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Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus triggered by immune hypersensitivity to
food. Herein, we tested whether genetic risk factors for known, non-allergic, immune-mediated diseases, particularly those
involving autoimmunity, were associated with EoE risk. We used the high-density Immunochip platform, encoding 200,000
genetic variants for major auto-immune disease. Accordingly, 1214 subjects with EoE of European ancestry and 3734
population controls were genotyped and assessed using data directly generated or imputed from the previously published
GWAS. We found lack of association of EoE with the genetic variants in the major histocompatibility complex (MHC) class
I, II, and III genes and nearly all other loci using a highly powered study design with dense genotyping throughout the locus.
Importantly, we identified an EoE risk locus at 16p13 with genome-wide significance (Pcombined=2.05 × 10−9, odds ratio=
0.76−0.81). This region is known to encode for the genes CLEC16A, DEXI, and CIITI, which are expressed in immune cells
and esophageal epithelial cells. Suggestive EoE risk were also seen 5q23 (intergenic) and 7p15 (JAZF1). Overall, we have
identified an additional EoE risk locus at 16p13 and highlight a shared and unique genetic etiology of EoE with a spectrum
of immune-associated diseases.

Introduction

Eosinophilic esophagitis (EoE) is a chronic inflammatory
disease of the esophagus triggered by immune hypersensi-
tivity to food. Multiple lines of evidence, including mole-
cular transcript profiling, cytokine expression, and genetic
studies have highlighted its close relationship with type 2
immune responses, and EoE is now considered a chronic
form of food allergy [1]. EoE susceptibility is linked to a
genetic factor at 2p23, the CAPN14 gene, which has tissue-

specific expression in the esophagus [2, 3]. This genetic
association has been replicated in multiple cohorts [3–5],
adding credence to the importance of the 2p23 genetic
association and resulting in a combined P value of 1.7 × 10
−10. Genome-wide association studies (GWAS) have also
identified EoE genetic risk loci that were linked to other
allergic diseases [6]. For example, genetic variants at 5q22
encoding TSLP and WDR36 have been associated with
allergic sensitization, asthma, allergic rhinitis, atopic der-
matitis, and EoE, suggesting that these loci contain variants
that participate in the allelic regulation of a molecular
pathway that is central to the etiology of allergic disease [2,
4, 7–14]. Likewise, the 11q13 EoE risk locus encoding
EMSY and LRRC32 has been robustly replicated in studies
of EoE [4, 15, 16] and is also associated with atopic der-
matitis [7, 17–19], asthma [9, 11, 20], allergic sensitization
[20], allergic rhinitis [11], and inflammatory bowel disease
[21]. Indeed, genome-wide approaches have demonstrated
significant overlap of some EoE genetic risk loci across
allergic diseases [1–3, 22].
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The Immunochip was designed to genotype and fine-map
genetic risk loci that were established for major immune-
associated diseases including rheumatoid arthritis, anky-
losing spondylitis, systemic lupus erythematosus, type 1
diabetes, autoimmune thyroid disease, ulcerative colitis,
Crohn’s disease, psoriatic arthritis, multiple sclerosis, and
celiac disease; notably, the latter has an increased pre-
valence in patients with EoE [23]. As the introduction of the
Immunochip in 2011, its use has contributed to a marked
increase in known susceptibility loci and the comparison of
susceptibility loci between phenotypes [24–40]. Herein, we
probed the genetic etiology of EoE with multiple objectives,
including (1) determining whether EoE risk loci would be
shared with these immune-mediated diseases that have
already been subjected to intense investigation; (2) identi-
fying genetic variants with plausible function, as the
Immunochip was enriched for functional variants; and (3)
fine-mapping the human leukocyte antigen (HLA) region,
as this region confers risk for other immune-mediated dis-
eases. We report genetic analysis of EoE using the Immu-
nochip platform and the largest cohort of subjects with EoE
subjected to genetic analysis to date.

Results

To evaluate EoE risk at genetic loci associated with a
variety of immune-associated diseases, 1214 subjects with
EoE and of European ancestry and 3734 population controls
were genotyped using the Immunochip candidate genotyp-
ing array [23].

