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Abstract: Molecules with pleasant odors, unacceptable odors, and even serious toxicity are closely
related to human social life. It is impractical to identify the odors of molecules in large quantities
(particularly hazardous odors) using experimental methods. Computer-aided methods have currently
attracted increasing attention for the prediction of molecular odors. Here, through models based
on multilayer perceptron (MLP) and physicochemical descriptors (MLP-Des), MLP and molecu-
lar fingerprint, and convolutional neural network (CNN), we conduct the two-class prediction of
odor/no odor, fruity/no odor, floral/no odor, and woody/no odor, and the multi-class prediction
of fruity/flowery/woody/no odor on our newly refined molecular odor datasets. We show that
three kinds of predictors can robustly predict molecular odors. The MLP-Des model not only exhibits
the best prediction results (the AUC values are 0.99 and 0.86 for the two- and multi-classification
models, respectively) but can also well reflect the characteristics of the structure–odor relationship
of molecules. The CNN model takes 2D molecular images as input and can automatically extract
the structural features related to molecular odors. The proposed models are of great help for the
prediction of molecular odorants, understanding the underlying relationship between chemical
structure and odor perception, and the discovery of new odorous and/or hazardous molecules.

Keywords: odor prediction; hazardous molecules; multilayer perceptron (MLP); convolutional neural
network (CNN)

1. Introduction

In daily life, all kinds of molecular odors, including the attractive aromas of food and
spices, the special odors, such as deodorant, body spray, soap, lotion and laundry liquid, or
the rotten smell or unpleasant smells in garbage, not only affect our emotions, memories
and behaviors but also have a certain impact on biological evolution [1]. The identification
of various odors, particularly toxic odors, can guide people to avoid harm and can expand
the application of molecules with specific odors and help to develop new materials, food,
cosmetics, and so on.

In the past, researchers generally identified the odor of compounds through sensory
experiments; however, large-scale sensory evaluation tests require a great deal of time and
effort. In recent years, researchers have used electronic noses to test molecular odors and
even designed manual feature extractors to predict the odor characteristics of molecules.
Otherwise, the above method depends on manual design and designer’s experience, with
the poor universality and missing prediction in real time [2]. At present, computational
methods have attracted increasing attention in detecting the structure–odor relationship
of molecules.

It is worth mentioning that the structure–odor relationship model can establish a
link between molecular structure characteristics and odor perceptions. It can also be em-
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ployed to identify toxic odors emitted by hazardous materials and the discovery odorous
molecules [3]. Due to the rapid development of high-performance computing and molecu-
lar datasets, deep-learning techniques have been successfully used for the prediction of
molecular odors. Zhang et al. [4] combined a deep belief network (DBN), convolutional
neural network (CNN) and recurrent neural network (RNN) to predict molecular odors
and developed a mixed integer linear/nonlinear programming model with an average
accuracy of 92% to detect the physicochemical properties of odorous molecules.

Wu et al. constructed a CNN-based model for odor prediction using the response sig-
nal generated by an electronic nose, achieving a 99.9% accuracy in distinguishing between
pleasant and unpleasant odors. Zhang et al. [5] developed an artificial intelligence platform
based on random forest (RF) and DBN methods to predict the color and odor of molecules,
and the prediction accuracy was up to 94.75% ± 0.44%. Sharma et al. [6] proposed a
DBN-based DeepOlf model to predict both potential odorants and their interactions with
related receptors.

Another study by Sharma et al. [7] focused on the multi-label prediction of odorous
molecules by using the models based on physicochemical descriptors and DBN, molecular
fingerprints and DBN, and molecular images and CNN. The proposed models based on
molecular fingerprint and DBN, and molecular image and CNN presented an accuracy of
97.3% and 98.3% on the independent test set, respectively. In Tran et al. [8], the molecules
were fed into the network as a 3D object to enable the training of the encoder, and they
finally obtained the DeepNose classifier for odor prediction.

