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Abstract: Natural compounds, in recent years, have attracted significant attention for their use in the
prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic
acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia
serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various
chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s
disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities
include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review
is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying
molecular mechanism of action against different ailments. Further, this review also discusses the
roadblocks associated with the pharmacokinetics and bioavailability of this promising compound
and strategies to overcome those limitations for developing it as an effective drug for the clinical
management of chronic diseases.
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1. Introduction

Chronic disease can be defined as a physical or psychological state that leads to functional
limitations or requires constant observation or treatment for a long period. Worldwide, chronic diseases
have hampered the health and living conditions of many [1]. Many of the universally used clinical
drugs (especially the biologics) these days bear the shortcomings of side effects and high treatment
cost [2]. Thus, numerous natural compounds, which have identified as potent modulators of signaling
and epigenetic pathways leading to cancer, are under development presently [3]. Natural products
have gained considerable attention as they are plentiful sources of diverse compounds, which can
function as biologically active drugs against different chronic diseases [4–14]. These plant-derived
molecules have significantly enhanced the existing medicinal system. For example, in a developing
nation like India, around 65% of the country’s population gets benefitted by the use of phytomedicines
that play an essential role in the health management system. satisfying. In developed nations like
the USA, the sale of phytomedicines has registered a sharp incline in recent years. Around 80% of
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the African population relies on the use of phytomedicines to meet their health care needs through
the use of traditional medicines. According to the WHO, nearly 80% of the world’s population uses
phytomedicines for the management of various ailments [15–24].

For generations, numerous natural compounds extracted from different plants and showing
significant pharmacological properties, have used for treating various chronic diseases. To date,
about 10,000 phytochemicals comprising of tannins, flavones, triterpenoids, steroids, saponins, and
alkaloids have identified, and many more are yet to discover. It is believed that the antioxidant
activity of phytochemicals increases their action synergistically, as numerous reports evidenced that
overproduction of oxidants (reactive oxygen species and reactive nitrogen species) causes many chronic
diseases such as cardiovascular diseases (CVD), diabetes, and cancers [25–31].

Boswellic acid (BA) is one such phytochemical, obtained from the gum resin of the Boswellia species,
that possibly aid in the treatment of different chronic diseases. Traditionally, the gum resins of Boswellia
species found its applications in various adhesives, cosmetic preparations, coating materials, the
incense used in cultural rites and rituals, and many more. It is one of the most essential and commonly
used components in conventional Ayurvedic and Unani medicines, which have proven to be extremely
effective in relieving numerous inflammatory, gastrointestinal, hormonal, and microbial diseases [32].
The conventional drug is said to have the properties of an anti-inflammatory, antiseptic, expectorant,
anxiolytic, antineurotic, analgesic, and tranquilizing drug [33]. Various preclinical and clinical studies
have established that it exhibits substantial potential in the management of inflammatory ailments such
as asthma, arthritis, cerebral edema, chronic bowel diseases, chronic pain syndrome, cancer, etc [34,35].

1.1. Sources and Chemical Analogues of Boswellic Acid

BA comprises of a series of pentacyclic triterpene molecules, generated by the trees in the genus
Boswellia, usually known as Indian olibanum, salai guggal, loban, or kundur, and is found to be effective
against many diseases. Categorized under the Burseraceae family, these are moderate to large-sized
branching trees prevailing over the mountainous regions of India, Northern Africa, and the Middle
East. The genus Boswellia consists of roughly 25 species widely dispersed in Arabia, the Northeastern
coast of Africa, and India [32,36] (Figure 1).
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In India, Boswellia is mostly found in Andhra Pradesh, Gujarat, Madhya Pradesh, Jharkhand,
and Chattisgarh. These are the most viable sources of Boswellia. The gum resin of B. serrata and
B. carteri contain as many as 12 different types of BAs, but among these the six major acids identified
are α and β-boswellic acids (BA), acetylated α and β-boswellic acids (ABA), 11-keto-β-boswellic acid
(KBA), and 3-O-acetyl-11-keto-β-boswellic acid (AKBA), which are liable for inhibiting the enzymes
involved in inflammation. Several added BAs extracted from Boswellia are 9,11-dehydro-α-BA
and 9,11-dehydro-β-BA, and their respective acetylated forms acetyl-9,11-dehydro-α-BA and
acetyl-9,11-dehydro-β-BA. Some additional chemical components of Boswellia include lupeolic acid
and acetyl-lupeolic acid, incensole acetate, incensole oxide, and isoincensole oxide. Studies have also
described the incidence of a pentacyclic triterpenediol combination of 3α,24-dihydroxyurs-12-ene
and 3α,24-dihydroxyolean-12-ene, serratol, α-thujene, tirucall-8,24-dien-21-oic acids, oilbanumols
D-G, α-pinene, and octyl acetate in the crude Boswellia gum resin extract. However, KBA and AKBA
have proven to be the most potent in downregulating the production of cytokines and inhibiting the
enzymes responsible for inflammatory responses. Hence, these have reported as efficient therapeutics
against different chronic diseases [32,37–41], (Figure 2).

1.2. Pharmacological Activities of Boswellic Acid

The pharmacological activities of BA are attributed to its aptness to induce anti-inflammatory,
expectorant, antiseptic, anxiolytic, anti-neurotic, analgesic, tranquilizing, and antibacterial effects [33].
It can modulate diverse targets such as enzymes, growth factors, kinases, and transcription factors, as
well as receptors, which allow it to stimulate apoptosis, cell cycle arrest, etc. [36]. It can also inhibit
different signaling pathways [42] related to cell survival [43], proliferation [44], and metastasis [45].

