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Abstract

Growth-coupling product formation can facilitate strain stability by aligning industrial objec-

tives with biological fitness. Organic acids make up many building block chemicals that can

be produced from sugars obtainable from renewable biomass. Issatchenkia orientalis is a yeast

strain tolerant to acidic conditions and is thus a promising host for industrial production of

organic acids. Here, we use constraint-based methods to assess the potential of computa-

tionally designing growth-coupled production strains for I. orientalis that produce 22 different

organic acids under aerobic or microaerobic conditions. We explore native and engineered

pathways using glucose or xylose as the carbon substrates as proxy constituents of hydro-

lyzed biomass. We identified growth-coupled production strategies for 37 of the substrate-

product pairs, with 15 pairs achieving production for any growth rate. We systematically

assess the strain design solutions and categorize the underlying principles involved.
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1 | INTRODUCTION

Metabolic engineering approaches modify cellular activities in order

to improve the production of metabolite or protein products.1 The rise

of genomic sequencing tools has enabled the rapid reconstruction of

genome-scale metabolic models for a number of organisms.2 These

models can be used to inform intervention strategies through the use

of constraint-based reconstruction and analysis (COBRA)

approaches.3 Current advances in constraint and machine learning-

based metabolic modeling have been recently reviewed.4 The use of

such approaches has aided the successful commercialization of pro-

cesses to produce 1,4-butanediol,5 lactic acid,6,7 and heterologous

proteins for therapeutic use as biopharmaceuticals,8 among others.

One possible approach for strain design is to couple the produc-

tion of a desired product to the growth of a microbe.9 This alignment

of industrial objectives with biological fitness ones can improve path-

way stability by reducing the pressure on selection to divert carbon

away from the product toward biomass. Such a designed strain can

then be acted upon adaptive evolutionary strategies10 to indirectly

select for improved product yield through growth selections.11 The

foundational computational tool for rational strain design that gener-

ates growth-coupled production (GCP) strategies is OptKnock.12

OptKnock solves a bilevel optimization problem to pinpoint a set of

reactions that should be eliminated simultaneously from a metabolic

network in order to ensure that the desired product becomes a poten-

tial byproduct of biomass formation. Each reaction elimination

(RE) design solution can be examined by making the indicated changes

on bounds to the reactions and then plotting a metabolic production

envelope13 that projects the accessible flux space onto the plane of

growth rate and the target's production rate. Through the use of
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integer cuts, alternative solutions can be computed. These alternative

solutions can be examined for implementation via the gene-protein-

reaction (GPR) associations that are part of genome-scale metabolic

models, as well as subjected to additional analyses and rankings, by

using Flux Balance Analysis (FBA).14 Extensions and improvements to

OptKnock has been a fertile area of algorithmic research and has been

reviewed.15 These tools include examples such as RobustKnock,16

FOCAL,17 ReacKnock,18 and SMET.19

When examining generated RE design solution sets, a number of

classifications and production phenotype metrics can be helpful to

describe each solution that produces product p and biomass X from

substrate s, as shown by production envelopes in Figure 1. For sim-

plicity, in this section, we make substrate notations implied. Qualita-

tively, a solution can be partitioned broadly into various cases based

on the production phenotype.12,20–22 Here, we adopt an existing clas-

sification scheme22 with some minor extensions and distinguish five

cases: null, potentially, weakly, and directionally growth-coupled pro-

duction (GCP) and substrate-uptake-coupled production; we further

use a collective category termed strongly growth-coupled production

comprising directionally growth-coupled production and substrate-

uptake-coupled production. The first, null (referred to hereafter as

;GCP), indicates no growth coupling and occurs when at the maxi-

mum biomass production rate, gmax ≔ vX,max, the maximum product

rate, vgmax
p,max, is zero. Typically, the starting network will be ;GCP. For

the second, potentially growth-coupled production (pGCP), the prod-

uct rate, vp, displays a phenotype consisting of equivalent optimal

solutions that does not ensure production of the desired compound.

That is, at the maximum biomass production, gmax, the maximum prod-

uct rate vgmax
p,max is positive whereas the minimal product rate, vgmax

p,min, is

zero. For weakly and strongly growth-coupled production, conversely,

instead the solution displays a phenotype with vgmax
p,min > 0: For weakly

growth-coupled production (wGCP), the production envelope allows

for zero production of the target (i.e., vp,min ¼0) until reaching some

positive growth rate, g0, after which its production is always greater

than zero. For strongly growth-coupled production (sGCP, i.e., both

directionally growth-coupled production and substrate-uptake-

coupled production) the production envelope displays positive pro-

duction of the target for all growth rates greater than zero (i.e.,

vgp,min > 0 for all g >0) and so thus has a maximum growth at produc-

tion onset, g0 ≔ v
vp,min¼0
X,max , of zero. Directionally growth-coupled produc-

tion (dGCP) and substrate-uptake-coupled production (SUCP) differ in

the minimal production rate at no growth, v0p,min ≔ vg¼0
p,min. dGCP has

v0p,min ¼0, indicating that any growth necessitates product formation,

whereas SUCP has v0p,min > 0, indicating that product is always pro-

duced, even at no growth. For some wGCP or sGCP cases, instead of

a singular product rate vgmax
p ¼ vgmax

p,max ¼ vgmax
p,min there exist equivalent

optimal solutions (i.e., vgmax
p,max ≥ v

gmax
p ≥ vgmax

p,min > 0). The RE design solutions

can be ranked by quantitative criteria such as converting the above-

mentioned product and biomass production rates into equivalent

product yields (Y), substrate-specific productivity (SSP),20 growth-

coupling strength (GCS).21

An industrially viable process relying on a microbial production of

organic acids needs to be an efficient producer (i.e., have a high yield

from sugar).23 Although some of the above-mentioned organic acids

have been produced using production hosts such as Escherichia coli

(e.g., succinic acid), the industrial processes require pH neutralization

and thereby result in byproducts such as gypsum. Thus, ideally a pro-

duction host tolerates the low pH associated with a high titer23 which

can enable product separation without extensive neutralization. The

yeast Issatchenkia orientalis (also known as Pichia kudriavzevii, Candida

glycerinogenes, and Candida krusei24) has been proposed to be one

such candidate host since it exhibits tolerance to high levels of

succinic acid, itaconic acid, adipic acid, and acetic acid.25 Strains can

produce ethanol in media containing 5% sodium sulfate at pH 2.0.26

Recombinant I. orientalis strains can produce titers of 11.6 g/L succinic

acid27 and 15–20 g/L lactic acid under anaerobic conditions in an

unbuffered medium at a pH of 2.28 Indeed, a strain was reported to

produce as much as 154 g/L D-lactic acid at a pH of 4.7 after genetic

modifications and subsequent adaptions to high lactic acid concentra-

tions.29 I. orientalis is capable of growth on a number of carbon sub-

strates, with growth/no growth assays previously tested on 34 carbon

substrates26 as well as in a separate study of 26 carbon substrates.30

In the former, seven of the carbon substrates scored positive

(i.e., glucose, lactose, glycerol, lactic acid, succinic acid, citric acid, and

ethanol) and four were delayed positive (i.e., xylose, sucrose, xylitol,

and glucuono-1,5-lactone).26 In the latter, six scored positive

(i.e., same as the positives in the former excepting lactose).30 Quanti-

tative analysis of growth rates was recently evaluated for glucose,

glycerol, fructose, succinic acid, lactic acid, citric acid, and ethanol.31

Isolated strains have been found to grow at a pH of 2.5 on

hemicellulosic and cellulosic oligosaccharides obtained by two-step

extraction with sulfuric acid from six plant sources.32

F IGURE 1 Illustration of production envelopes for a wild type
strain and four mutant strains having different qualities of growth-
coupled production. The accessible solution space is below each