A set of descriptors for the target chemicals was successfully predicted by a series of
computer simulations by Nozaki et al. [9]. The models with prediction accuracies of 53% for
true positives and of 85% for true negatives were constructed based on the descriptors. In
Benjamin Sanchez-Lengeling et al. [10], a graphical neural network was trained to predict
the relationship between the molecular structure and its odor, and the performance of the
model was validated on multiple public datasets. In the study of Kowalewski and Ray
et al. [11], the modeling of chemical features combined with odor receptor activity data
enabled odor prediction.

To date, deep learning has achieved some pioneering results; however, it is still in the
early exploration stage in the field of odor prediction; moreover, few studies have focused
on the structure–odor relationship modeling of molecules. Deep-learning modeling requires
high-quality molecular odor datasets as well as appropriate structural features that are
closely related to molecular odors to ensure the predictive ability of the model. Certainly, it
is necessary to improve the prediction accuracy of molecular odor; meanwhile, the in-depth
investigation on the structure–odor relationships of molecules should be emphasized.

Here, according to Figure 1, we propose three novel kinds of models based on multi-
layer perceptron (MLP) and physicochemical descriptor (MLP-Des), MLP and fingerprint
(MLP-Fin), and CNN to conduct the two-class prediction for odor/no odor, fruity/no odor,
floral/no odor, woody/no odor, and the multi-class prediction for fruity/floral/woody/no
odor. We further explored the structure–odor relationship of molecules based on the MLP-
Des model, thereby, obtaining molecular physicochemical descriptors that can facilitate the
identification of odor characteristics. The deep-learning-based structure–odor relationship
model can help in the prediction of molecular odors, understanding the underlying mecha-
nisms, and in the identification of hazardous molecular odors and novel molecules with
specific odors in the environment.
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Figure 1. The flowchart of the modeling process. First, dataset was collected from FlavorDB and
PubChem databases. Second, RDKit was used to generate the molecular descriptors, fingerprints
and 2D images. Third, based on three nonlinear models (MLP-descriptor, MLP-fingerprint, and
CNN), 15 predictive models were built for five classification tasks. Finally, a five-fold cross-validation
was used to optimize the modeling parameters, and an external validation was used to evaluate
the model.

2. Methods
2.1. Dataset Collection and Preparation

The molecular odor datasets were retrieved from FlavorDB [12] and PubChem
databases [13]. The used keywords were “eary (126)”, “fresh (160)”, “meaty (103) “, “musty
(96)”, “nutty (142)”, “spicy (158)”, “sulfurous (115)”, “woody (240)”, and “fruity (640)”
in searching odorous molecules and “odorless” in searching odorless molecules. All the
molecules collected were corrected according to the recorded structures in the PubChem
database to ensure accuracy. As shown in Table 1, the dataset contained 2087 odorous
molecules and 411 odorless molecules.

Table 1. The odorant datasets used in this study.

Category Training Set Test Set Total Total * Source

Odor 1670 417 2087 25,044

FlavorDB [12]
PubChem [13]

Fruity 512 128 640 7680
Floral 255 64 319 3828

Woody 195 49 244 2928
Odorless 329 82 411 4932

* The number of odor molecules after data augmentation processing.

First, the positive and negative samples were assembled and then randomly disor-
dered. Then, all the samples were divided into training set and test set according to 4:1,
where the training set was used for modeling and the test set was employed to evaluate the
predictive ability of the model. Additionally, the training set were divided into five sets
for 5-fold cross-validation [14] or hold-out validation [14], and evaluation processes were
repeated 10 times to ensure the accuracy of the modeling results. For the two-classification,
a 5-fold cross-validation method was applied to optimize the parameters to obtain the
model. For the multi-classification, a hold-out validation was used to evaluate the results
of each training to acquire the optimal modeling parameters