2. Molecular Targets of Boswellic Acids

Different chronic diseases, including CVDs, diabetes, and cancers, arise from the alteration
of multiple signal transduction cascades and can affect people of all ages [46,47]. It is now well
established that BA is a multitargeting agent. It can modulate several molecular targets, including
enzymes, growth factors, kinases, transcription factors, receptors, and others related to the survival
and proliferation of cells [36], (Figure 3). Increasing lines of evidence indicate that nuclear-factor
kappaB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) activation can lead to
survival, angiogenesis, and metastasis of the cancer cells [43,48–78]. Hence, studies aimed at targeting
these pathways may pave the way for both the prevention and treatment of cancer and other chronic
diseases [79]. In the year 2006, Poeckel and Werz reviewed the molecular mechanisms essential for
the biological activities of BAs, where they have discussed its target molecular mediators, such as
5-lipoxygenase, human leukocyte elastase, topoisomerase I, II, and IκB kinases. Furthermore, BAs were
reported to have the ability to differentially-regulate the Ca(2+/−) and mitogen-activated protein kinases
(MAPK) signaling cascades in blood cells, and also affect the functional cellular processes that are
imperative for inflammatory reactions and tumor growth [80–82]. Alterations of these inflammatory
pathways can lead to serious diseases including ulcerative colitis, rheumatoid arthritis, bronchial
asthma, chronic colitis, Crohn’s disease, peritumoral brains edemas, etc., and BAs are known to target
them through the above mentioned molecular mediators [83]. Several analogues of BA were also
reported to target the key mediators involved in the pathogenesis of cancer including NF-κB, STAT3,
peroxisome proliferator-activated receptor gamma (PPAR-γ), CCAAT enhancer-binding proteins alpha
(C/EBP-α), cyclooxygenase-2COX-2, matrix metallopeptidase 9 (MMP-9), Caspase, Cyclin D, Cyclin
E, p21, p53, Rb, Bcl-2, Bcl-xL,Mcl-1,inhibitor of apoptosis (IAP-1), survivin, vascular endothelial
growth factor (VEGF), platelet-derived growth factor (PDGF), androgen receptor (AR), death receptor
5 (DR-5), CXCR4, PDGFR, Akt, ERK1/2, p38 MAPK, cyclin-dependent kinase (CDK) -2, CDK-4. These
mediators are involved in different processes of cancer development [84–86], such as uncontrolled
proliferation [87], unresponsiveness to inhibitory signals, resistance to apoptosis [88], angiogenesis [89],
metastasis [90–101]. Among these molecular targets, NF-κB and Akt play an important role in cancer
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progression regulating cancer cell proliferation, survival, invasion, metastasis, and high mortality of
patients [77,78]. Moreover, they are also responsible for inducing chemo and radioresistance in the
cancer cells [102,103].
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3. Potential Role of BAs in the Treatment of Chronic Diseases

As aforementioned, BA is a multitargeted compound, which enables its use against diverse
diseases (Figure 4). The prospective of BAs in managing various chronic diseases is well evidenced by
a number of preclinical studies through their ability to modulate multiple mediators involved in the
pathogenesis of diverse diseases (Table 1).
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3.1. Arthritis

Arthritis predominantly arises due to inflammation of joints and the connective tissues surrounding
them. Osteoarthritis, being the predominant of all forms, affects a wide range of the population
all over the world [104]. A study on the effect of BAs in bovine serum albumin (BSA)-induced
arthritis reported that on oral administration, BAs (25, 50, and 100 mg/kg/day) noticeably mitigated the
leucocyte population and inhibited its infiltration into the knee joint as well as the pleural cavity in a
BSA-injected knee. Also, the electrophoretic pattern of the proteins present in the synovial fluid was
altered [105]. Additionally, when BA was conjugated with an active metabolite rhein and administered
at the specified dose level of 15.73 mg/kg, p.o. (BID), it reduced the diameter of the knee and normalized
the biochemical and hematological anomalies in rat models of collagenase-induced osteoarthritis [106].
Another study demonstrated that under topical treatment, the concentrations of BA in synovial fluid
increased two- to six-fold as compared to its level in plasma. Loss of cartilage in mice was found to
reduce considerably after oral or topical treatment with BAs compared to vehicle control [107].

Table 1. Biological activity of boswellic acid against different diseases.

Diseases Mechanism/Outcome References

Arthritis
↓ Infiltration of leucocytes [105]
↓ Knee diameter [106]
↓ IL-1β and TLR4, ↑ Synovial activation [107]

RA-derived bone loss disease ↓TNF-α and NF-κB activity [108]
Alzheimer’s disease ↑ Reeling expression, ↓ ROS generation [109]

Asthma
↓ Expression of pSTAT6 and GATA3 [110]
↓ Expression of pSTAT6 and GATA3 [111]

Atherosclerosis ↓ NF-κB activity [86]
Breast cancer ↑ ER/UPR response [112]
Bladder cancer ↑ Tumor cell specific cytotoxicity [113]

Brain cancer
↓ Phosphorylation of Erk-1 and Erk-2 [84]
↑ Apoptosis [114]

Cervical cancer ↑ PARP cleavage [115]

Colon cancer

↑ let-7, CDK6, vimentin, and E-cadherin [34]
↓ 4E and cyclin D1, ↓ G2/M cell cycle [42]
↓ Intestinal tumorigenesis [91]
↓ Cyclin D1 and E, CDK 2 and 4 [87]
↑ PARP cleavage [115]
↓ Caspase-3 or caspase-8 [116]
↑ Expression of SAMD14 and SMPD3 [117]
↑ Apoptosis [118]

Cognitive impairment ↓ Glutamate level [119]