curve and the production envelopes are shown stacked with each
including any regions to the left. For example, the production
envelope of mutant strain C encompasses the regions marked C
and D, as mutant strain D is drawn on top of mutant strain C. The
wild type strain produces no product at its maximum growth rate and
thus has null growth coupling. Key product and growth rates used in
defining qualities are indicated.
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Recent advances in genetic systems for this nonmodel microor-

ganism33,34 expedite its domestication as an industrial host, and a

recently published genome-scale metabolic (GSM) model31 allows for

the application of COBRA3 tools. In the current work, we extend our

limited-scope examination of succinic acid production31 and employ

constraint-based modeling to exhaustively examine the potential max-

imum theoretical yields and dependence of yield on oxygen uptake

for a bevy of 22 organic acids from three to six carbons, including

seven of the organic acid DOE building-blocks, for individually both

glucose and xylose carbon substrates. For non-native organic acids,

we introduce synthetic pathways that enable their production in the

GSM model. We then use OptKnock to perform a large-scale compu-

tational study to identify RE solutions that facilitate GCP strain

designs. For each solution, we classify the various GCP strain designs

with qualitative (i.e., pGCP, wGCP, dGCP, or SUCP) and quantitative

(i.e., Ygmax
P=S,min,Y

gmax
P=S,max, SSP, Y

0, g0, and GCS) characteristics. We exam-

ine the distribution of RE solutions that occur for multiple organic

acids. We also examine the impact on introducing other reactions into

the system that can increase carbon yield for specific targets.

2 | MATERIALS AND METHODS

2.1 | Databases and identifiers

We used BiGG Models,35 MetaNetX,36 ModelSEED,37 ChEBI,38 and

PubChem39 for information about the metabolites and reactions, includ-

ing formula and charge information for the selected organic acids. In

general, we followed BiGG nomenclature for metabolite id, with a few

notable exceptions. Propionate has two entries in BiGG: ppa and prpnte;

we use the former because it has wider usage within the database.

Malonate likewise has two entries in BiGG: HC00319 and malon. We

noted that the latter entry did not contain the formula or charge infor-

mation but did contain links to other databases, whereas the former did

have formula and charge, but no database links despite being used in

more models. Thus, we merged the information from both entries into

the id malon and used that herein, since it more closely follows the typi-

cal naming scheme within BiGG. For 3-hydroxypentanoate, we used

3hpt (unassigned within BiGG) instead of its BiGG id R_3hpt to lessen

the chance of confusion with a reaction id. Metabolites that do not

occur in BiGG were given ids which are unassigned within BiGG. We

used MetaNetX version 4.2 during this process to establish metabolite

and reaction properties and annotations.

2.2 | Modeling simulations

Flux balance analysis (FBA) was used throughout the process for

model predictions.14 The genome-scale metabolic model used for

I. orientalis SD108 is iIsor850.31 For comparisons for carbon sub-

strates, molar amounts of each carbon substrate uptake rate were set

to 10.0 mmol gDW�1 h�1 glucose or xylose, respectively, during simu-

lations. Oxygen uptake rate was limited to no more than 18.18mmol

gDW�1 h�1 during all simulations unless otherwise noted, as this is

the minimal oxygen uptake that does not impact the maximum growth

rate on a 10mmol glucose gDW�1 h�1 basis. Model simulations of

growth phenotype or product formation were obtained using FBA

with the objective of maximizing the flux of the biomass reaction

(vbiom) or product exchange flux (vEX_p) corresponding to the target

product. Unless otherwise indicated, a minimal biomass reaction flux

was set as 10% of the maximum biomass reaction flux found under

the uptake conditions using FBA. For all cases, we used the value of

1.0 for nongrowth-associated ATP maintenance constraint that was

set during the model's reconstruction process.31

During initial stages, we examined if the selected product natively

occurred in the wild type network. If not, then we added a pathway that

enabled its production. The added metabolites and reactions are pro-

vided in SBML format in Supporting Information, Data S1, and the

accompanying notes field of each reaction therein includes the associ-

ated product(s) for which it is added to the model. Using constraints

corresponding to aerobic minimal media conditions with the appropriate

carbon substrate, we examined coupled reaction sets using the Flux Cou-

pling Finder (FCF).40 For any two fluxes in a fully coupled reaction set, a

nonzero flux for a given one implies a fixed nonzero value for the other

member, and vice versa. A gene knockout was translated to the

corresponding reaction elimination(s) by examining the Boolean GPR

associations; each indicated reaction was appropriately eliminated in the

model by setting the corresponding upper and lower flux bounds both to

zero. A gene or reaction was classified as essential if the maximal growth

rate of the corresponding knockout mutant or reaction elimination was

calculated by FBA to be less than 0.001 h�1.

2.3 | Theoretical analysis of production potential

The production potential of each substrate and product pair was deter-

mined using both chemical and biochemical analyses in context of

I. orientalis using FBA. For the chemical analysis, we used two methods.

The first tabulates the ratio of the moles of each product that could be

produced per mole of the sugar carbon substrate based solely on the

number of carbons present in each compound, which we designate the

carbon yield, YPc=Sc : The second, which we designate the available

electron yield, YPe=Se , uses metabolite charges and molecular formulae

to calculate the available electrons for each product and the moles of

molecular oxygen required for complete combustion. For instance, the

reaction for the complete combustion of glucose is

C6H12O6þ12O2� !6CO2þ6H2O

which results in 0+ 2� 12 = 24 available electrons for glucose; for

3-hydroxypropionic acid (which has a charge of �1 under the physio-

logical conditions in the model) it is:

C3H5O
�
3 þ5:5O2� !3CO2þ2:5H2O

which results in 1+ 2� 5.5 = 12 available electrons for

3-hydroxypropionic acid. Thus, 3-hydroxypropionic acid has a theo-

retical yield Y3hppe=glce of 24/12 = 2 mol/mol glucose. For succinic
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acid, similar computations result in 2+ 2� 6 = 14 available electrons

for a Ysucce=glce of 24/14 = 1.71mol/mol glucose. Since all the prod-

ucts and substrates examined herein contain only carbon, hydrogen,

and oxygen, we generalized the equation for available electrons of a

compound with a chemical formula of CxHyOz as e¼4xþy�2z� c,

where c is the net charge. These computations assume no additional

reducing power from a source such as H2.

In order to determine the biologically achievable theoretical maxi-

mum, the workflow was to 1) include any non-native pathways as

required, 2) set the indicated carbon substrate and oxygen uptake

constraints, as given above, 3) use FBA to maximize the exchange flux

corresponding to the target product, and 4) store the resulting objec-

tive and flux values vj,s. The biological theoretical yield potential is

then computed as YP;S ¼ vp;s;max=vs.