2.2. Molecular Structure Characterization

As shown in Figure 2, molecular structures were characterized by molecular descrip-
tors, molecular fingerprints, and molecular images. The open-source chemical information
package, RDKit [15], was applied to generate the molecular descriptors (Table S1), finger-
prints and 2D images. The SMILES string of molecules was utilized as input to characterize
the 2D image while distinguishing the stereoisomeric features of molecules.
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Figure 2. Structural characterization for the molecular odor dataset. (A) The structural parameters (fin-
gerprints, descriptors, and 2D images) of dataset used for two-class (odor/odorless, fruity/odorless,
floral/odorless, and woody/odorless) prediction. (B) The structural parameters (fingerprints, de-
scriptors, and 2D images) of dataset used for four-class (fruity/flowery/woody/odorless) prediction,
where class 0 set, class 1 set, class 2 set, and class 3 set present odorless, fruity, floral, and woody
molecules, respectively. (C) The example image in 2D images used for CNN modeling.

2.3. Feature Selection

For the MLP-Des model, variable loading analysis was applied for feature screening.
First, the features with repeated meanings were removed according to the eigenvalues of
the correlation coefficient matrix, and then the rotated component matrix was obtained
by oblique rotation [16]. The 75% variance of the original variable matrix was used as the
common factor selection standard, and then the features with large contribution to the
factor were obtained through the factor load distribution. For the length feature screening
of molecular fingerprint, from 256 to 2048, the difference increased by 100, and the length
with the best prediction result was selected to build the model. Feature selection used IBM
SPSS statistics software [17].

2.4. Multilayer Perceptron

Generally, MLP (which consists of an input layer, multiple hidden layers, and an
output layer) updates the parameters by a back propagation algorithm and optimizes the
model by a gradient descent algorithm. Here, the binary-classification MLP models were
composed of three fully connected layers, and the weights were initialized by uniform
distribution. The output layer used a Sigmoid activation function, while the rest used a
ReLU activation function. In parallel, the multi-classification MLP models encompassed
an input layer, two fully connected layers, and a four classified Softmax layer output
layer [18]. The two fully connected layers of the MLP-Des model contained 128 and
64 hidden neurons, respectively, and the two fully connected layers of the MLP-Fin model
included 32 hidden neurons.
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2.5. Two-Dimensional Convolutional Neural Network

The basic component of CNN included a convolution layer, a pooling layer, and a full
connected layer (Figure 3). The convolution layer extracted feature blocks from the input
feature map and converted them into the output feature map. The pooling layer reduced
the size of spatial information, and the features were mapped onto the samples using
the fully connected layer. In the CNN-based binary-classification model, the convolution
kernel size of three-layer convolution layer was set to (3, 3), and two maximum pooling
layers were used for down-sampling with the size of 14 × 14.
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Figure 3. Schematic diagram of CNN. (A): In the convolution layer, the convolution operation
was used to extract the feature of input data derived from the Depth, Height, and Width. The
dimensions of the output data were controlled by changing the size of convolutional kernel and stride
of the convolution operation. (B): To speed up the calculation, prevent over-fitting, and improve
the generalization of the model, the pooling operation was used to compress data dimensions and
maintain the key information of data.

The ReLU activation function and the Sigmoid activation function were used for the
intermediate layer and the output layer, respectively. The CNN-based multi-classification
model was composed of five convolution layers and three pooling layers, and the last part
was composed of two fully connected layers. The five convolution layers contained 32,
64, 64, 128, and 128 hidden neurons, respectively, and the fully connected layer contained
512 hidden neurons. The ReLU activation function was used for the intermediate layer,
while the Softmax activation function was applied for the final fully connected layer, with
the output value being the probabilities of the four categories.

2.6. Model Evaluation

A series of statistical parameters, including the Accuracy, Precision, Sensitivity, Speci-
ficity, Area under curve (AUC) by receiver operating characteristics (ROC) [19], and
Matthews correlation coefficient (MCC) [20], were used to evaluate the predictive abil-
ity of the proposed model. The formulas for each parameter were as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)
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Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

MCC =
TP × TN − TP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5)

where TP (true positive) is the number of positives for correct classification; TN (true
negative) is the number of negatives for correct classification; FP (false positive) is the
number of negatives for incorrect classification; and FN (false negative) is the number of
positives for incorrect classification.