Ehrlich tumor

↓ NF-κB and tumor growth,↑ PARP cleavage [93]
↑ PARP cleavage and apoptosis [115]
↑ Tumor cell apoptosis [120]
↑ Caspase-3, and apoptosis [121]

Glioma

↑ p21 via p53-independent pathway [122]
↓ Growth of C6 glioma [123]
↓ Topoisomerase I [95]
↑ Apoptosis [114]
↓ Topoisomerases I and II [97]

Glioblastoma
↓ G2/M phase, p21/FOXM1/cyclin B1 [124]
↓ p53 and Bcl-2, ↓ IkB-α [125]

Myeloid Leukemia

↑ Apoptosis [126]
↑ Caspase-3 and -8, and DR4 and DR5 [127]
↓ PI3K/Akt/Hsp-90 cascade [128]
↓ DNA synthesis [129]

Liver cancer ↑ Caspase-3 and -8 dependent apoptotic pathway [130]

Lung cancer

↓ NF-κB signaling [89]
↑ Apoptosis [123]
↑ PARP cleavage, apoptosis [115]
↑ PARP cleavage, JNK pathway [131]

Melanoma ↓ Topoisomerase II, and MMPs [96]
Meningioma ↓ Phosphorylation of Erk-1 and Erk-2 [84]
Myocardial injury ↓ CK-MB and LDH [132]
Neuroblastoma ↑ PARP cleavage, ↑ Apoptosis [115]

Pancreatic cancer
↓ COX-2, MMP-9, CXCR4, and VEGF [90]
↓ p-mTOR, p-p70S6K (T389), p-4EBP and p-S6 [133]

Parkinson’s disease ↓ Inflammatory markers [134]
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Table 1. Cont.

Diseases Mechanism/Outcome References

Prostate cancer

↓ NF-κB signaling, Bcl-2, and Bcl-x(L) [88]
↑ DR5-mediated pathway [99]
↓ AR signaling, ↑ p21(WAF1/CIP1) [100]
↓ Tumor growth and angiogenesis [101]
↑ Caspase 3 and apoptosis [135]
↓mTOR signaling [136]
↑ PARP-1 cleavage, ↓ tumor growth [137]
↓ Akt and STAT3 signaling [138]
↓ Cyclin D1, and Pin1 [139]

Psoriasis
↓ IL-12, IL-23, TLR7/8, and IRF [140]
↓ SAM/SAH ratio [141]

Pulmonary arterial hypertension ↓ Apoptosis and proliferation [142]
Chikungunya ↓ Entry of CHIKV Env-pseudotyped lentiviral vectors [143]

Diabetes

↑ Synthesis of secretory granules [144]
↓ Islet destruction and consequent hyperglycemia [145]
↑ Blood glucose and HbA1c [146]
↓ Cytokine burst, and blood glucose [147]
↓ Infiltration of lymphocytes into pancreatic islets [148]

Ischemia-reperfusion

↑ Antioxidant capacity, ↓ inflammatory cascades [149]
↑ Nrf2 and HO-1 [150]
↑ Nrf2 and HO-1 [151]
↓ Brain infarction, neuronal cell loss, and apoptosis [152]

Gastric injury ↑ Nrf2 and HO-1 [153]
Gastric ulcer ↓ Biosynthesis of leukotrienes [154]
Hepatic injury ↓ Glutathione, and ROS [155]
Hepatotoxicity ↑ Nrf2 and HO-1 [156]
HSV-1 infection ↓ NF-κB, p38 MAP-kinase, TNF-α,IL-1β, and IL-6 [157]
Ileocecal adenocarcinoma ↑ Rhodamine (Rh123), ↓P-gp, andMDR gene1 [158]
Renal intestinal fibrosis ↓ TGFβ-RI, TGFβ-RII, p-Smad2/3, and Smad4 [159]
Urogenital toxicity ↓ Glutathione peroxidase, catalase, and SOD [160]
Neuroinflammation ↓ P-IκB-α, miRNA-155 expression level [161]

Abbreviations: IL-1β= interleukin 1beta; TLR4= toll-like receptor 4; RA= rheumatoid arthritis; TNF-α=tumor
necrosis factor α; NF-κB= nuclear factor kappa-light-chain-enhancer of activated B cells; ROS= reactive
oxygen species;pSTAT6= phospho-signal transducer and activator of transcription 6; ER/UPR= endoplasmic
reticulum/unfolded protein response; Erk= extracellular-signal-regulated kinase; PARP= poly-ADP ribose
polymerase; let-7= lethal-7; CDK6=cyclin-dependent kinase 6; FOXM1= the forkhead box m1; Bcl-2= B-cell
lymphoma2; PI3K= phosphoinositide 3-kinase; Hsp-90= heat shock protein90; AOM= acute otitis media; JNK= c-Jun
N-terminal kinase; MMPs= matrix metalloproteinase; Erk= extracellular signal-regulated kinase; CK-MB= creatine
kinase-muscle/brain; LDH= lactate dehydrogenase; COX-2= cyclooxygenase-2; CXCR4= C-X-C motif chemokine
receptor 4; VEGF= vascular endothelial growth factor; Mtor = mammalian target ofrapamycin; p70S6K= P70 S6 kinase;
IRF= impulse response function; SAM= S-adenosylmethionine; CHIKV= chikungunyavirus; HbA1c= hemoglobin
A1c; Nrf2= nuclear factor erythroid 2-related factor 2; HO-1= heme oxygenase-1; MAPK= mitogen-activated protein
kinase; Rh123= rhodamine 123; P-gp=P-glycoprotein1; MDR= multidrug-resistant; TGFβ-R= transforming growth
factor beta receptor.