2.4 | Reaction subsets and model preprocessing

We determined a reduced set of reactions upon which the OptKnock algo-

rithm operates for each substrate and product pair, largely following and

extending a procedure previously outlined.20 Specifically, we defined and

populated sets of reactions (J) for each substrate-product pair as fol-

lows. Using the appropriate model for each pair (i.e., containing the

base model and only the required non-native pathway that enabled

product formation) we used Flux Variability Analysis (FVA)41 to find

the blocked reactions that cannot carry any flux (Jblocked) for the

medium conditions. By examining the Systems Biology Ontology

(SBO)42 annotations in the model files, we identified all transport reac-

tions (Jtransport) and exchange reactions (Jexchange). By examining the

GPR associations for genes G in the model file, we identified all reac-

tions without a listed GPR (JnonGPR). Essential reactions (Jessential) and

genes (Gessential) were determined by FBA. Gessential and GPR associa-

tions were used to define reactions with no way to eliminate them other

than turning off an essential gene (Jinaccessible_by_GPR). The coupled reac-

tion sets found using FCF were used to define (Jcoupled) that contained

all but one reaction for each set of equivalent reaction eliminations; the

excluded reaction was the first alphabetically in each set of coupled reac-

tions that was not a member of Jtransport [ JnonGPR[ Jinaccessible_by_GPR. We

defined reactions accessible for elimination as

Jaccessible ¼ J� Jblocked[ Jtransport[ JnonGPR[ Jinaccessible by_GPR[ Jcoupled
� �

.

We identified reactions for which a non-zero flux directly impacts

product yield negatively. Based on convention from OptKnock, we

added the constraint vX,s ≥0:1vX,s,max (i.e., the minimum growth con-

straint), which represents an approximation of the minimum growth

required to obtain the necessary cell mass in a bioreactor in a reason-

able timescale. For notational convenience, we define g≔ vX,s: Then

we used FBA to compute the resulting product yield at this constraint,

Yg¼0:1gmax
P=S,max : Next, we fixed the lower bound on the product's

corresponding exchange flux to Yg¼0:1gmax
P=S,max , performed FVA over set

Jaccessible, and found any reactions j for which vg¼0:1gmax
j,min ≤0 ≤ vg¼0:1gmax

j,max :

For some, zero was the only permitted value (i.e.,

vg¼0:1gmax
j,min ¼0¼ vg¼0:1gmax

j,max ) and any nonzero flux through them would

negatively impact product yield); we placed these reactions in set

Jmust_off. Others had non-zero vg¼0:1gmax
p,min and/or vg¼0:1gmax

j,max ; we placed

these reactions in set Jmay_off. Conversely, in order to identify reac-

tions for which a zero flux directly negatively impacts product yield,

for all reactions j in Jaccessible we set both upper and lower bounds of

said reaction to zero (i.e., eliminated the reaction) and ran the optimi-

zation problem to maximize product yield, v
vj¼0
p;s . Reactions for which

this analysis resulted in Y
vj¼0
P=S <YP=S were examined and those with

ratio Y
vj¼0
P=S =YP=S < 0:90 were included in set Jshould_on.

For each substrate–product pair, we used OptKnock to generate

M strain designs made up of k simultaneous reaction eliminations. We

enforced a minimal growth rate constraint of 10% of the maximum for

the starting model, as mentioned above, as well as a minimal product

rate constraint corresponding to 10% carbon yield. OptKnock was

implemented such that it could resume computations given a set of

previous solutions. This implementation also enables parallelization of

computations for substrate/product pair in two by fixing one or more

groups of binary variables. For instance, this procedure allowed forc-

ing reactions such as mitochondrial ATP synthase, vATPS_m, on or off,

as well as fixing individual reactions in Jmust_off or Jmay_off to off or in

Jshould_on to on (or combinations thereof). It could also be used for

examination of higher order sets by fixing off reactions in that were

observed to occur in all solution sets or in one or a particular set. For

solution sets up to size 5 RE, we ran OptKnock only using Jaccessible

and exhaustively examined the solution space. That is, we either did

not fix any reactions to on or off (excluding integer cuts) or we ran

parallel cases fixing the reaction(s) both on and off (or combinations

thereof) and subsequently merged the results. For higher order sets,

we used variable fixing to make OptKnock computationally tractable.

We subsequently used FVA to sort non-unique solutions N that had

exchange fluxes with lower bounds of zero at the maximum biomass

flux (i.e., vgmax
p,min ¼0; pGCP); the remaining unique solutions U were

ones for which the product was guaranteed to be produced at non-

zero amounts at maximum biomass (i.e., wGCP or sGCP). We then

define sets of reactions in each such solution category as JOK
p,s,pGCP or

JOK
p,s,U, the latter of which can be further subdivided into wGCP, dGCP,

and SUCP: JOK
p,s,wGCP,J

OK
p,s,dGCP, and JOK

p,s,SUCP respectively.

We examined the feasibility of implementing RE designs using

gene knockouts by using the GPR associations for each reaction in

the design. For reactions with GPR associations containing only AND

operators, we selected the first gene listed for knockout. For those

reactions containing only OR operators, we selected all genes listed

for knockout. For those reactions containing both AND and OR oper-

ators, we selected the first single gene listed that when knocked out

would ensure the reaction was eliminated. We then knocked out all

selected genes simultaneously and computed the associated produc-

tion envelope, which we then compared with the production envelope

for the corresponding RE design.

2.5 | Metrics computed for strain designs

For each growth-coupled design solution m of the substrate-product

pair we compute the metrics for biological product yields YP=S,m,
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namely YP=S,max, Y
gmax
P=S,max, Y

gmax
P=S,min, Y

0
P=S,min, substrate-specific productiv-

ity (SSPp,s,m)
20 and growth-coupling strength (GCSp,s,m).

21 SSP has also

been called the biomass–product coupled yield (BPCY).43 These quan-

tities are calculated as the following. Each YP=S,m is computed as

described above for the biological theoretical maximum from the

corresponding product formation, vp;s, and substrate uptake, vs. For

instance, from the maximum product formation, vp;s;max, we can

calculate

YP=S,max,m ¼ vp,s,max,m

�vs

with negative vs used in the denominator to make the value positive,

since uptake fluxes have a negative sign by convention. Similarly, we

compute Ygmax
P=S,min and Ygmax

P=S,max using FVA on the product exchange flux

when constraining the biomass flux to gmax,m. Substrate-specific pro-

ductivity is computed from the product yield, YP/S,m, and growth rate,

g. Our SSP metric is the minimal productivity found at the maximum

biomass produced for the given constraints, gmax,m, which we normal-

ized relative to the wild type and carbon yield thus

SSPp,s,m ¼YP=S,min,m

YPc=Sc
�gmax,m

gmax
¼YP=S,min,m

YPc=Sc
�vX,s,max,m

vX,s,max

resulting in a number between 0 and 1. The boundary for SSP for a

given mutant m can be found by instead evaluating SSP along all

allowable values YP=S;max,m along the growth range 0 ≤ g ≤ gmax;m and

substituting these values in the numerators in the expression above.

Finally, GCS is a measure that takes into account the total area, TAm,

of the production envelope beneath the maximal production rate of

the RE strain m, and the inaccessible area, IAm, of the production

envelope beneath the minimal production rate of the RE strain m.21

The GCS metric also considers the minimally guaranteed target prod-

uct yield at maximal growth Ygmax
P=S,max,m and the biologically maximum

theoretical yield YP=S,max for the substrate–product pair in the form of

a penalty for reduction in yield. The piecewise function also uses the

maximum growth rate for which minimal production of the selected

product is zero, vvp,s,min¼0
X,s,max,m, and the minimal product rate at no growth,

vvX,s¼0
p,s,min,m: For notational convenience we define

g0p,m ≔ g
vp,s,min,m¼0
max,m ¼ v

vp,s,min,m¼0
X,s,max,m and v0p,s,m ≔ vgm¼0

p,s,min,m ¼ vvX,s,m¼0
p,s,min,m: In the cur-

rent work, we modified the definition21 so that it is always positive by

defining it as the following:

GCSp,s,m ¼

IAm

TAm
�
Ygmax
P=S,min,m

YP=S,max
þ2 if v0p,s,m >0,g0p,m ¼0 SUCP

IAm

TAm
�
Ygmax
P=S,min,m

YP=S,max
þ1 if v0p,s,m ¼ g0p,m ¼0 dGCP

IAm

TAm
�
Ygmax
P=S,min,m

YP=S,max
þ0 g0p,m > 0 wGCP

8>>>>>>>>><
>>>>>>>>>:

which always has a positive value. Because the model has a positive

nongrowth-associated ATP maintenance (NGAM) value, we do not

have to distinguish cases when SUCP could start at the origin. Higher

GCS values within each tier are better as more of the total area is

excluded and/or yields are closer to the theoretical maximum. We

used numerical integration to compute the areas under the production

envelope curves. Tables with all metrics for all RE design solutions are

provided in Supporting Information, Data S3. The Jaccard ratio was

computed as A\ B
A[ B for the two sets A and B being compared.