After stringent quality control based on Hardy–Weinberg
disequilibrium and a call rate of >99% and lack of batch
effect (described in Methods), 79,405 genetic variants had
minor allele frequencies >1% and were used for this asso-
ciation study. The subjects with and without EoE were

Fig. 1 Manhattan plot of the P values obtained from the Immunochip
association analysis. Data are from 1210 subjects with eosinophilic
esophagitis (EoE) and 3734 controls over 79,405 genetic variants with
minor allele frequencies (MAFs) greater than 1% in the subjects with
EoE. The −log10 value of each probability is shown as a function of
genomic position on the autosomes. Genome-wide significance (red
dashed line; P ≤ 5 × 10−8) and suggestive significance (solid blue line;
P ≤ 1 × 10−7) are indicated
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assigned to either the Local or External study cohorts
(Supplemental Table 1). The Local cohorts included EoE
patients from the Cincinnati Center for Eosinophilic Dis-
orders (n= 966) and controls from the Cincinnati Genomic
Control Cohort (n= 641). Controls from the Lupus Family
Registry and Repository (n= 3093) and patients with EoE
recruited outside of Cincinnati through the National Insti-
tutes of Health Consortium of Food Allergy Researchers
(CoFAR) (n= 244) were assigned to the External cohort.
Initially, one locus at 6p21 with genome-wide association
(P < 5 × 10−8) and one locus at 16p13 with suggestive sig-
nificance (P < 10−7) were identified (Fig. 1, Table 1). Next,
independent experimental association was sought from the
published GWAS by assessing the statistical significance of
the most highly associated variant at each locus from the
Immunochip analysis in the GWAS population after
removing all subjects who overlapped between the two
studies from the GWAS analysis [3] (Fig. 1, Table 1,
Supplemental Table 1). No association was identified at
6p21 in the non-overlapping GWAS cohort; however, the
genetic risk association at 16p13 was validated, resulting in
genome-wide significance of the combined cohorts (P=
2.05 × 10−9) (Table 2). A logistic regression analysis
demonstrated a single genetic effect, with all association in
the locus accounted for by the genotype of rs12924112 (Fig.
2). This particular genetic variant was located in the 20th
intron of CLEC16A.

The 16p13 locus has been associated with ten other
immune-associated phenotypes ranging from atopic der-
matitis and asthma with hay fever to the autoimmune dis-
eases systemic lupus erythematosus and type 1 diabetes
(Table 3) [11, 33, 34, 36, 38, 40–49]. On the basis of the
linkage disequilibrium between the most highly associated
disease protective variant in other diseases and the lead EoE
16p13 protective variant, variants decreasing risk for EoE
also decrease risk for type 1 diabetes, multiple sclerosis,
primary biliary sclerosis, and systemic lupus erythematosus
(Table 3). The lead variants reported for atopic dermatitis
and asthma with hay fever were in relatively weak linkage
disequilibrium with the EoE risk variants (Table 3).

The 16p13 locus encodes the genes CLEC16A, DEXI,
and CITTA. These genes are known to be expressed in the
esophageal mucosa [50–53] at levels similar to other tis-
sues. Indeed, expression of the three genes was found in the
esophageal biopsies of subjects with and without EoE (Fig.
3a). CLEC16A and DEXI were expressed in esophageal
epithelial cells and were found to not be modulated by IL-
13 treatment, while CITTA was not expressed in esophageal
epithelial cells (Fig. 3b). CLEC16A, DEXI, and CITTA are
also expressed in various immune cell subsets (Fig. 3c) [54,
55]. In monocytes, the EoE risk haplotype at 16p13 is
associated with increased expression of DEXI in monocytes
[56]. The same EoE risk haplotype has also been associated Ta
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with increased expression of CLEC16A in B cell lines [57].
This suggests that genotype-dependent expression of DEXI
and/or CLEC16A might lead to increased risk of EoE in
patients with the 16p13 risk alleles.

Genetic variants at the 5q23 and 7p15 loci demonstrated
modest association in the local and external Immunochip
cohorts, but they failed to be reproduced by data from a
previous GWAS analysis. Although they did not pass the
threshold set by this study for significant association, they
remain candidates to be further evaluated in subsequent
studies. The suggestively associated EoE risk variants at the
5q23 locus are located in an intergenic region that is 14
million base pairs away from the EoE risk locus at 5q22 that
encodes the TSLP and WDR36 genes with no linkage dis-
equilibrium (R2= 0.0005). The 7p15 locus near the gene
JAZF1 has also been identified as a susceptibility locus for
systemic lupus erythematosus, type 1 diabetes, and rheu-
matoid arthritis [58–62]. JAZF1 is also known as TIP27,
and it encodes a transcription factor with three zinc fingers
that often represses transcription [63].