3.2. Asthma

Asthma is rising as a severe global health issue, which is characterized by airway
hyperresponsiveness, airway inflammation, enhanced mucus production, airway epithelial wall
shedding, and an increase in the IgE levels. An investigation on the anti-asthmatic potential of BA in a
murine model of asthma reported suppression of allergic airway inflammation, AHR, OVA-specific
IgE, and Th2 cytokines secretion were in treated groups. Furthermore, the expression of p-STAT6 and
GATA3 were also suppressed in a dose-dependent manner [110]. In another in vivo study, the effect of
BA was analyzed by injecting a sensitization liquid (0.15 mL aluminum hydroxide gel at 88.67 mg/mL
and 0.05 mg ovalbumin) intraperitoneally in an asthma model, and it was found to minimize the
symptoms by abrogating p-STAT6 followed by a reduction in GATA3 expression [111].

3.3. Atherosclerosis

Atherosclerosis occurs due to the formation of plaque inside the blood vessels leading to thickening
of the arteries. An investigation on the effect of AKBA in apolipoprotein E-deficient (ApoE−/−) mice
showed that it inhibited NF-κB, a vital element for the development and prognosis of various
inflammatory diseases. Thus, this finding suggests that the plant resins from the Boswellia family
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can provide a substitute for conventional treatment strategies for chronic inflammatory diseases like
atherosclerosis [86].

3.4. Cancer

Cancer is one of the most fatal diseases of mankind, with extremely high incidence and mortality
rate. In the year 2012, it was estimated that about 14.1 million people suffered from the disease and
8.2 million people succumbed to death, whereas in the year 2018, the number of deaths increased to
9.8 million worldwide [162–166]. Notably, the majority of the existing drugs exert severe side effects and
are mostly ineffective due to the development of chemoresistance [23,167–169]. This has led to shifting
of attention towards natural products such as butein, emodin, curcumin, epigallocatechin gallate
(EGCG), celastrol, honokiol, resveratrol, etc. which have shown high potential against various types of
cancer [23,170–173]. Moreover, different studies have shown the efficacy of BA in the prevention and
treatment of breast, bladder, cervical, prostate, colorectal, head and neck, liver, lung, and pancreatic
cancers, etc. [36].

3.4.1. Breast Cancer

In order to explore the potential of 3-O-Acetyl-β-BA (3-OAβBA) and B.serrata extract (BSE) in
the prognosis and treatment of breast cancer, an in vitro study was performed on MDA-MB-231
cells. Both BSE and 3-OAβBA were found to be effective against triple-negative breast cancer by
upregulating the expression of PERK-ER/UPR (protein kinase RNA-like endoplasmic reticulum
kinase-endoplasmic reticulum/unfolded protein response) pathways that can regulate activated
programmed cell death (APCD). Also, BSE and/or 3-OAβBA considerably downregulated the expression
of oncogenes (OG) and upregulated the expression of tumor suppressor genes (TSGs), which includes
glutathione-depleting ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) and the
mTOR inhibitors–sestrin 2 (SESN2) Tribbles homolog 3 (TRIB3), homocysteine-inducible, endoplasmic
reticulum stress-inducible, ubiquitin-like domain member 1 (HERPUD1), and cystathionine
gamma-lyase (CTH) [112].

3.4.2. Bladder Cancer

Nearly, 430,000 people are diagnosed with bladder cancer annually, and 165,000 people die every
year all across the globe [174]. To evaluate the anti-cancer effect of frankincense oil, (main component
of which is BA), an in vitro study on J82 (human bladder cancer) and UROtsa cells (immortalized
normal bladder urothelial cells) was performed. Treatment with frankincense oil exerted cytotoxic
effects on the J82 cell line but had minimal effect on UROtsa cells. Thus, frankincense oil was found
to differentiate between cancerous cells and normal cells and caused the suppression of tumor cell
viability [113].

3.4.3. Brain Cancer

Approximately 256,213 individuals, which includes 116,605 females and 139,608 males, in the
year 2012, were diagnosed with a primary malignant brain tumor, globally [175]. Glaser et al., in
1999, observed that at low micromolar concentrations, BAs showed cytotoxicity against malignant
glioma cells [122]. Further, the pure extract of the gum resin of B.serrata and various analogues of BA
including AKBA, BBA, and cyano enone of methyl boswellates (CEMB) have shown cytostatic and
apoptosis-inducing activity against glioma cells [124,125].. Studies by Park et al., on meningioma cells
also suggested that the cytotoxic action of AKBA might, at least in part, be mediated by Erk signal
transduction pathway inhibition. Furthermore, in vivo studies on an immunocompromised mice
model (C6 glioma tumor xenograft) reported that intratumor administration of CEMB significantly
inhibited the tumor growth, signifying the potent antitumor effect of CEMB [123].
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3.4.4. Cervical Cancer

One of the most common reasons for female malignancy in the world is cervical cancer, causing
approximately 265,700 deaths annually [176]. In cervical cancer, treatment with 3-α-propionyloxy-β-BA
(POBA) caused PARP cleavage, which consequently led to a cell cycle arrest, DNA fragmentation, and
loss of mitochondrial membrane potential in SiHa cells [115].

3.4.5. Colon Cancer

The apoptotic and antiproliferative effects of the analogues of BA, such as BBA, KBA, and AKBA in
colon cancer cells, were analyzed. It was observed that AKBA could induce apoptosis through caspase
activation and the p21-dependent pathway [87,114]. Moreover, studies on APC(Min/+) mice have
shown the chemopreventive action of AKBA against intestinal adenomatous polyposis by inhibiting
Wnt/β-catenin and NF-κB/Cox-2 signaling pathways [91]. In vitro studies on human colon cancer cells
further showed that the potent anticancer effects of BA might be mediated via induction of apoptosis
and cell cycle arrest, as well as abrogation ofPI3K/Akt signaling pathway [42].