2.6 | Computational implementation

Computations for this research were performed on the Pennsylvania

State University's Institute for Computational and Data Sciences' Roar

supercomputer. FBA calculations, Flux Coupling Finder, and

OptKnock were implemented using GAMS 33.2.0 using IBM ILOG

CPLEX solver. Modeling strain design, adding non-native reactions,

set definitions, production envelopes and data processing were com-

puted using the COBRApy package (version 0.13.4),44 pandas,45 and

used IBM ILOG CPLEX solver (version 12.9). Visualization of hyper-

graphs used HyperNetX.46

3 | RESULTS AND DISCUSSION

3.1 | Selection of substrates and products

Although I. orientalis is capable of growth on a range of carbon sub-

strates, for our analysis we focused on the two major sugar monomers

derived from components in processed hydrolyzed biomasss47,48—

glucose and xylose—which can be >90% of it by weight.49 As noted ear-

lier, wild-type I. orientalis grows well on glucose, and grows on xylose

after a delay.26 Thus, we selected both glucose and xylose as the carbon

substrates as proxy constituents of hydrolyzed biomass in the study.

Over a decade ago, the US Department of Energy identified twelve

building block chemicals that can be produced from sugars50 and these

platform chemicals remain relevant to date. Eight of these building

block chemicals are organic acids which range in length from three to

six carbons. They are 3-hydroxypropionic (i.e., 3-hydroxypropanoic),

fumaric, malic, succinic, itaconic, levulinic (i.e., 4-oxopentanoic),

2,5-furandicarboxylic and muconic acids. This report delineated their

subsequent conversion to high-value bio-based chemicals and mate-

rials. For example, 3-hydroxypropionic acid can be converted into

chemicals such as 1,3-propanediol, acrylic acid, methyl acrylate, and

acrylamide, whereas succinic acid (i.e., butanedioic acid) can readily be

converted to polymer precursors such as 1,4-butanediol, N-meth-

yl�2-pyrrolidone, tetrahydrofuran and γ-butyrolactone. In addition to

these building block chemicals, a number of other small organic acids

have important uses and markets. For example, lactic acid is used as a

monomer for polymers,28 3-hydroxy-3-methylbutanoic acid (HMB) is

used as a human dietary supplement,51 and 2,4-dihydroxybutyric acid is

used for chemical synthesis of the methionine analogue 2-hydroxy-

4-(methylthio)butyrate used in animal feed.52

The products examined in the current study were largely drawn

from the study from the US Department of Energy50; in addition to
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the eight organic acids given above, we expanded the list to include

the organic acids present in the report's down selection of the top

30 results, excluding 2,5-furandicarboxylic acid. We also included a

number of other small organic acids that have been examined for pro-

duction in E. coli,20,53,54 or have important uses and markets. The final

list of 22 target products is given in Table 1, arranged by increasing

number of carbons, and the location of these products is shown in

context of the metabolic network in Figure 2, which indicates those

requiring heterologous enzymes be added to the model as summa-

rized in Table 2. When multiple potential pathways existed, we chose

those with the highest number of identified and characterized

enzymes.

3.2 | Production potential

When evaluating the potential of forming a product from a substrate,

factors from both chemistry and biochemistry weigh in. We per-

formed an initial analysis of the three theoretical yields (two chemical

and one biochemical) from conversion of the substrates into each

product. The first was carbon balance yield, YPc=Sc, that uses is the

number of carbons in the product and sugar carbon substrate. Second

was the yield based on available electrons, YPe=Se , which considers the

charges of the products and substrate and computes the amount of

oxygen required to balance an oxidation reaction of each product in

its charged form. Third was the biological theoretical yield, YP=S, which

requires placing production in context of the metabolic network of an

organism. Here, we used the recent GSM model iIsor850 that

accounts for the metabolic capabilities of I. orientalis SD108; the

model has a customized biomass reaction determined form experi-

mental data and is mass and charge balanced.31 We set the oxygen

uptake rate upper limit to the minimal oxygen uptake that does not

impinge the maximum growth rate of the wild-type model, and we

note that I. orientalis is incapable of anaerobic growth.25

3.3 | Chemical theoretical yields

We first performed a carbon balance, denoted as YPc=Sc in Table 1,

which was simply the ratio of carbons in the C3–C6 organic acid prod-

ucts and glucose (C6) or xylose (C5). We used these values to order

the products in the table and as a metric for comparing the other yield

computations. As seen in Table 1, for the yields computed from avail-

able electrons, YPe=Se , can differ for organic acids with the same

TABLE 1 List of organic acids examined in the current study and computed maximum theoretical yields with respect to carbon balances on
the indicated substrate

Glucose Xylose

Name IDa Formula Charge YPc=Sc YPe=Se YP=S YPc=Sc YPe=Se YP=S

Malonate malon C3H2O4 �2 2 3 2 1.667 2.5 1.667

Pyruvate pyr C3H3O3 �1 2 2.4 2 1.667 2.0 1.667

D-Lactate lac__D C3H5O3 �1 2 2 1.876 1.667 1.667 0.520

3-Hydroxypropanoate 3hpp C3H5O3 �1 2 2 1.994 1.667 1.667 0.553

Fumarate fum C4H2O4 �2 1.5 2 1.5 1.25 1.667 1.25

L-Malate mal__L C4H4O5 �2 1.5 2 1.5 1.25 1.667 1.25

Succinate succ C4H4O4 �2 1.5 1.714 1 1.25 1.428 0.833

2-Oxobutanoae 2obut C4H5O3 �1 1.5 1.5 1.367 1.25 1.25 1.13

2,4-Dihydroxybutanoate 24dhbut C4H7O4 �1 1.5 1.5 1.428 1.25 1.25 1.146

3-Hydroxybutanoate bhb C4H7O3 �1 1.5 1.333 1 1.25 1.111 0.827

4-Hydroxybutanoate ghb C4H7O3 �1 1.5 1.333 1 1.25 1.111 0.833

2-Oxoglutarate akg C5H4O5 �2 1.2 1.5 1 1 1.25 0.833

Itaconate itacon C5H4O4 �2 1.2 1.333 1 1 1.111 0.833

Citramalate citm C5H6O5 �2 1.2 1.333 1 1 1.111 0.833

D-Xylonate dxylnt C5H9O6 �1 1.2 1.333 0 1 1.111 1

2-Oxopentanoate 2oxptn C5H7O3 �1 1.2 1.091 1 1 0.909 0.827

4-Oxopentanoate 4oxptn C5H7O3 �1 1.2 1.091 1 1 0.909 0.818

3-Methyl-2-oxobutanoate 3mob C5H7O3 �1 1.2 1.091 1 1 0.909 0.810

3-Hydroxy-3-methylbutanoate 3hivac C5H9O3 �1 1.2 1 0.667 1 0.833 0.556

3-Hydroxypentanoate 3hpt C5H9O3 �1 1.2 1 0.891 1 0.833 0.706

Citrate cit C6H5O7 �3 1 1.333 1 0.833 1.111 0.833

Muconate ccmuac C6H4O4 �4 1 1.091 0.857 0.833 0.909 0.675

aID taken from BiGG Models when available.
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number of carbons and generally decreases as the number of carbons