The major histocompatibility complex (MHC), the
Human Leukocyte Antigen (HLA) complex in humans, is a
region of the genome on chromosome 6 that encodes genes
that regulate antigen presentation to T cells. This region
contains the most robustly and reproducibly associated risk
variants for many immune-associated diseases including
autoimmune and auto-inflammatory diseases; these genetic
risk variants usually affect amino acid usage in the MHC
molecules. The Immunochip was specifically designed to
directly genotype variants across this locus, and its use has
allowed teams to identify the genotype-dependent usage of
MHC subtypes in diseases such as systemic lupus

erythematosus [25], type 1 diabetes [64], and psoriatic
arthritis [65]. Consistent with the three previous GWAS of
EoE, we did not identify association of genetic variants that
are located inside the MHC class I, II, or III genes. We did
find association of rs599707 in 6p21 in both the local and
external cohorts assessed on the Immunochip (Table 1,
Supplemental Fig. 1); however, none of the variants in
linkage disequilibrium (r2 greater than 0.8) changed amino
acid usage in any gene. Based on the power analysis of the
combined cohorts from the previous GWAS and present
Immunochip studies (Supplemental Fig. 2), we can defini-
tively confirm that there is no HLA association with EoE
that is driven by variants with effect sizes greater than 1.4 or
MAFs greater than 20%.

Discussion

We have probed the genetic basis of EoE focusing on
genetic variants involved in a wide range of auto-immune
and/or inflammatory diseases. We have identified one new
genome-wide significant EoE risk locus at 16p13, a region
encoding the CLEC16A, DEXI, and CITTA genes, and
nominate three additional suggestive loci that warrant fur-
ther analyses. The 16p13 finding identifies a region of the
genome that includes genetic risk variants associated with
numerous immune-associated diseases including both
allergic and autoimmune diseases; however, it is notable
that the vast majority of risk loci on the Immunochip did not
reveal association with EoE consistent with the uniqueness
of the genetic etiology. The specific risk haplotype at 16p13
was not shared with atopic disease related to EoE based

Fig. 2 Genetic association of variants at the 16p13 loci with EoE risk.
a P values (−log10) from the genetic association analysis of genotyped
and imputed variants are plotted against the genomic position of each
genotyped (blue) and imputed (red) single-nucleotide polymorphism
(SNP) on the x axis on chromosome 16. b P values (−log10) from the
genetic association analysis adjusting for the association of

rs12924112 of genotyped and imputed variants are plotted against the
genomic position of each genotyped (blue) and imputed (red) SNP on
the x axis on chromosome 16. Genes in the region are shown below.
Position is given relative to Build 37 of the reference genome. Black
lines indicate the recombination rates determined using subjects of
European ancestry from the 1000 Genomes Project
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upon LD of the most highly associated variants for each
phenotype, suggesting different genetic effects are driving
the shared association at 16p13.

This study was designed to identify EoE genetic risk loci
that demonstrated association in internal and external
cohorts in addition to the previously published GWAS at a
group of loci nominated by previous studies of immune-
associated diseases. The ImmunoChip does not include
previously reported EoE-risk loci, so we are unable to
assess the established 2p23, 5q22, or 11q13 risk loci. The
limited number of samples that remained in the GWAS
cohort after removing overlapping individuals may explain
why some of the suggestive associations from the Immu-
nochip analysis were not validated when assessing the
independent subjects in the GWAS cohort (Supplemental
Fig. 2C). Specifically, after removing 542 overlapping cases
with EoE and 587 overlapping controls from the GWAS of
9982 subjects, only 194 cases and 8659 controls remained

leaving the study with only 30% power to detect a locus
with a large effect size (odds ratio of 2.0) and high MAFs
(40%). This study also lacked the power to divide the
patients with EoE into sub-classifications (e.g., patients with
EoE responsive to proton pump inhibitors); however, future
studies designed to identify genetic variants associated with
the clinical presentation of EoE would be valuable.