Also, AKBA affected the growth of colorectal cancer cells through genetic (Ki-67 and CD31) and
epigenetic modulations (demethylation and miRNA regulation) [34,116,117]. Furthermore, AKBA, in
combination with curcumin, showed antitumorigenic effects in vitro and in vivo by regulating specific
cancer-related miRNAs such as miR-34a and miR-27a in colorectal cancer cells [177].

3.4.6. Leukemia

The antitumor activity of BA and its analogues, such as BBA, KBA, AKBA, and PKBA, were
studied in different leukemic cell lines such as HL-60, K562, MOLT-4, THP-1, CCRF-CEM, ML-1, NB4,
SKNO-1, and U937 cells. Results showed that the treatment with BA exerted cytostatic and cytotoxic
effects through the induction of apoptosis. Upon examining the molecular mechanisms involved, it
was found that the treatment resulted in the attenuation of topoisomerases I and II, the release of
cytochrome c, the loss of mitochondrial membrane potential, activation of caspases, and cleavage
of PARP. It was also reported that the treatment led to the decreased expression of MMP-1, MMP-2,
and MMP-9 mRNAs; along with the secretions of TNF-α and IL-1β; reduced the phosphorylation of
ERK1/2, p38 MAPKs; and disrupted PI3K/AKT/Hsp-90 cascade [95,97,126–128].

3.4.7. Liver Cancer

Around 782,500 new cases and 745,500 cancer-related deaths have occurred due to liver cancer or
hepatocellular cancer in the year 2012 [66,178–185]. When the effects of KBA and AKBA were evaluated,
they were found to inhibit proliferation and induce apoptosis through the caspase-8-dependent pathway
in liver cancer cells [130]. Also, BSE, when administered as monotherapy and in combination therapy
with DOX, caused an augmentation in caspase-3 activity, TNF-α, and IL-6 levels, thus showing
growth-modulatory and apoptotic actions in hepatocellular carcinoma cells [186].

3.4.8. Lung Cancer

An in vitro study on H446 cells was performed to explore the antitumor potential of 11-carbonyl-
BBA. It was found to activate JNK signaling pathway, cause the cleavage of PARP, and downregulate
survivin protein expression, thus showing inhibitory effects on lung cancer cells [131]. Moreover, a
study focusing on the potential of POBA showed that POBA initiated PARP cleavage on HOP-62 lung
cancer cells. As a consequence of the treatment, induction of apoptosis, as well as cell cycle arrest
occurred in lung cancer cells [115].

3.4.9. Prostate Cancer

GLOBOCAN 2012 reported that prostate cancer accounts for nearly 1.1 million new cases all across
the world [162,187–192]. AKBA was shown to elicit cell death and reduce cell proliferation in PC-3
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prostate cancer cell lines by abrogation of the activated NF-κB signaling pathway via interception of
IκB kinase activity and activation of caspase-3 [88,113]. In LnCaP and PC-3 prostate cancer cells, AKBA
showed apoptotic effects driven by the death receptor 5-mediated pathway. Besides that, caspase-3
and caspase-8 activation, as well as PARP cleavage induction, were evidenced [99]. In another study,
AKBA was found responsible for the suppression of VEGFR2-mediated angiogenesis in prostate
cancer [101]. Studies by Liu et al., showed that AKBA suppressed docetaxel-resistant prostate cancer
cells via blockage of STAT3 and Akt signaling pathways [138]. A semi-synthetic triterpenoid derivative,
3-cinnamoyl-11-keto-beta-BA (C-KβBA), demonstrated specific antiproliferative and proapoptotic
effects in cancer cell lines such as PC-3, LnCaP, and DU-145, as well as in PC-3 prostate cancer xenografts,
by downregulating the activation of p70 ribosomal S6 kinase [122].

3.4.10. Pancreatic Cancer

Pancreatic cancer is the seventh most leading cause of cancer deaths in the world, and the rate of
incidence is parallel to the rate of mortality due to pancreatic cancer [193]. To evaluate the role of AKBA,
different in vitro studies on pancreatic cancer cell lines, such as AsPC-1 and PANC-28, and in vivo
studies were performed. AKBA was found to inhibitcell growth and downregulate the expressions of
Ki-67, CD31, Cox-2, MMP-9, CXCR4, and VEGF in the tumor tissues [90]. Recently, combination of the
anti-diabetic drug metformin and BA nanoparticles showed synergism in inhibiting the growth of
pancreatic cancer cells [194].

3.4.11. Melanoma

Mainly the population of the world bearing white skin is prone to melanoma, and it is considered
as a serious global concern [195]. The effect of an isomeric compound, BC-4, containing both α-
and β-BA acetate was studied via in vitro study. It was observed that BC-4 was responsible for the
induction of B16F10 cells differentiation, blockage of the cell population in the G1 phase of the cell
cycle, attenuation of topoisomerase II activity as well as the migratory potential of B16F10 cells when
administered at a concentration of 25µM for 48h. Further, in fibrosarcoma cells, HT-1080 apoptosis was
induced, and MMP secretion was reduced after treatment with BA [96].

3.5. Renal Intestinal Fibrosis

The role of AKBA in renal-intestinal fibrosis was studied both in vitro and in vivo using
hypoxia-induced HK-2 cells and C57BL/6 mice, respectively via unilateral ureteral obstruction
(UUO). The findings showed that AKBA exhibited a renoprotective effect via modulation of the
Klotho/TGF-β/Smad signaling pathways. Hence, AKBA can be employed effectively for the treatment
of renal-intestinal fibrosis [159].

