.9� 10� 9

5 78365983 rs248386 Intronic 0.18 C/A 6.6� 10� 33 rs145258663 4.5� 10� 19

Proline PRODH 22 18910355 rs5747933 Nonsynonymous 0.049 G/T 2.3� 10� 12 rs2078743 3.4� 10� 10

22 17346859 rs2078743 Intronic 0.090 G/A 2.2� 10� 14 rs5747933 3.7� 10� 12

DAG 36:2 APOA5 11 116662407 rs3135506 Nonsynonymous 0.062 G/C 2.7� 10� 8 rs964184 4.9� 10� 2

11 116154127 rs964184 Intronic 0.14 C/G 1.3� 10� 11 rs3135506 7.7� 10� 5

DAG, diacylglycerol, SNP, single nucleotide polymorphism.
P-values derived from linear mixed effects models.
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Figure 2 | Interindividual variability and allele frequency in FHS. Estimates of metabolite variance explained by SNPs captured across the common

variant and exome variant arrays are shown for (a) positively charged polar analytes, (b) negatively charged polar analytes, (c) positively charged lipids, not

including TAGs, and (d) TAGs. For each metabolite, the relative contribution for SNPs of MAF o0.5%, 0.5–5% and 45% are shown. See Supplementary

Table 2 for complete results and explanation of abbreviations.
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first, then the single variant meta-analysis statistics were combined using the
method by Pan et al.30 that accounts for linkage disequilibrium to form a test
statistic for each gene.

Conditional analysis. SNPs with significant metabolite associations identified in
our prior GWAS were included as covariates in the linear mixed effect model of
single variant analyses to examine whether the association is attenuated by
adjusting for known associations5. Similarly, SNPs identified in select single variant
analyses were included as covariates in the linear mixed effect model of prior
GWAS findings to examine whether the association is attenuated by adjusting for
the new coding variant.

Heritability. Data on common variant associations from our prior GWAS5,
which conducted genotyping using the Affymetric 500 K mapping array, was
pooled with data acquired herein using the Illumina HumanExome BeadChip.
We then examined the estimated proportion of interindividual metabolite variation
attributable to all non-redundant, polymorphic SNPs across these two arrays, and
subsets of these SNPs binned on the basis of allele frequency (MAFo0.5%, MAF
0.5–5%, MAF40.5%), using GCTA software31. In brief, the genetic relationship
between each pair of individuals was estimated as the correlation of genotypes
across all SNPs under evaluation. Variance explained by this genetic relationship
matrix was estimated in a linear mixed effects model using a subset of unrelated
individuals. The quantitative traits loci heritability of all SNPs under evaluation was
estimated as the ratio of variance explained by this genetic relationship matrix to
total phenotype variance.

Data availability. Data on singled variant and gene-based results for all
metabolites measured in FHS have been deposited in the database of Genotypes
and Phenotypes (dbGaP) under accession code phs000007.v28.p10. All other data
is available within the manuscript or from the authors upon request.
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