The genotyping at the HLA region of the human genome
is particularly dense on the Immunochip [23]. Over 200
diseases have robust HLA associations, especially auto-
immune diseases [66] with effect sizes ranging from 1.3 to
3.0. It is notable that no association has ever been identified
for EoE despite numerous genome-wide studies and this
Immunochip study. Ulcerative colitis, Crohn’s disease, and
celiac disease are three gastrointestinal diseases with strong
HLA associations [67–73]. In each of these non-EoE gas-
trointestinal diseases, a robust genetic association with
variants across HLA are a hallmark of nearly every

Table 3 Other immune-associated disease with a 16p13 genetic risk locusa

Reference study (by first
author)

Disease Marker Alleles P value OR MAF r2 with
rs12924112

D′ with
rs12924112

Barrett (Nat Genet) T1D rs12708716 G>A 2.2e−16 Not Available 0.319 0.8268 0.9093

Hakonarson (Nature) T1D rs12708716 G>A 4.92e−7 0.84 0.350 0.8268 0.9093

Todd (Nat Genet) T1D rs12708716 G>A 7.43e
−14

0.81 0.322 0.8268 0.9093

Patsopoulos (Ann Neurol) MS rs12708716 G>A 1.08e−4 0.90 0.350 0.8268 0.9093

Onengut-Gumuscu (Nat
Genet)

T1D rs12927355 T>C 3e−22 0.82 0.320 0.7341 0.9237

Beecham (Nat Genet) MS rs12927355 T>C 6.4e−46 0.83 0.320 0.7341 0.9237

Bradfield (PLoS Genet) T1D rs12927355 T>C 1.91e
−16

0.80 Not Available 0.734 0.924

Liu (Nat Genet) PBC rs12708715 T>C 2.19e
−13

0.78 0.320 0.704 0.9004

Bentham (Nat Genet) SLE rs9652601 A>G 7.42e
−17

0.83 0.332 0.6782 0.87

Cordell (Nat Commun) PBC rs12924729 A>G 2.39e
−14

0.76 0.330 0.6751 0.8508

Ferreira (JACI) AHF rs62026376 T>C 1e−8 1.17 0.26–0.28 0.5825 0.9876

Sawcer (Nature) MS rs7200786 G>A 8.5e−17 1.15 0.463 0.4578 0.9262

Betz (Nat Commun) AA rs3862469 T>C 1.7e−7 0.82 0.330 0.3382 0.6356

Ellinghaus (Nat Genet) AD rs2041733 C>T 1.00e
−11

1.26 0.49 0.0667 0.3614

Hinks (Nat Genet) JIA rs66718203 C>G 4.46e−7 0.81 0.180 0.0073 0.2639

Beecham (Nat Genet) MS rs6498184 C>T 7.4e−18 0.87 0.190 0.0073 0.2639

Dubois (Nat Genet) CEL rs12928822 C>T 3.12e−8 0.86 0.161 0.0067 0.2511

Tsoi (Nat Genet) PSO rs367569 C>T 4.9e−8 0.88 0.291 0.0014 0.0774

T1D type I diabetes, MS multiple sclerosis, PBC primary biliary cirrhosis, SLE system lupus erythematosus, AA alopecia areata, JIA juvenile
idiopathic arthritis, CEL celiac disease, AD atopic dermatitis, AHF asthma with hay fever, PSO psoriasis
aStudies assessing immune-associated phenotypes that reported a genetic association at 16p13 were identified. The genetic variants with the lowest
(most highly associated) P value for each study are given along with the alleles (major allele>minor allele) and that variant’s P value, odds ratio
(OR), and minor allele frequency (MAF). rs12924112 was the most highly associated variant at this locus for EoE risk. The linkage disequilibrium
between the top variant of other studies and the top EoE variant is given in the context of r2 and D′
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Immunochip and GWAS to date. Celiac disease is enriched
in EoE patients [74–78]; likewise, patients with celiac dis-
ease have a 25% increased risk of developing EoE [76].
Indeed, celiac disease and EoE share features including
being food antigen driven, involving a defective epithelial
barrier, and resolving upon removal of causal foods. The
lack of highly associated EoE risk variants that change
MHC subtypes through nonsynonymous disease risk poly-
morphisms remains a striking differentiating factor for EoE.
rs599707 at 6p21 is an expression quantitative trait loci
(eQTL) for numerous HLA molecules in monocytes (HLA-
DPB1, HLA-DQA1, HLA-DQB1, HLADRB1, HLA-C, and
HLA-H, tag SNP: rs3131379, r2= 1 in people of European
ancestry) [56]. Though the 6p21 locus demonstrated
genome-wide association in the two cohorts assessed on the