3.6. Inflammatory Bowel Diseases (IBDs)

IBDs can be defined as idiopathic chronic relapsing malfunctions of the gastrointestinal tract
(GIT) with an unknown origin, is characterized by the heterogeneity and multifactorial nature of
their pathogenesis [196]. Ulcerative colitis affects the colon, where leukotrienes play a significant role.
A study on effects of the BSE in patients with ulcerative colitis illustrated that administration of BSE for
six weeks improved the stool properties, histopathology, and blood parameters, including Hb, serum
iron, calcium, phosphorus, proteins, total leukocytes, and eosinophils [197]. Further, in an attempt to
study the effect of AKBA on experimental ileitis, it was observed that treatment with AKBA caused
a significant decrease in rolling (up to 90%) and adherent (up to 98%) leukocytes. Also, high doses
of Boswellia extract, as well as AKBA, significantly reduced tissue injury scores [198]. Moreover, in
an investigation on the effects of BSE in mouse models of chemically induced colitis, it was found
that BA was incapable of ameliorating the symptoms of colitis and it exerted hepatotoxicity at higher
doses [199]. Contrary to this report, another study demonstrated the anti-inflammatory effect of
the semisynthetic form of AKBA and showed that P-selectin-regulated recruitment of inflammatory
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cells may be a major site of action for this novel anti-inflammatory agent in dextran sodium sulfate
(DSS)-induced experimental murine colitis [200].

3.7. Diabetes

Diabetes is becoming the leading causes of death worldwide. It is classified into two types—Type1
diabetes (T1D) and Type 2diabetes(T2D).T1D is an autoimmune disorder whereas T2D is a metabolic
disorder [201]. A study on alloxan-induced diabetic rats reported significant hypoglycemic effects on
the continued use of the aqueous extract of leaves and roots of Boswellia glabra. Moreover, a decrease in
the serum glucose level, cholesterol, triglyceride, urea and creatinine levels, and enzyme activities
(alkaline phosphatase and glucose-6-phosphatase) was observed after treatment [144]. Also, it was
observed that the administration of BSE can cause a significant decrease in blood glucose level along
with HbA1c, cholesterol, LDL, and fructosamine [145,146,202]. Likewise, the isolated compounds from
the plant, such as KBA and AKBA prevented the occurrence of autoimmune reactions, insulitis, and
reduced hyperglycemia in multiple low-dose streptozotocin (MLD-STZ)-induced diabetes models [147].

3.8. Central Nervous System Disorders

BAs may also have tremendous potential in the treatment of central nervous system disorders
such as Parkinson’s, Alzheimer’s disease, and cognitive impairment. Treatment with BAs has shown
reduced inflammatory markers, improved general motor performance, nigral tyrosine hydroxylase
immunostaining, and increased striatal dopamine levels in Parkinsonian rats [134]. The effects of
α-BA were investigated in primary fetal human astrocytes under a stress paradigm as a probable
model for Alzheimer’s disease. The results showed that α-BA could be considered as an effective
remedy for prevention and lessening the progression of Alzheimer’s hallmarks in astrocytes; though,
further preclinical findings are critical [109]. In a neuroinflammatory model of mice, AKBA showed
antiapoptotic and anti-amyloidogenic effects via modulation of miRNA-155 [161]. Moreover, BA
exhibited a neuroprotective role in Wistar rat models of cognitive impairment [203]. In another model
of cognitive dysfunction, combination treatment with AKBA and celecoxib exhibited anti-inflammatory,
antiglutamatergic, and antiamyloidogenic properties, leading to better prognosis of the disease [119].

3.9. Ischemia-Reperfusion Injury (IRI)

IRI is a physiopathological condition involving numerous metabolic processes which finally leads
to cell apoptosis and ultimately tissue necrosis [204]. The protective effect of KBA against myocardial
IRI in rats was observed. Three dose levels of KBA exerted dose-dependent cardioprotective effects,
as manifested by a dose-dependent drop in serum lactate dehydrogenase and infarct size [149]. In
ischemic brain injury also, AKBA was responsible for neuroprotection that involved the Nrf2/HO-1
defense pathway. It was found that the administration of AKBA increased Nrf2 and HO-1 expression,
and a similar observation was also made for the compound KBA against cerebral ischemia-reperfusion
injury [150,151].

3.10. Psoriasis

The gum resin of B. serrata has been also found effective in curing diverse skin problems such as
psoriasis. A study was conducted to evaluate the effect of AKBA using murine bone marrow-derived
dendritic cells (BMDCs) and a psoriasis-like mouse model, respectively. The results confirmed
the anti-inflammatory effects of AKBA on psoriasis via modulation of IRF and TLR7/8 signaling
pathways [140].

3.11. Other Diseases

Apart from the above mentioned diseases, a few reports on other diseases are also available
where positive effects of BAs have been observed. In a study on guinea pigs with experimental
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autoimmune encephalomyelitis, BAs were found to reduce the clinical symptoms of the disease [205].
In an attempt to assess the antiulcer properties of BA, it was found to inhibit the ulcer formation in
different experimental models. It was suggested that the protective action comes from enhanced gastric
mucosal resistance, cytoprotective prostaglandins synthesis, and leukotriene synthesis inhibition [154].
A study on the gastroprotective role of α-BA was performed in ethanol-induced gastric injury in
rats. The findings demonstrated that α-BA decreased ethanol administration related injuries, gastric
juice acidity, and the development of MDA, and improved CAT activity along with SOD activity
and the level of NO and PGE-2 [153]. In the case of myocardial injury, AKBA in combination with
HSYA showed cardioprotective effects via modulation of the PGC-1α/Nrf2 pathway [132]. In another
study, the efficacy ofBA against acetaminophen (APAP)-induced hepatotoxicity in Balb/c mice was
determined. It was observed that BA pre-intake reduced APAP-induced production of inflammatory
cytokines and chemokines. Further, it affected the expression of NF-κB p65 and p-JNK, TLR-3, TLR-4,
and MyD88 [155,206].