in the product increases, reflecting the net charge on these mostly

mono or dicarboxylic acids. By depending on the structure and charge

of each product, these chemical theoretical yields form the upper

bound of what is achievable in the absence of additional reducing

power. Because they permit electron-balanced carbon uptake from

CO2 in the form of HCO�
3 as a reactant in the equation, YPe=Se can be

greater than YPc=Sc since this yield is from a sugar substrate carbon

standpoint. Notably, the 11 products with YPe=Se > YPc=Sc highlight

potential opportunities for engineering carbon fixing strategies. For

seven of the products YPe=Se is less than YPc=Sc , reflecting a lower

potential, at least without a source of additional reducing power. For

these cases, YPe=Se instead of YPc=Sc tempers expectations of what

could be theoretically achievable for any biological system, without

other sources of reducing power.

3.4 | Biochemical theoretical yields

Examination of the model revealed that six target metabolites could

be produced by I. orientalis without modifications to the model and

include products such as succinic acid, pyruvic acid, L-malic acid, and

citric acid. For the remaining product targets, we separately

implemented pathways that enable their production by adding mass

and charge balanced reactions to the network. The connection of the

products to metabolism are highlighted in Figure 2 and the added

pathways are outlined in Table 2. For instance, for itaconic acid we

added cis-aconitic acid decarboxylase (CAD) and associated trans-

porters and exchange fluxes. For 3-hydroxypropionic acid we added

the non-native reactions in the β-alanine pathway (i.e., pathway III55).

The full specifics of all these pathways are given in Supporting Infor-

mation, Data S1. At this stage, no other modifications were consid-

ered such as reaction eliminations or additions to other parts of the

network beyond that minimally required to enable metabolite produc-

tion, and we performed each computation without any additional con-

straints other than the model's value for nongrowth-associated ATP

maintenance. The product D-xylonate was not able to be produced

from glucose and was only examined using xylose substrate

conditions.

Using models with added reactions, as required for product for-

mation, we used flux balance analysis (FBA)14 to compute the maxi-

mum biological product yields, YP=S. As seen in Table 1 for glucose six

acids can be produced at the maximum carbon balance yield and for

xylose, seven can. Four of the targeted organic acids could be pro-

duced at biochemical yields close to the carbon balances for both

sugars: 3-hydroxypropanoate, 2,4-dihydroxybutanoate, D-lactate, and

2-oxobutanoate. Interestingly, these same four are the ones for which

the corresponding carbon balance and available electron balance have

the same value. The lower yield from the biological analysis is not

unexpected, at least in part, for some products because the lower

yield stems from the non-growth associated ATP maintenance that

diverts a small amount of carbon through ATP production irrespective

F IGURE 2 Connections of target organic acids to I. orientalis metabolism. Pathways involving heterologous reactions added to the network
are indicated in green. Arrows indicate overall reaction pathway reversibility, with multiple reactions condensed into a single line. The targeted
organic acids are displayed with their chemical structures, as well as two possible liquid by-products, glycerol, and ethanol.
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of other processes in the model. The remaining products had lower

yields, with 3-hydroxy-3-methylbutanoate having a substantially low

one. Via FBA, we found that all of the selected organic acids have the

potential under some condition to be homofermenting, with the only

byproduct being CO2. We also found that, as expected, enforcing a

minimal specific growth rate, vX;s, of 10% that of the wild-type maxi-

mal specific growth rate corresponding to a carbon source uptake of

uptake of 10mmol gDW�1 h�1 (i.e., growth rate of at least 0.1033

h�1 for growth on glucose or 0.0855 h�1 for growth on xylose)

resulted in correspondingly decreased yields.

3.5 | Potential from augmentation

Noting that many yields could use improvement, we examined the

impact of additions to the network that could increase yield. Specifi-

cally, for each organic acid we examined if the addition of fumarate

reductase (FRD) activity would improve yield, which has been used

experimentally27 and in silico31 to increase succinic acid production in

I. orientalis. We also examined if the uptake of carbonate, HCO3
�, facil-

itated by pyruvate carboxylase (PC) activity which has increased citric

acid production in Yarrowia lipolytica.56 We found that only succinic

acid production was improved by fumarate reductase activity, and

only malate and fumarate were improved by carbonate uptake, as was

succinic acid but only with simultaneous expression of fumarate

reductase activity. Notably, both malate and fumarate were able to

reach the available electron theoretical yields for glucose, a 33%

increase, as was succinate for both glucose and xylose via simulta-

neous carbonate uptake and fumarate reductase expression, a 71%

increase.

3.6 | Oxygen dependence

We generated production envelopes for each target product to exam-

ine how restricting oxygen uptake rates impacts product exchange

flux rates. We illustrate these results in Figure 3 for glucose and

xylose using the wild-type or augmented networks without any

imposed reaction eliminations. We varied the oxygen uptake from

0 (i.e., anaerobic, under which conditions I. orientalis does not grow) to

18.18mmol gDW�1 h�1 (i.e., the minimal oxygen uptake that does

not impact the maximum growth rate on a 10mmol glucose

gDW�1 h�1 basis). In general, for the nonaugmented pathways, the

products for which YPc=Sc is less than YPe=Se required higher oxygen

TABLE 2 Heterologous reactions added to enable the production of the indicated organic acid product

Product Added reactionsa

Malonate Aspartate 1-decarboxylase (ASP1DC); beta-alanine-pyruvate aminotransferase (ALABAT); malonic semialdehyde

oxidoreductase (MSADx, MSADy)

D-Lactate Lactate dehydrogenase (LDH_D)

3-Hydroxypropanoate Aspartate 1-decarboxylase (ASP1DC); beta-alanine-pyruvate aminotransferase (ALABAT); malonic semialdehyde

reductase (MSAR)

2-Oxobutanoate Transporter

2,4-Dihydroxybutanoate Malate kinase (MALK); Malate semialdehyde dehydrogenase (MASD); malate semialdehyde reductase (MALSARx,

MALSARy)

3-Hydroxybutanoate Acetoacetyl-CoA hydrolase (AACOAH); 3-hydroxybutanoate oxidoreductase (BDH)

4-Hydroxybutanoate Gamma-hydroxybutyrate dehydrogenase (GHBDHx, GHBDHy)

Itaconate Cis-aconitic acid decarboxylase (CAD)

D-Xylonate D-Xylose NADP+ 1-oxidoreductase (XYLOR); xylonolactonase (XYLC)

2-Oxopentanoate 3-Hydroxyacyl-CoA dehydrogenase (acetoacetyl-CoA) (HACD1); 3-hydroxyacyl-CoA dehydratase (3-hydroxybutanoyl-

CoA) (ECOAH1); acyl-CoA dehydrogenase (butanoyl-CoA) (ACOAD1f); 2-oxopentanoic acid decarboxylase

(2OXPTNDH)

4-Oxopentanoate 4-Hydroxy-2-oxopentanoate aldolase (HOPNTAL); 4-hydroxy-2-oxo-pentanoate reductase (R4H2OPNTNR);