Immunochip, these variants were not identified as asso-
ciated in an independent set of subjects with and without
EoE assessed with the comprehensive OMNI5 array [3].
The HLA region is encoded from 6p21 and spans 3 million
base pairs; the region is genetically complex with many
independent haplotypes of variants in strong linkage dis-
equilibrium [79]. The 6p21 EoE risk locus tagged by
rs599707 is a highly polymorphic haplotype in the HLA
that encodes 71 genes. Only 3 genotyped and no imputed
genetic variants in the region reached genome-wide sig-
nificance, and 2 out of 3 of these variants failed quality
assessment on the OMNI5 array [3] (Supplemental Fig. 1,
Supplemental Table 2). Furthermore, the genotyped variant
that passed quality assessment on both the Immunochip and
GWAS studies had opposite effects in the two studies, i.e.,

Fig. 3 Expression of genes at the 16p13 locus. a RNAseq expression
of CLEC16A, DEXI, and CIITA mRNA from esophageal biopsies
(Control n= 10, EoE n= 10). No significant differences were identi-
fied between Control and EoE. b RNAseq expression of genes from
esophageal epithelial cells in air-liquid interface culture system with or
without IL-13 stimulation for 5 days (n= 3 wells per group). For a and
b, bars represent the mean and error bars represent the standard

deviation. No significant differences were identified between no
treatment and IL-13 treatment. c Barcode x-score relative microarray
expression of CLEC16A, DEXI, and CIITA in various human immune
cell subsets downloaded from http://biospgs.org/ (ref. [48]). Reads per
killobase of transcript per million mapped reads, RPKM. Data are
representative from multiple cellular subtypes in the Primary Cell
Atlas dataset
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risk allele in the Immunochip study was protective in the
non-overlapping cohort genotyped in the GWAS. While we
have no reason to remove these variants from the analysis,
two other pieces of data supporting their spurious associa-
tion are the fact that the variants are not in linkage dis-
equilibrium with each other (Supplemental Fig. 1B) and
variants that are in linkage disequilibrium with the “asso-
ciated” variants in the 1000 genomes project in people of
European ancestry are not associated at the same level of
robust significance (Supplemental Fig. 1C). Given the lack
of GWAS validation and the small number of associated
variants at the locus, this study presents 6p21 as a candidate
risk locus for EoE that needs further study before any
robustly conclusion can be established. If the rs599707 EoE
risk genetic association is replicated in an independent
dataset, this genotype-dependent expression of these HLA
molecules should also be assessed in the context of subjects
with EoE.

We have identified novel genome-wide association of
EoE with variants at 16p13. This region was included in the
Immunochip design based upon previous association in
studies of multiple sclerosis and diabetes type 1 [23, 67, 80,
81]. Other allergic diseases also have genetic risk variants at
the 16p13 locus, but it is notable that the genetic variants
associated with EoE and other allergic diseases are not in
linkage disequalibrium with each other (Table 3). The EoE
risk variants at 16p13 are in strong LD with risk variants for
multiple sclerosis and type 1 diabetes (Table 3). Among the
genes at 16p13, CLEC16A is widely expressed across the
immune system and contains an immunoreceptor tyrosine-
based activation motif (ITAM). CLEC16A is also expressed
in esophageal epithelial cells of subjects with and without
EoE. Recently, CLEC16A has been shown to negatively
regulate autophagy via modulating mTOR activity [82].
DEXI is named on the basis of its identified dexamethasone
inducibility in airway epithelia [83]. DEXI is also differently
expressed in the lung tissue of patients with emphysema
compared to normal lung tissue. Genotype-dependent
expression of both CLEC16A and DEXI have been identi-
fied [56, 57], and chromatin looping from the EoE risk
variants shared with type 1 diabetes has demonstrated
looping back to the promoter of DEXI [84, 85]. CIITA acts
as main positive transcriptional regulator of the class II
major histocompatibility complex genes [86–88]. While not
expressed in esophageal epithelial cell cultures (Fig. 3b), it
is found in the esophageal biopsies of patients with and
without EoE (Fig. 3a), perhaps due to expression infiltrating
immune cells. Further, the regulation of antigen presenta-
tion could be critical in the development of atopy. Thus,
CLEC16A, DEXI, and CITTA each remain strong candidates
for mediating EoE disease risk.

Altogether, this study presents a newly established EoE
risk locus at 16p13 and demonstrates a relatively unique

genetic etiology compared with nearly all autoimmune
disease susceptibility loci.

Methods and materials

Genotyping

Genotyping was performed as previously described [3, 22]
on the Illumina Immunochip genotyping array using Infi-
nium2 chemistry. Genotypes were called using the Gen-
train2 algorithm within Illumina Genome Studio.