3. Results
3.1. The MLP-Des Model Exhibited the Highest Predictive Capability

Based on the parameters (Table S2) optimized by grid search and the Earning stop-
ping method, we constructed 15 models of MLP-Des, MLP-Fin, CNN for the predic-
tion of odor/no odor, fruity/no odor, floral/no odor, and woody/no odor, as well as
no/fruity/flowery/woody odor, respectively. As shown in Table 2, the MLP-Des model
showed better prediction performances compared with the MLP-Fin model and the CNN
model. For the prediction of odor/no odor, fruity/no odor, and woody/no odor, the MLP-
Des model generated the highest AUC value of 0.99 on the test set (Figure 4), while for
the prediction of no/fruity/floral/woody odor, the MLP-Des model exhibited the highest
accuracy of 0.800 on the test set (Table 3).

Table 2. The prediction performance on the test set by the two-classification models.

Category Models Precision Sensitivity Specificity MCC

Odor/Odorless
MLP-Des 0.994 0.996 0.918 0.930
MLP-Fin 0.971 0.991 0.600 0.684

CNN 0.985 0.994 0.800 0.836

Fruity/Odorless
MLP-Des 0.993 0.979 0.974 0.931
MLP-Fin 0.917 0.980 0.640 0.710

CNN 0.967 0.984 0.857 0.867

Floral/Odorless
MLP-Des 0.987 0.974 0.993 0.962
MLP-Fin 0.891 0.965 0.765 0.767

CNN 0.960 0.975 0.917 0.901

Woody/Odorless
MLP-Des 0.970 0.983 0.950 0.938
MLP-Fin 0.899 0.942 0.835 0.789

CNN 0.957 0.949 0.931 0.880

Table 3. The prediction performance on the test set by the multi-classification (fruity/floral/
woody/odorless) models.

Models Accuracy Precision Sensitivity

MLP-Des 0.800 0.802 0.800
MLP-Fin 0.700 0.700 0.701

CNN 0.704 0.710 0.703
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Figure 4. The multi-class prediction results of molecular odors. The “ROC curve of class 0” indicates
the predicted value of odorless molecules; “ROC curve of class 1” denotes the predicted value of
fruity molecules; “ROC curve of class 2” signifies the predicted value of floral molecules; “ROC
curve of class 3” represents the predicted value of woody molecules; “micro-average ROC curve”
suggests the micro-average predicted value of the model; and “macro-average ROC curve” shows
the macro-average predicted value of the model.

Through comparison, the MLP-Fin model had the highest predictive ability at a length
of 2048 for RDKFP [15], with an accuracy of 0.98 (Table 2) and an AUC of 0.99 (Figure 4) for
the prediction of odor/no odor on the independent test set. The multi-classification based
on the MLP-Fin model generated the highest ability to identify odorless molecules (AUC of
0.96) (Figure 4).

As displayed in Table 2, the CNN-based model generated accuracy values larger than
94.0% and AUC values greater than 0.98 for the prediction of odor/no odor, fruity/no odor,
floral/no odor, and woody/no odor in the test set, suggesting that the model can better
solve the issue of imbalance between odorous and odorless samples (Figure 4). Moreover,
the AUC value by the CNN model was larger than 0.80 (Table 3) for the prediction of the
no/fruity/flowery/woody odor on the test set. The above results indicated that CNN
only took the 2D molecular image as the input, omitting the steps of manual extraction
and screening of characteristic variables, thereby, achieving the accurate prediction of
molecular odors.

3.2. The MLP-Des Model Showed Better or Equivalent Predictions Compared with Exiting Models

We compared the prediction results of molecular odors between the models established
in this study and the methods reported in the literature. As shown in Table 4, the prediction
accuracy of the MLP-Des model was higher than that of AI-RF/DBN (Accuracy = 0.94) [5],
GA-ANN (Accuracy = 0.90) [21], MILP/MINLP (Accuracy = 0.75) [4] and Olfactometer
(Accuracy = 0.97) [22].