Recently, BSE in combination therapy with curcumin was found to inhibit chikungunya
and vesicular stomatitis virus infections in vitro. The combination therapy was able to block the
entry of CHIKV Env-pseudotyped lentiviral vectors, and they suppressed CHIKV infection in vitro.
Furthermore, vesicular stomatitis virus vector particles and viral infections were also reduced, thereby
demonstrating its broad antiviral activity [143]. An in vitro study was performed to explore the
ethnomedicinal use of BSE, and it was proved that BSE, as well as BA, efficiently inhibited wild-type
and a clinical isolate of HSV-1 via alteration of NF-κB and p38 MAPK pathways [157]. Furthermore, in
another study on a mouse model of LPS-induced neuroinflammation, AKBA played a significant role
in counteracting the symptoms via modulation of miRNA-155 [161]. Treatment of mouse models of
Ehrlich tumor and Ehrlich ascites carcinoma with BA have demonstrated the antitumor property of
the compound by interfering with the IL-6-STAT-3 signal transduction pathway. APOBA treatment
on Ehrlich ascites carcinoma (EAC) cells and sarcoma 180 (S-180) cells also witnessed tumor growth
inhibition [115,120,121]. In the pulmonary arterial hypertensive rat model, α-BA administration
showed protective effects by downregulating the expression of JNK and protein kinase 1 under hypoxic
conditions [142]. IN0523 (Urs-12-ene-3α,24β-diol), a derivative of BA, was found to show protective
effects in response to cisplatin-induced urogenital toxicity by inhibiting the imbalance of oxidative
stress/redox state and by enhancing the efflux mechanisms [160].

4. Boswellic Acid Implicated in Different Phases of Human Clinical Trials

As aforementioned, not only the preclinical studies but also the studies carried out in the
clinical settings well evinced the high potential of BA against diverse chronic diseases(Table 2).
In a double-blind, placebo-controlled human trial, oral administration of Boswellin, a formulation
containing AKBA and BBA, was found to exert anti-inflammatory/antiarthritic effects in osteoarthritis
patients [207]. Further, a novel BSE containing 30% AKBA and known as 5-Loxin led to improved
physical functioning and decreased pain in patients with osteoarthritis, plausibly via regulation of
inflammatory responses by decreasing pro-inflammatory modulators and enzymatic degradation of
cartilage, without exerting any toxic effect [208]. Also, a comparative, randomized, double-blind,
placebo-controlled study, which examined the efficacy and safety of curcumin in combination with BA,
exhibited favorable responses in patients with osteoarthritis [209]. Additionally, another combination
of BA with methylsulfonylmethane (MSM) also displayed satisfactory outcomes in the treatment of
knee arthritis [210]. However, Notarnicolaet al. showed this combination not to exert much efficacy
in the case of gonarthrosis [211]. Additionally, a lecithin-based delivery form of B.serrata, named
as Casperome®, was reported to improve the signs and symptoms of patients with irritable bowel
syndrome in a highly safe and effective fashion [212]. A double-blind placebo-controlled study as
well witnessed that administration of BSE containing BAs in major proportions led to significant
improvement in patients suffering from bronchial asthma. The symptoms such as dyspnoea, rhonchi,
number of attacks, increase in FEV subset1, FVC, and PEFR, in addition to a decline in the eosinophilic
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count and ESR, were evidenced [213]. Further, treatment with BSEdecreased cerebral edema in patients
irradiated for brain tumors significantly, as evinced by a prospective, randomized, placebo-controlled,
double-blind pilot trial [214]. Besides, a clinical trial conducted by Gerhardt and group to compare the
efficacy and safety of H15, a BSE with mesalazine for the treatment of active Crohn’s disease, H15 was
found to exert better effect concerning a benefit–risk evaluation [215]. Also, In a double-blind study, it
was witnessed that a novel BA formulation (consisting of Bosexil(®), INCI (International Nomenclature
of Cosmetic Ingredients): lecithin, an extract of B. serrata resin) was a favorable candidate for therapy of
patients suffering from erythematous eczema and psoriasis [216]. Furthermore, the topical application
of a cream containing 0.5% BA presented a well–tolerated and safe treatment approach for photoaged
skin [217,218]. Thus, these studies clearly indicate BA to be safe, well-tolerated, and effective, and thus
implies its high therapeutic potential against a wide array of human chronic diseases.

Table 2. Application of boswellic acid in different phases of human clinical trials.

Disease Dosage/Clinical Outcomes References

Osteoarthritisa,B (500 mg)/↓pain-related symptoms* [209]
Osteoarthritisb,C (100, 250 mg)/↓pain and ↑ physical functioning* [208]
OsteoarthritisC (300-500 mg)/↓pain and stiffness* [207]
Knee arthritisc,C (7.2 mg)/good and satisfactoryeffect* [210]
Gonarthrosisc,C (7.2 mg)/highly effective* [211]
Brain tumorsA (4200 mg)/↓ cerebral edema* [214]
Photoaged skinC (0.5 %)/well-tolerated withoutadverse effects* [217]
Crohn diseased,C (NIL)/well tolerated* [215]
DiabetesC (NIL)/↑ blood HDL levels, and ↓cholesterol* [202]
Erythematous eczemaC (NIL)/improvement in symptoms* [216]
AsthmaC (300 mg)/↓eosinophilic count and ESR* [213]

Abbreviations:a= BA in combination with curcumin; b = 5-Loxin, a novel Boswellia serrata extract enriched with
30% AKBA; c = BA in combination with methylsulfonylmethane; d= Boswellia serrata extract H15;A= Phase I;
B = Phase II; C = NA, HDL = high density lipoprotein; ESR= erythrocyte sedimentation rate.*= All the studies listed
above are completed.