Subjects included in the genetic analysis

The study was approved by the Institutional Review Boards
at Cincinnati Children’s Hospital Medical Center
(CCHMC) and all participating sites that were part of the
NIH Consortium of Food Allergy Research (CoFAR) EoE
Cohort (Mount Sinai Medical Center, University of North
Carolina, Johns Hopkin’s University, University of Color-
ado Health Center/National Jewish Research Center, and
Arkansas Children’s Hospital). Guardian informed consent
was obtained for all participants under eighteen years of age
in this study for the purpose of DNA collection and geno-
typing. Cases were confirmed by a physician to fulfill the
diagnostic criteria for EoE. EoE is defined as peak eosino-
phil count ≥15 eosinophils/high-power field in esophageal
biopsy sections; 30% of CCHMC and 51% of CoFAR
subjects who were genotyped on the Immunochip had
proton pump inhibitor (PPI) therapy before the diagnostic
endoscopy. A similar strategy was used as in a previous
GWAS [3]. Control subjects (non-EoE) included the sub-
jects with self-reported European ancestry in the Cincinnati
Genomic Control Cohort CCHMC (n= 641, age range
2–18 years) [89] and an external control cohort (non-EoE)
acquired from the Lupus Family Registry and Repository
(LFRR) in Oklahoma City, Oklahoma. The controls for the
External cohort of the previous GWAS used for to further
increase statistical power were acquired from a database of
Genotypes and Phenotypes (dbGAP) University of Michi-
gan study (n= 8580) [3]. In the CCHMC and CoFAR
cohorts, 73% and 62% of subjects with EoE were male,
respectively, and subjects with EoE had an age range of
2–52 years. The external control cohort was also used in an
Immunochip analysis of Systemic Lupus Erythematosus
(SLE), and none of these subjects had an SLE diagnosis
[25].

Population stratification

Population stratification was performed, as previously
described [3]. Ancestry informative markers were used to
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infer the top six principal components of genetic variation
and correct for possible population stratification using
Eigensoft. All local cases and controls were self-identified
as having European ancestry, and principal component
analysis was used to exclude subjects (n= 376) who seg-
regated >4 standard deviations outside of the mean of the
first 5 principal components (Supplemental Fig. 3). After
outlier removal, there were no significant differences in the
first four principal components (p < 0.1).

Genotyping quality control

Quality control on the variants from autosomal chromo-
somes was performed, as previously described [3]. Variants
were assessed in this study if they met the following criteria:
minor allele frequency greater than 1% and
Hardy–Weinberg equilibrium in the controls (P < 10-4). We
controlled for the presence of potential batch effects by
removal of SNPs that exhibited outlier fluorescence asso-
ciated with deviation between plates (P < 10−4), as per the
manufacturer’s recommendation. The final genotyping rate
for all SNPs was 96.3%. After applying the above filters,
genotypes from 79,405 autosomal SNPs in 1210 subjects
with EoE and 3734 subjects without EoE were used in the
final analyses (Supplemental Table 1).

Genetic association analysis and imputation to the
1000 genomes reference panel

Association analyses were performed in PLINKv1.9 and
SNPTESTv2.5.2 [90]. To detect associated variants that
were not directly genotyped, highly associated regions were
imputed with IMPUTE2 and used a composite imputation
reference panel of integrated haplotypes from the 1000
Genomes Project sequence data freezes from August 2012
[91, 92]. Imputed genotypes were required to meet or
exceed a probability threshold of 0.9, an information mea-
sure of >0.5, and the same quality-control criteria threshold
described for the genotyped non-autosomal markers.
Genome-wide significance was set at p values ≤5 × 10-8.

RNA sequencing

Esophageal biopsy RNA was isolated from subjects with
active EoE disease and unaffected controls and RNA from
EPC2 esophageal epithelial cells grown in an air–liquid
interface, as previously described [3, 22, 93]. RNA
sequencing acquiring 50 million mappable 125 base-pair
reads from paired-end libraries was performed at the
Genetic Variation and Gene Discovery Core Facility at
CCHMC. Data were aligned to the GrCh37 build of the
human genome using the Ensembl [94] annotations as a
guide for TopHat [95]. Expression analysis was performed

using DESeq2 in BioWardrobe [96, 97]. The expression
studies were well powered to identify 2-fold differences in
gene expression (β= 1.0 for 2-fold changes with α of 0.05
and variance of 30% in biopsy data (Fig. 3a) and 10%
variance in the in vitro cell line data (Fig. 2b). Datasets are
deposited in NCBI GEO: GDS3223 and GSE58640.
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