It was worth mentioning that the SOR model listed in Table 4 [7] applied DBN and
CNN methods to predict the multi-label odors of molecules, whereas we achieved binary-
classification and single-label multi-class prediction of molecular odors. The compared
results exhibited that the AUC value of the multi-class prediction based on the MLP-Des
model was equivalent to that of the SOR model.
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Table 4. Comparison of the prediction results between our models and other models.

Model Task Input Data Set Accuracy AUC

AI-RF/DBN [5] Distinguishing color and odor Physicochemical
features

Test set
0.93 -
0.94 -

GA-ANN [21]
Evaluating raw beef flavor Sensor array Test 0.85 -

Evaluating cooked beef flavor Test 0.90 -

MILP/MINLP [4] Screening fragrance molecules Group
contribution

Train 0.93 -
Test 0.75 -

DREAM-RF [23] Predicting the perceived odor of a given molecule Chemical features Test - 0.83

Olfactometer [22] Predicting odor perception of odorant molecules Physicochemical
features

Calibration
0.97 -
0.93 -

Test 0.97 -

SOR [7] Predicting multi-label of odorant molecules
Fingerprint

Test 0.97 0.78Descriptor
Image Test 0.98 0.87

CNN
Classifying odor/odorless molecules

Image
Test set

0.98 0.98
MLP-Des Descriptor 0.99 0.99
MLP-Fin Fingerprint 0.98 0.99

CNN
Classifying fruity/odorless molecules

Image
Test set

0.96 0.98
MLP-Des Descriptor 0.98 0.99
MLP-Fin Fingerprint 0.91 0.95

CNN
Classifying floral/odorless molecules

Image
Test set

0.96 0.99
MLP-Des Descriptor 0.98 0.99
MLP-Fin Fingerprint 0.90 0.93

CNN
Classifying woody/odorless molecules

Image
Test set

0.94 0.98
MLP-Des Descriptor 0.97 0.99
MLP-Fin Fingerprint 0.90 0.93

CNN
Classifying fruity/floral/woody/

odorless molecules

Image
Test set

0.71 0.80
MLP-Des Descriptor 0.80 0.86
MLP-Fin Fingerprint 0.70 0.80

3.3. The Structure–Odor Relationship Derived from the MLP-Des Model

Our MLP-Des model had the highest prediction ability, which was equivalent to or bet-
ter than the results of the models listed in Table 4; moreover, this model can quantitatively
describe the structure–odor relationship of molecules.

Molecular weight, electronegativity, and surface interactions were of great impor-
tance for odor recognition. In the odor/odorless prediction model, four extracted common
factors explained more than 75% variance (Figure 5). Except Ipc (branch in molecule), the
other descriptors significantly contributed to the first common factor (the contribution rate
was larger than 0.5, Table S3). Hence, we focused on the physicochemical significance of
variables that contributed to the first common factor.

Among them, molar refractive index (MolMR), atomic number (HeavyAtomCount),
and molecular weight (HeavyAtomMolWt, ExactMolWt, and MolWt) were molecular com-
position descriptors; VSA_EState9, PEOE_VSA, and EState_VSA were related to the elec-
tronegativity and electrostatic interaction of the backbone atoms; LabuteASA, SlogP_VSA,
SMR_VSA, and TPSA described the surface area, hydrophobic interaction, hydrophilic
interaction, and polarizability. BertzCT was a quantitative indicator of the molecular com-
plexity. Therefore, the molecular weight, electronegativity, and surface interactions played
crucial roles in characterizing odorous molecules.