2,4-dihydroxy-pentanoate dehydratase (24DHPNTADH and 4O2PNTNR)

3-Methyl-

2-oxobutanoate

Transporter

3-Hydroxy-

3-methylbutanoate

4-Hydroxyphenylpyruvate dioxygenase/alpha-ketoisocaproate dioxygenase (RE1266C)

3-Hydroxypentanoate Acetyl-CoA:2-oxobutanoate C-acetyltransferase (AC2OBUTAT); 2-ethyl-2-hydroxybutanedioate carboxy-lyase

(2E2HOBTAECBOX)

Muconate 3-Dehydroshikimate dehydratase (DHSKDH); protocatechuic acid (PCA) decarboxylase (PCADC); catechol dioxygenase

(CATADOX)

aTransporters are only listed if the sole addition. Exchange fluxes are not listed. Complete details of added pathways are in Supporting Information,

Data S1.
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uptake rates to achieve the maximum production rate, whereas those

for which YPc=Sc equals YPe=Se had relatively low oxygen uptake

requirements (i.e., below 5mmol gDW�1 h�1). In particular,

3-hydroxypropionic acid had its maximum value at near anaerobic

conditions. The impact on oxygen requirements is improved for all the

augmented pathways when compared to the native pathways, which

is especially pronounced for the uptake of HCO3
� via PC. For xylose,

the results are similar but typically shifted to higher oxygen require-

ments. Of particular note is that some products, including

3-hydroxypropionic acid, using xylose as the carbon substrate have an

oxygen threshold below which they cannot be produced. This situa-

tion arises from inability of I. orientalis to grow anaerobically and the

resulting incapacity to balance cofactors under those conditions. We

also find that the oxygen utilization for succinate production has low

oxygen requirements in the context of FRD and PC expression.

3.7 | Network analysis and accessible reactions for
targeted eliminations

At the onset of our analysis, we performed analyses to reduce the

reaction space for subsequent analyses to those that are accessible

and practical as targets for genetic knockout. The first stage was per-

formed in common to all carbon source inputs, whereby examination

of the model's 1832 reactions found 580 have Systems Biology

Ontology (SBO)42 terms for transporters and 173 have SBO terms for

exchange or other boundary reactions. As many as 719 have no

defined gene–protein–reaction (GPR) associations or are spontane-

ous, which can overlap with the previous sets. For aerobic glucose

conditions, by using FVA we found 760 blocked reactions and 386

essential reactions. Similarly, for aerobic xylose conditions we found

755 blocked and 391 essential reactions. Because we seek to find

implementable interventions, we then examined the set of essential

genes and the reactions they encode; some of these reactions might

not be essential individually, but knocking out a gene could potentially

remove several reactions at once thereby forming a synthetic lethal.

Others are not essential but are only associated with a gene that is

essential because it catalyzes a different reaction which is essential.

We identified 230 essential genes for glucose and 239 for xylose,

which led to 98 (glucose) and 97 reactions (xylose) non-essential reac-

tions encoded by only an essential gene. Combining these results with

a subsequent examination of reactions with complex GPR identified a

total of 106 (glucose) and 107 (xylose) reactions excluded by the GPR

analysis. By combining the results for classification, blocked, and

essential analyses, we identified a set of potentially reactions accessi-

ble to be eliminated containing 279 (glucose) and 280 (xylose)

reactions.

Optimal reaction elimination algorithms such as OptKnock are

computationally expensive and memory intensive as the number of

variables and allowed simultaneous eliminations increase. To further

improve computational tractability by reducing the number of reac-

tions targeted for elimination, we turned to flux coupling analysis by

using the Flux Coupling Finder (FCF) algorithm.40 Doing so allows us

to identify equivalent knockouts, and reduce the reaction space for

F IGURE 3 Oxygen utilization using glucose (solid line) and using xylose (dashed line) as the substrate. The products are arranged by number
of carbons and by a comparison of carbon and available electron yields. A dotted line separates production envelopes for the organic acids
augmented with FRD and PC expression.
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subsequent analyses. We found 81 (glucose) and 82 (xylose) sets of

fully coupled reactions. By permitting only one member of each to

represent the group, taking into account the previous excluded reac-

tions, we found a set of non-redundant practical reactions for glucose

and xylose to both be 223 reactions, which differ by six reactions:

ferrocytochrome-c:oxygen oxidoreductase (FECOOR_m), ubiquinol:

ferricytochrome c reductase (FECRq7_m) and glucose-6-phosphate

isomerase (PGI) present for glucose and aldehyde dehydrogenase

(3-aminopropanal, NAD) (ALDD22x), hexokinase (D-glucose:ATP)

(HEX1) and spermine synthase (SPRMS) present for xylose; these six

are essential reactions for the other substrate. These sets are made

available in Supporting Information, Data S2.

For each substrate–product pair, we used Flux Variability Analysis

(FVA) to identify sets of reactions in the non-redundant practical reac-

tions that individually permitted zero flux through each when con-

straining the production of the target to its maximum value obtained

when biomass production was constrained to at least 10% of its maxi-

mum value, that is, vg¼0:1gmax
j,min ≤0≤ vg¼0:1gmax

j,max : For some, zero was the

only permitted value (i.e., any nonzero flux through them would nega-

tively impact product yield), whereas others had non-zero vg¼0:1gmax
j,min

and/or vg¼0:1gmax
j,max : We also used FBA to examine the effect on product

yield from eliminating each reaction in the respective non-redundant

practical reactions. Most had no impact and the vast majority of those

that did only did so with minimal reductions (i.e., < 1%). Some, such as

pyruvate decarboxylase (PYRDC), glucose-6-phosphate isomerase

(PGI) and NADH:ubiquinone oxidoreductase (complex I)

(NADHcplxI_c_m) had larger negative impacts (i.e., 20% or more

reduction) on production for some but not all substrate-product pairs.

These sets (and corresponding reductions in yield, as appropriate) are

made available in Supporting Information, Data S2.

3.8 | Initial computationally predicted strain
designs

We used OptKnock to determine RE designs for the target organic

acids in order to broadly examine the full range of growth-coupled

production strategies available, including potentially growth-coupled

production. For initial OptKnock simulations, all reactions other than

the 223 non-redundant practical reactions for glucose and xylose

were fixed to be on and not allowed to be eliminated. We also

excluded reactions for which single elimination resulted in zero prod-

uct formation. All RE designs were subsequently partitioned into

pGCP, wGCP, dGCP, and SUCP categories for each substrate–product

pair. Excluding those for the augmented pathways, across all glucose,

reaction pairs we found as many as 3674 RE solutions containing of

up to five reactions that had a potential product yield of at least 10%

carbon yield at maximum growth rate (i.e., Ygmax
P=S,max=YPc=Sc ≥ 0:1Þ; these

RE solutions contained 105 different reactions. For xylose we found

as many as 3318 solutions involving 95 reactions meeting the same

criterion. These reactions are provided in Supporting Information,

Data S3. Of these, 13 (glucose) and 3 (xylose) reactions were unique

to the one substrate. The number of designs per substrate–product

pair varied considerably, with some such as native metabolites pyru-

vate, fumarate, and succinate having many solutions. For glucose, we

found dGCP or SUCP designs for only six of the products (viz.,

malonate, pyruvate, D-lactate, 2-oxoglutarate, and 2-oxopentanoate)

and for xylose, we found dGCP or SUCP designs for malonate, D-lac-

tate, succinate, 2-oxoglutarate, D-xylonate, and 2-oxopentanoate, with

succinate, 2-oxoglutarate, and D-xylonate having numerous solutions.