5. Pharmacokinetic Properties of Boswellic Acids

BAs are the chief bioactive element of frankincense, and various studies have established their
bioactivities. However, to develop it as a successful candidate drug, its pharmacokinetic properties must
be considered accurately. In this regard, the studies conducted have exhibited poor pharmacological
performance. Both KBA and AKBA are extremely lipophilic drugs, which result in reduced absorption
through the GIT, but they also exhibit high retention time. Preliminary pharmacokinetic studies have
shown minimal concentrations of both AKBA and KBA in human plasma after administration of
BSE [41,219–223]. Moreover, the incidence of AKBA in plasma is uncertain due to its deacetylation
to KBA in vivo [222]. Contrary to this report, another study on the metabolism of BAs indicated
that AKBA is not deacetylated to KBA. Furthermore, it was demonstrated that unlike AKBA, KBA
experiences extensive phase I metabolism in rat and human liver microsomes, as well as in hepatocytes.
The metabolic profiles of KBA in rat plasma and liver were found to be similar in both in vitro
and in vivo study whereas no metabolites of AKBA could be recognized. This indicates that the
administration step should be further implemented to increase the bioavailability of AKBA [224].
Another study reported that the foremost permeability-associated barriers that compromised oral
bioavailability of KBA include its gastrointestinal volatility, CYP3A4, mediated intestinal metabolism,
accumulation within the enterocytes, and saturable kinetics [225]. In another study, the metabolic
stability, permeability and brain availability of six major BAs, i.e., KBA, AKBA, βBA, 3-acetyl-β-BA
(AβBA), αBA, and 3-acetyl-α-BA (AαBA) was evaluated. The four BAs lacking the 11-keto moiety
showed reasonable permeability. In contrast to AαBA and AβBA, βBA, and αBA were effectively
metabolized and also the availability of all six major BAs was confirmed in rat brain eight hours after
oral administration of 240 mg/kg BSE to rats [226].
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One more important pharmacokinetic parameter to be kept in mind while experimenting with a
drug is its elimination from the body. A study reported that the elimination half-life of BA is about six
hours. This suggests that oral administration of the medication is required after every six hours. The
study also reported that a stable state of the drug would be achieved in the plasma after around thirty
hours [222].

Several studies have been designed to analyze the biotransformation of BAs within the body.
One such study explored the different probable derivatives of BA via biotransformation by Cunninghamella
blakesleana AS 3.970. As many as ten transformed compounds, including 7β-hydroxy-11-keto-β-boswellic
acid; 7β, 15α-dihydroxy-11-keto-β-boswellic acid; 7β, 16β-dihydroxy-11-keto-β-boswellic acid;
7β, 16α-dihydroxy-11-keto-β-boswellic acid; 7β, 22β-dihydroxy-11-keto-β-boswellic acid; 7β, 21β-
dihydroxy-11-keto-β-boswellic acid; 7β, 20β-dihydroxy-11-keto-β-boswellic acid; 7β, 30-dihydroxy
-11-keto-β-boswellic acid; 3α, 7β-dihydroxy-11-oxours-12-ene-24; 30-dioic acid; and 3α, 7β-dihydroxy-
30-(2-hydroxypropanoyloxy)-11-oxours-12-en-24-oic acid were extracted and purified through
hydroxylation, oxidation, and esterification, and their chemical structures were characterized by various
spectroscopic methods [227].

6. Improvement in the Bioavailability of Boswellic Acids

In regard of the relatively low plasma and brain levels of BAs, and as a consequence of their
inability to inhibit 5-LOX in whole blood, the abrogation of LTB4 synthesis in vivo by frankincense
extracts remains unclear. For exploiting the potential pharmacological properties of different BAs,
several approaches have been used to enhance its bioavailability [228]. Some researchers have also
tried to enhance the bioavailability of BAs by administering it with a standardized meal [229]. Also,
an improvement in their uptake was observed when it was administered with anionic drugs [230].
Further, different methods such as lecithin delivery form (PhytosomeR); nanoparticle delivery systems
like liposomes, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, micelles, and
poly (lactic-co-glycolic acid) nanoparticles; and synthetic derivatization of BA have been adapted
for overcoming these limitations [231–233]. Formulation of BA with lecithin was found to improve
absorption and tissue penetration of BA in a single-dose, randomized, open-label study [234].

7. Conclusions

BAs, the pentacyclic triterpenic acids comprising of α-,β-,γ-BA,acetyl-β-BA, KBA, AKBA, and so
on, have exhibited diverse pharmacological activities against various chronic diseases, as evidenced
through the multiple preclinical studies and various clinical trials. They can target several key players
involved in the pathogenesis of these diseases. It was observed that different important molecular
targets are affected by BA treatment, such as LO, MAPK, NF-κB, TNF-α, Erk-1/2, etc., which plays
an imperative role in the development of various chronic diseases. Yet, concerns regarding the
pharmacokinetic properties have had major dampening effects in the path of development of this
compound as an effective drug. Nevertheless, many investigations have been initiated in this matter to
triumph over the limitations, but the pace is quite slow, and an ample amount of attention is needed.
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