Molecular charge, surface interaction, and shape were practicable for the identifica-
tion of fruity odors. Seven common factors conducive to identifying fruity molecules were
obtained by variable load analysis (Figure 5). We analyzed the variables (Table S4) with
large significant loading (mainly greater than 0.5) on the first two common factors.
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Figure 5. The five figures on top represent the main factors extracted by variable loading analysis of
the molecular descriptors. The components with high values shown in the figures are the common
factors. The five graphs below are the correlation coefficient matrixes. This shows all variables for
each model. Variables with high correlation formed a component. Four, seven, six, six, and ten
common factors, which explain more than 75% variance of the original variable matrix, were extracted
for prediction of two−class (odor/odorless, fruity/odorless, floral/odorless, and woody/odorless)
and four−class (odorless/fruity/floral/woody) molecules, respectively. The main factors are the
most important set of molecular descriptor features that are beneficial to the identification of a
certain odor.
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A total of 15 descriptors contributed significantly to the common factor 1, while
a total of 11 descriptors had great impact on the common factor 2. The variables that
contributed greatly to the common factor 1 were partial charges (NumValenceElectrons),
molecular weights (ExactMolWt, MolWt, and HeavyAtomMolWt), atomic and valence
electronic information (Chi-like descriptors), SMR_VSA (polarizability), PEOE_VSA (direct
electrostatic interactions), and EState_VSA (electronegativity of skeleton atoms).

The common factor 2 mainly reflected the characteristics of eight variables involving
local charge (MaxPartialCharge, MaxAbsPartialCharge, MinAbsPartialCharge, and MinPar-
tialCharge), charge information (MinEStateIndex), the molecular shape used to characterize
the graphic descriptors (BalabanJ), HallKierAlpha, and Morgan fingerprint density (Fp-
DensityMorgan 3). Thus, the features, such as molecular charge, surface interaction, and
shape can be applied to identify fruity molecules.

Molecular hydrophobic characteristics, composition, and charge were helpful in the
identification of floral odors. A total of six common factors were extracted from the
molecular descriptors in the floral/no odor prediction model (Figure 5). Ten descriptors
(Table S5) had a significant impact on the loading of the common factor 1, including di-
rect electrostatic interactions (PEOE_VSA), charge information (EState_VSA), local charge
(MaxPartialCharge, MaxAbsPartialCharge, MinAbsPartialCharge, and MinPartialCharge),
polarizability (SMR_VSA), lipid–water partition coefficient (MolLogP), graphical descrip-
tors (BalabanJ) and metrics of drug similarity (Qed).

Seven descriptors (Table S5) contributed significantly to the common factor 2, includ-
ing the descriptors for fragment counting (fr_C_O and fr_C_O_noCOO), branching results
in the molecule (Ipc), the number of rotatable bonds (NumRotatableBonds), kappa 2 char-
acterizing the molecular shape, hydrophobic and hydrophilic interactions (SlogP_VSA5),
and molecular shape (HallKierAlpha). In summary, molecular hydrophobic characteristics,
composition, and charge properties played a vital role in the identification of floral odors.

Molecular surface interactions, charge and shape promoted the identification of woody
odors. Through variable load analysis, six common factors were obtained to identify
woody/odorless odors (Figure 5). What we primarily analyzed was the characteristics of
variables with large loading on the common factor 1 and the common factor 2 (Table S6).
The common factor 1 was mainly characterized by the following variables: surface inter-
actions, charge-related descriptors, graphical descriptors (BalabanJ), indicators of drug
similarity (QED) and Morgan fingerprint density (FpDensityMorgan1). The common factor
2 refined the physicochemical parameters, including the number of rotatable bonds (Num
Rotatable Bonds), the molecular shape (kappa2), the branching result in the molecule
(Ipc), the number of rings (RingCount) and the proportion of sp3 hybridized carbon atoms
(FractionCSP3). Therefore, molecular surface interactions, charge and molecular shape
boosted the identification of woody odors.

Molecular charge, composition, shape, and surface interaction were suitable for multi-
classification of molecular odors. In the multi-classification model, total ten common
factors were extracted (Figure 5). The results of variable loading analysis (Table S7) ex-
hibited that the variables significantly contributing to the common factor 1 encompassed
lipid–water partition coefficient (MolLogP), polarizability (SMR_VSA), hydrophobic and
hydrophilic interaction (SlogP_VSA), molecular polar surface area (TPSA), charge informa-
tion (PartialCharge, PEOE_VSA, MaxAbsEStateIndex MinEStateIndex and ESTate_VSA),
Morgan fingerprints (FpDensityMorgan), and graphical descriptors (BalabanJ).