Interestingly, D-xylonate had the largest number of SUCP designs,

reaching as high as 0.923 of the carbon yield from xylose. We found

wGCP designs for 15 and 13 products from glucose and xylose, respec-

tively. Only pGCP designs existed for malate, 4-hydroxybutanoate, and

4-oxopentanoate for both sugars, and as many as 10 substrate-product

pairs had no solutions, including 2-oxobutanoate, 3-hydroxybutanoate,

citramalate, 3-hydroxypentanoate. As seen in Figure 2, the later three all

derive wholly or in part from acetyl-CoA. For each strain design we

computed our evaluation metrics including Y
gmax,s

p,min,s, Y
gmax,s
p,max,s, g0, Y

g¼0
p,min,s,

SSPp,s, and GCSp,s, as well as the range of oxygen uptake at gmax;s. We

ranked the RE solutions descending using Ygmax
p,max for pGCP and Ygmax

p,min

for wGCP, dGCP, and SUCP; the RE solutions and corresponding met-

rics values are provided in Supporting Information, Data S3. We com-

pared the similarity of solutions for the two carbon sources by

computing the Jaccard index across all products, shown in Table 3.

Comparisons of solutions made within a substrate are in Supporting

Information, Data S4. In general, we found that there was less than

50% overlap of designs for the two sugars.

3.9 | Examination of factors contributing to
designs

We examined the reactions that occurred within the solutions of each

product for the substrate-product pairs by creating incident matrices

encompassing the reactions for each qualitative category of solutions.

We found that some reactions were ubiquitous for a given substrate-

product pair, or nearly so. As given in Table 4, we found that for as

many as 13 of the products there were such reactions. Some of these

28 reactions, such as ATP synthase (APTS_m), pyruvate decarboxylase

(PYRDC), appeared in more than one product. We also observed dif-

ferences between the two substrates which was particularly notice-

able for 3-hydroxypropionate, for which had mutually exclusive lists,

with ribulose 5-phosphate 3-epimerase (RPE) only occurring for

xylose and aspartate transaminase (ASPTA), ATPS_m, and NADH

dehydrogenase (NADHq7) only occurring for glucose.

Analysis for reactions that we found occurring ubiquitously in the

solutions revealed enzymes that have been the target of industrial-

based processes or previous strain designs. For instance, (R)-lactate:

ferricytochrome-c 2-oxidoreductase has been reported as a target for

improving lactic acid production in recombinant yeast.29 In E. coli,

aspartate transaminase activity has been a target for deletion to

increasing the production of β-alanine,57 which is an intermediate in

the 3-hydroxypropionate pathway we used. A strain of S. cerevisiae

that oxidatively produces succinate involved the deletion of succinate

dehydrogenase.58 The deletion of pyruvate decarboxylase, as seen in
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our malate and pyruvate designs, has also been examined in

S. cerevisiae,59 although the authors focused on its impact in succinic

acid production; it does occur in our designs, albeit not ubiquitously.

The deletion of ATP synthase has been observed to be a frequent

deletion target in other growth-coupling strategies in E. coli21

whereby the ATP yield from the pathway producing the target prod-

uct is greater than the other residual ATP forming pathways after ATP

synthase is deleted. In general, these ubiquitous and near-ubiquitous

reactions are early candidates for implementation in I. orientalis, espe-

cially those that occur for several organic acids, such as pyruvate

decarboxylase. As expected from our previous limited study on adding

fumarate reductase (FRD) activity to improve succinic acid yield in

silico,31 which agreed with in vivo experiments27 and in the current

work, we found that its production could be enhanced through the

uptake of carbonate. The RE designs for succinate, fumarate and

malate augmented with FRD and PC expression were similar to those

without.

Using the incident matrices, the structure of RE design solutions

for a substrate-product pair can be revealed, for instance, using hyper-

graphs46 and bipartite graphs with nodes representing the reactions in

a solution as well as a node for each solution. In general, we found

that higher order sets are not necessarily constructed by simply

adding on reactions to existing solutions, though such smaller sets can

be kernels for some of them. For example, for sGCP designs for

xylose-succincate, the five solutions of size three could be extended

into 23 of the 40 solutions of size four upon the addition of one dif-

fering extra reaction. Similarly, pGCP designs can be promoted to

wGCP or sGCP through the addition of reactions in higher-order sets,

as can wGCP to dGCP or SUCP designs.

3.10 | Improving strain designs categorization

Using the results from Table 4 and the sets of reactions found in

Supporting Information, Data S2 that impact each product's yield and

from the initial computationally predicted strain designs, we subse-

quently examined higher-order simultaneous reaction eliminations

focusing on finding designs with improved qualitative and/or quanti-

tative metrics: either entry into a better category of GCP for those

with at best ;GCP, pGCP, or wGCP designs or improved quantitative

metrics for those already with dGCP or SUCP designs. We also con-

tinued searches without any additional constrains on selectable reac-

tions. Table 5 summarizes our results for all strain design solutions.

We found as many as 3841 solutions involving 106 reactions for glu-

cose and 3393 solutions and 95 reactions for xylose. These reactions

are tabulated in Supporting Information, Data S2.

We found that the constrained maximum oxygen bound

described above in the oxygen dependence analysis (i.e., 18.18mmol

gDW�1 h�1) was reached by 2498 glucose–product pair designs, of

which 1037 also had the minimum oxygen uptake at the same limit. In

concordance with the oxygen dependence analysis, examination rev-

ealed that except for succinate, nearly all sGCP designs had maximum

oxygen uptake rates below this constraint. Results for xylose wereT
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proportionally smaller, with 1732 designs having maximum oxygen

uptake rates constrained by the bound and 364 designs having the

minimum oxygen uptake also so constrained. This difference arises

because the oxygen uptake constraint was set based on glucose

uptake; selecting xylose designs with oxygen uptake rates above

15.42mmol gDW�1 h�1 (i.e., the minimal oxygen uptake that does

not impact the maximum growth rate on a 10mmol xylose

gDW�1 h�1 basis) reveals 2695 designs (maximum) and 1368 designs

(minimum).

We added 3-hydroxypropionic and citric acids to the set of acids

with sGCP designs, added 4-oxobutanoic acid to those with wGCP,

and identified solutions with increased quantitative metrics for other

acids. We were able to find one pGCP design for citramalate from glu-

cose and one for 2-oxobutanoate from xylose, but were unable to find

any solutions for the other substrate-product pairs previously with

only ;GCP. Figure 4 summarizes the wGCP and sGCP designs for the

15 substrate–product pairs for which we were able to find at least

one dGCP or SUCP design. It also shows the corresponding produc-

tion envelope for the highest-ranked design of each pair, as deter-

mined by GCS. A total of 11 substrate–product pairs had at least one

SUCP design. In total, nine pairs are predicted to have yields near the

target biological theoretical maximum with seven also having high

carbon yields. All design solutions summarized in Table 5 are provided

in Supporting Information, Data S3, and production envelope scatter

plots for all organic acids are provided in Supporting Information,

Data S5.