The variables that had great influence on the common factor 2 mainly included
the molar refractive index (MolMR), atomic and valence electronic information (Chi-like
descriptors), molecular complexity (BertzCT), molecular fragment counts (fr_ether, fr_C_O,
fr_ester, fr_C_O_noCOO, and fr_allylic_oxid), rotatable bond count (NumRotatableBonds),
proportion of sp3 hybridized carbon atoms (FractionCSP3), characterized molecular shape
(HallKierAlpha and kappa), and Morgan fingerprint (FpDensityMorgan) descriptors. In
conclusion, the variable characteristics, including the molecular charge, composition, shape,
and surface interaction, were beneficial to the multi-classification of molecular odors.
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4. Discussion

The prediction of molecular odor based on computational methods has important
practical significance for discovery of molecules with specific odors, in particular molecules
with hazardous odors. The prediction modeling of molecular odor first requires high-
quality molecular odor datasets. In recent years, the public molecular odor database has
become an important source of datasets as used in this study. We combined the multi-step
screening strategy to establish the molecular odor dataset (Table 1), which was utilized to
establish the two-classification and multi-classification models of molecular odor based on
deep-learning methods.

Our models based on deep-learning algorithms can well predict the odorous/odorless,
fruity/odorless, floral/odorless, and woody/odorless characteristics of molecules. The
models can be used to detect the odor of molecules and identify the molecules with specific
odors to meet the need of food flavor, cosmetic fragrance, material preparation, etc. More
importantly, the proposed models can be used to discern the molecules with toxic odor,
and to clarify the structure–odor relationship of molecules, thereby, understanding the
underlying mechanism targeting different odor receptors.

Over-fitting is an issue to be solved in deep learning. Here, we took multiple steps to
avoid overfitting. First, the generalization ability of the model was evaluated by a 5-fold
cross validation, and the predictive ability of the model on the test set was evaluated
by MCC, AUC, and other indicators. Second, over-fitting was further avoided by the
following means: (i) Molecular images were widely collected from multiple databases,
and the datasets were cut, flipped, and illuminated to increase the diversity of samples.
(ii) The weight was processed by L2 regularization to punish the features that were not
important for molecular odors. (iii) Dropout was used to reset weight of some neurons in
each training process to reduce the amount of parameters and avoid over-fitting. (iv) The
training was terminated in advance by early stopping to avoid the increase of error rate on
test set on the account of the excessive learning of the characteristics of training set, thereby,
obtaining the best generalization model.

The MLP-Des model not only had the highest prediction ability for molecular odors
but could also quantitatively describe the molecular structure–odor relationship. The
structure–odor relationship investigations revealed that charge information played a cru-
cial role in the identification of molecular odors in both the binary-classification (odor/no
odor, fruity/no odor, floral/no odor, and woody/no odor) and the multi-classification
(no/fruity/flowery/woody odor). Moreover, it is noteworthy that the characteristics repre-
senting four kinds of molecular odors cover those of the binary-classification prediction
of molecular odors—that is, the characteristics conducive to identifying a single odor are
also beneficial to identifying multi-class odors, which demonstrates the reliability of the
extracted odor recognition characteristics from the side.

The CNN model based on 2D molecular images exhibited high accuracy and stability
for predicting molecular odors. In this study, the SMILES string was used to generate
molecular image, which is mainly composed of two parts: the molecular pixel and back-
ground color. Molecular pixel is the key feature that the model needed to learn (about 10%
of the whole image area), while the background color is invalid input or noise interference
(about 90%). When image resolution is too low, the image is too fuzzy to effectively reflect
the characteristics of molecular pixel. With the continuous improvement of resolution, the
molecular pixel features are easier to be learned by the model. However, it must be noted
that the increased area of molecular pixel is much smaller than that of background color ev-
ery time resolution is improved. If the resolution is increased and transited, the dimension
of input variables will soar up, resulting in many invalid background interference inputs,
which will raise the difficulty of model training.

Thus, the selection of molecular image resolution must be a process of gradual increase
and then gradual decrease, and there is a peak optimal value. We attempted to construct
images with different resolutions from 30 × 30 to 300 × 300; as a result, the prediction
results are the best when the resolution is 32 × 32. The model can not only precisely identify
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the key molecular features related to odors but also efficiently deal with the interference of
background color noise. Furthermore, CNN has the advantage in image recognition, that
is, it can extract the key features of molecules without special high resolution to achieve
high predictions. Therefore, CNN can automatically extract structural information related
to molecular odors, thereby, avoiding the manual input of molecular structural parameters
and obtaining a robust prediction model for molecular odors.

Taking the visualization of Triacetin as an example (Figure 6), the features are extracted
through convolution and pooling. With the increase of the layers, the structural features
of Triacetin can be obtained from three dimensions of width, height, and depth (channel).
That is, the CNN successfully learned the key features of molecular images, including the
molecular skeleton, residues, chemical bonds, etc., and can characterize the correlation
between structure features and odor labels. In addition, it is worth emphasizing that, in the
process of extracting molecular image characteristics by RDKit [15], hydrogen exists in an
implicit form and will not be displayed in the image. As @ or @@ in SMILES denotes that
the chiral atom and the surrounding atom were the “clockwise” or “counterclockwise”,
respectively [24], thus, the issue of stereoisomerism is also considered in the 2D image of
molecules to ensure reasonable characterization of the molecular odor characteristics.
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Figure 6. Visualization of the convolution layers (conv2d_16, conv2d_17, and conv2d_18) and the
max pooling layers (max_pooling2d_11 and max_pooling2d_12) of Triacetin in the CNN model. The
conv2d_16 and max_pooling2d_12 are the detection channel of atomic information of the tested
molecule, and the max_pooling2d_11, conv2d_17, and conv2d_18 show the process of extracting key
atomic information of the tested molecule.

5. Conclusions

We constructed three kinds of predictors based on MLP-Des, MLP-Fin, and CNN to
predict molecular odors. The results show that the MLP-Des model had the highest accuracy
for the binary-classification prediction of odor/no odor, fruity/no odor, floral/no odor, and
woody/no odor, as well as the multi-classification prediction of no/fruity/flowery/woody
odor. The structure–odor relationship derived from the MLP-Des model revealed that
molecular charge, weight, composition, shape, surface interaction, and hydrophobic inter-
action were closely related to the molecular odor characteristics. The CNN could automati-
cally extract molecular image features, which could avoid large errors caused by screening



Foods 2022, 11, 2033 13 of 14

features according to the designer’s experience; moreover, it was able to establish a close
relationship between 2D images and molecular odors.

In the future, with the development of separation and identification technology, more
odor datasets will be obtained, which will lay a foundation for establishing more accurate
prediction models. How to characterize the molecular structure and improve the modeling
method is still an urgent problem that needs to be solved. The application of artificial
intelligence provides a powerful tool for the prediction and modeling of various molecular
odors. This study gives a theoretical basis for identifying potential molecules with specific
odors and a methodological basis for predicting the odors of hazardous components in
an environment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11142033/s1, Table S1: Total 200 molecular descriptors cal-
culated by RDKit; Table S2: The optimized parameters used for odor prediction models; Table S3:
The prediction performance on the test set by the two-classification models; Table S4: The predic-
tion performance on the test set by the multi-classification (fruity/floral/woody/odorless) models;
Table S5: The oblique rotation component matrix in the MLP-Des model for the prediction of odor-
ous/odorless molecules; Table S6: The oblique rotation component matrix in the MLP-Des model
for the prediction of odorless/fruity molecules; Table S7: The oblique rotation component matrix in
the MLP-Des model for the prediction of odorless/floral molecules; Table S8: The oblique rotation
component matrix in the MLP-Des model for the prediction of odorless/woody molecules; Table
S9: The oblique rotation component matrix in the MLP-Des model for the prediction of multi-class
(fruity/floral/woody/odorless) molecules.
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