For the highest-ranked RE designs for the 15 pairs in Figure 4, we

used GPR associations to ascertain the feasibility of implementing

them via gene knockouts. For each pair, we report the corresponding

number of reaction:gene interventions; the differing numbers for each

intervention type arose typically because of isozymes associated with

some reactions. For glucose, five products had identical production

envelopes for both RE and the corresponding gene knockouts (viz.,

malonate (5:5), D-lactate (5:7), succinate (5:7), 2-oxoglutarate (5:5),

and 2-oxopentanoate (3:4)). For xylose, three had identical production

envelopes for both RE and gene knockouts (viz., malonate (5:5), D-

lactate (5:7), and 3-hydroxypropanoate (6:7)). Glucose production of

pyruvate (5:6) and xylose production of 2-oxoglutarate (5:5) and D-

xylonate (5:6) had the same vgmax
p,min for both RE and gene knockouts

and had lower v0p,min for each respective gene implementation but

remained SUCP. For xylose production of succinate (5:7) the gene

implementation revealed a synthetic lethal involving glycerol-

3-phosphate acyltransferase (G3PAT_l). Use of an equivalent alterna-

tive RE design (i.e., one having all the same number of reactions,

vgmax
p,min, and GCS score) corresponded to a 6 gene knockout design with

the same vgmax
p,min and a lower v0p,min that remained SUCP. Xylose produc-

tion of 2-oxopentanoate (4:4) similarly had the same vgmax
p,min for both RE

and gene knockout designs but the latter's v0p,min decreased to zero

which relegated it to dGCP. Finally, analysis of citrate produced from

glucose (6:7) and xylose (6:7) also uncovered a synthetic lethal at the

gene level, arising from the inclusion of the cytosolic reaction

3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DDPA_c).

Examination for both substrates of reaction and gene

implementations excluding this reaction reveals that all designs remain

dGCP but fall below the carbon yield cutoff filter. A more general

analysis using FBA to uncover other synthetic lethals in other RE

designs also revealed participation by the reactions glycerol-

3-phosphate acyltransferase (G3PAT_rm), ribonucleotide reductase

(UDP) (RNDR4_c) and 3-deoxy-D-arabino-heptulosonate 7-phosphate

synthetase (DDPA_m). These five reactions impact as many as

246 glucose solutions and 314 xylose solutions. In summary, although

there can be execution challenges when designing based on RE, we

found realizable gene-level implementations with identical or compa-

rable production envelopes to the RE designs for 12 of the 15 sub-

strate–product pairs that exhibited sGCP, and the remaining three

nevertheless retained sGCP.

4 | CONCLUSION

In this work, we detailed the potential of I. orientalis as an organic acid

producer. We found that for most of the selected products OptKnock

suggested designs involved high yields. As we noted, currently

I. orientalis metabolizes xylose slowly after a long delay, and this ability

to consume xylose is consistent with the presence in its genome of all

F IGURE 4 Production envelopes showing the product rates
accessible for each feasible growth rate using (a) glucose and

(b) xylose as the substrate. In the main of the paired plots, each design
solution is represented by a scatter point at the maximum growth rate
and associated minimum production rate. These designs are color
coded as in Figure 1, with blue circles indicating weakly growth-
coupled production designs, orange triangles directionally growth-
coupled production designs, and red squares substrate-uptake
coupled production designs. On the inset of the paired plots, the
production envelope for the strongly growth-coupled production
design with the highest GCS metric is filled with the color of its
corresponding symbol.
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genes needed for D-xylose conversion to D-xylose-5-P via the oxido-

reductase pathway of xylose reductase, xylitol dehydrogenase and

xylulokinase, which can then funnel into the pentose phosphate path-

way.31 However, metabolic engineering methods could be applied to

improve xylose as an effective substrate. Genetic interventions or

serial cultivation could be used to modify directly or indirectly the

existing genes needed for the oxido-reductase pathway along with

their regulation. We note that metabolic engineering methods have

permitted the yeast Saccharomyces cerevisiae to use xylose via the

oxido-reductase pathway by expressing genes from Scheffersomyces

stipites,60 which could similarly be implemented in I. orientalis. Alterna-

tively, an isomerase pathway from another organism could be intro-

duced that directly converts xylose into xylulose followed by the

xylulokinase of the oxido-reductase pathway.

The oxygen uptake analysis underscores one facet of operational

conditions and the impact it can have on production yields. Our

results suggest that 3-hydroxypropionic acid production is well-suited

to require little input of oxygen beyond that required to grow the nec-

essary cell mass in a bioreactor. Similar outlooks were found for succi-

nate, fumarate and malate in the presence of additional functionality

added to the cell such as fumarate reductase or pyruvate carboxylase

activity. We anticipate future examination to highlight other adjunct

heterologous pathways for other products that improve oxygen

requirements as well as other pathway augmentations that can

increase the in vivo yield of organic acids closer to the carbon and/or

available electron maximum theoretical yields.

We were able to find growth-coupled production designs or

potentially growth-coupled designs for almost every product (i.e., 37

of the 43 substrate–product pairs). We found some form of unique

GCP designs (i.e., wGCP or sGCP), for 29 substrate–product pairs, of

which 9 had at least one sGCP design with yields near the theoretical

biological maximum. Work remains, however, to move those with

wGCP designs into dGCP or SUCP designs and to identify even pGCP

design solutions for some pairs, including 2-oxobutanoate,

3-hydroxybutanoate, and 3-hydroxypentanoate. As seen in Figure 2,

the latter two derive wholly from acetyl-CoA. The inability to couple

an acetyl-CoA drain to growth was observed in E. coli network

analysis,21 although there the problem was described as being due to

the model's inability to compensate for the CoA drain, which similarly

impacted succinyl-CoA. We were able to find one pGCP design for

citramalate, which also derives in part from acetyl-CoA. In the absence

of available wGCP or sGCP designs, it is advantageous to identify, as

we have done here through the use of OptKnock, if there are strain

designs or conditions under which the product could nevertheless be

noncompeting with biomass production (i.e., pGCP) instead of directly

antagonistic to biomass production (i.e., ;GCP). Additional effort is

required to determine effective production routes for those products

which only had pGCP designs. One alternative approach to growth

coupling is to use a method such as OptForce61 in combination with

labeled substrates in order to determine optimal flux values for high

yields and then engineer the system to have such fluxes, by up or

down regulating specific fluxes. Such an approach is especially attrac-

tive for products without sGCP designs. We provide the caveat that

our results do not necessarily preclude higher order RE strategies

from forming wGCP or sGCP designs. We furthermore note that addi-

tional analyses are required to map RE into implemented gene knock-

outs and check feasibility. Such analyses include considerations such

as GPR associations and identification of major isozymes.62 Here, we

were able to elucidate effective GCP gene implementations for nearly

all the top scoring RE designs for substrate-product pairs having sGCP

designs. We point out that the flux coupling reduction process we

used identifies equivalent reaction eliminations and has the potential

to avoid reactions that would otherwise be prohibited because of syn-

thetic lethals or other gene implementation difficulties.

The somewhat low Jaccard index between solutions for different

substrates for the same product suggests that deriving a single strain

capable of effectively metabolizing both substrates into product could be

challenging, especially if much of the metabolic engineering work is pri-

marily tested and focused at the onset on one of the sugars. Early exami-

nations of strain design with an eye for one that targets both could

behoove the process. Another approach could be to design and use

mixed cultures, with one strain for each substrate. Organic acid produc-

tion at low pH can have energetically expensive energy requirements for

product export.63 Typically GSM models, including the one used in the

current work, have been reconstructed with charges on metabolites

determined at a single neutral pH value across the model and with con-

stant ATP maintenance values,64 although some models have included

physicochemical specification differences between pH5 and 8.65,66 We

anticipate that accounting for physicochemical specifications of different

compartments, allowing pH-dependence of ATP maintenance, and incor-

porating regulatory constraints could further enhance predicting the pro-

duction potential of I. orientalis. The process and methods we apply

herein can be readily applied to other product categories.
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