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A B S T R A C T

Objectives: Insomnia disorder has been reclassified into short-term/acute and chronic subtypes based on recent
etiological advances. However, understanding the similarities and differences in the neural mechanisms un-
derlying the two subtypes and accurately predicting the sleep quality remain challenging.
Methods: Using 29 short-term/acute insomnia participants and 44 chronic insomnia participants, we used whole-
brain regional functional connectivity strength to predict unseen individuals’ Pittsburgh sleep quality index
(PSQI), applying the multivariate relevance vector regression method. Evaluated using both leave-one-out and
10-fold cross-validation, the pattern of whole-brain regional functional connectivity strength significantly pre-
dicted an unseen individual’s PSQI in both datasets.
Results: There were both similarities and differences in the regions that contributed the most to PSQI prediction
between the two groups. Further functional connectivity analysis suggested that between-network connectivity
was re-organized between short-term/acute insomnia and chronic insomnia.
Conclusions: The present study may have clinical value by informing the prediction of sleep quality and pro-
viding novel insights into the neural basis underlying the heterogeneity of insomnia.

1. Introduction

Insomnia disorder is the second-most common mental disorder,
characterized by frequent or constant difficulty in falling asleep, poor
sleep maintenance, and inadequate sleep satisfaction (Morin et al.,
2015). According to one epidemiological report (Ohayon, 2002),
around 10% of adults suffer from this condition. Insomnia disorder
severely affects quality of life and has bidirectional association with
various medical, neurological, and mental disorders. As such, it greatly
increases healthcare consumption, work disability, and costs to society
(Palagini et al., 2016). However, the underlying pathophysiology of
insomnia disorder is poorly understood, and accurate prediction of
sleep quality of insomnic patients remains challenging.

Using resting state functional magnetic resonance imaging (rs-
fMRI), prior studies have consistently demonstrated abnormal sponta-
neous regional brain activity in patients with insomnia disorder. For
example, these patients showed lower spontaneous activity in regions

of higher-order cognitive networks (Li et al., 2016) and higher activity
in sensory/perception-related regions (Zhou et al., 2017). Considering
the interaction between regions, several studies have demonstrated
abnormalities in both local regional homogeneity (Wang et al., 2016)
and distributed functional connectivity among regions spanning the
frontal, subcortical, and parietal cortex in patients with insomnia dis-
order (O'Byrne et al., 2014; Bagherzadeh-Azbari et al., 2019). All these
studies sought to infer patterns of abnormal brain functional activity
that are common across patients. However, each patient with insomnia
is a unique case, and these studies ignored the considerable hetero-
geneity among patients with insomnia (Finn et al., 2015; Rosenberg
et al., 2015; Gabrieli et al., 2015).

Several recent studies have explored the underlying neural basis of
individual differences in insomnia disorder. Li et al. (Li et al., 2016) and
Zhou et al. (Zhou et al., 2017) found that the amplitude of low fre-
quency fluctuations was related to the Pittsburgh sleep quality index
(PSQI) in both the inferior parietal lobule and postcentral gyrus. At the
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functional connectivity level, the decreased overall connectivity be-
tween the left inferior frontal gyrus and the rest of the brain was related
to low PSQI (Yan et al., 2018), and the connectivity between inferior
parietal lobule and striatum was positively correlated with PSQI (Wang
et al., 2018) across the population with insomnia. However, these
studies relied on in-sample correlation inference, so it is unknown if the
observed correlation could be generalized to unseen individuals
(Gabrieli et al., 2015). As such, they possessed little clinical value.
Moreover, these studies used mass-univariate analysis and ignored the
relationship between the multivariate pattern of functional connectivity
and sleep quality.

To address these problems, connectome-based individualized pre-
diction methods were developed (Finn et al., 2015; Rosenberg et al.,
2015; Cui and Gong, 2018; Cui et al., 2020) using cross-validation (CV)
approaches, which inherently evaluate the model’s out-of-sample gen-
eralizability to unseen individuals (Gabrieli et al., 2015). Typically, a
specific behaviour score is initially estimated in a connectivity-based
predictive model using training samples; it is then validated using in-
dependent testing samples. This approach generally employs machine
learning, which is a multivariate pattern analysis approach that can
capture the relationship between the complex pattern of whole-brain
features and behaviours, and can therefore provide more information
beyond the traditional mass-univariate analysis. Once the model can
generalize well within the testing samples, it captures the brain re-
presentation of the behaviour. This method has been applied to predict
both cognitive performance and clinical symptoms, including in-
telligence quotient (Finn et al., 2015), attention ability (Rosenberg
et al., 2015), language ability (Cui et al., 2018), and cocaine abstinence
(Yip et al., 2019). However, it has not yet been used to predict sleep
quality in patients with insomnia.

Thus, in the present study, we applied the multivariate relevance
vector regression (RVR) method and whole-brain regional functional
connectivity strength to predict unseen sleep quality in patients with
insomnia. In particular, we focused on two patient populations: those
with short-term/acute insomnia and those with chronic insomnia
(Sateia, 2014). We were interested in both the common and distinct
underlying neural substrates between these insomnia types. Both leave-
one-out (LOO) and 10-fold CVs were used to evaluate the general-
izability of the model. Finally, we characterized the connectivity pat-
tern among regions that related to individual differences in sleep
quality among patients with chronic insomnia.

2. Materials and methods

2.1. Participants

We have recruited 30 patients with short-term/acute insomnia and
46 patients with chronic insomnia from either the Department of
Neurology at Guangdong Second Provincial General Hospital,
Guangzhou, China or the Department of Neurology at Maoming General
Hospital, Guangdong, China between April 2016 and April 2018. The
diagnostic criteria for short-term/acute and chronic insomnia disorder
was according to the Diagnostic and Statistical Manual of Mental
Disorders, version 5 (DSM-V) and the International Classification of
Sleep Disorders, Third Edition (ICSD-3), with complaints of difficulty
falling asleep, maintaining sleep or early awakening for at least
3 months and three times per week (chronic)/ at least three times per
week but< 3 months (short-term/acute). Patients with insomnia dis-
order (short-term/acute and chronic) were excluded due to (1) in-
somnia disorder secondary to severe mental condition (e.g., depression,
anxiety, and epilepsy), (2) other sleep disorders, (3) history of sig-
nificant head trauma or loss of consciousness for > 30 min, (4) history
of medication-based treatment for insomnia disorder, (5) history of
alcohol abuse, drug abuse, or smoking, (6) abnormal signal in con-
ventional MRI imaging, (7) pregnancy, lactation, or menstruation, and
(8) Hamilton Anxiety Scale (HAMA) score > 7 or Hamilton Depression

Scale (HAMD) score > 7.
Finally, one short-term/acute insomnia group (N = 30) and one

chronic insomnia group (N = 46) were included. The two datasets were
acquired using two different scanners. All participants were asked to
complete the PSQI (Buysse et al., 1989), the Epworth Sleepiness Scale
(ESS) (Doneh, 2015) and ISI (Bastien et al., 2001), the HAMA
(Thompson, 2015), and the HAMD (Worboys, 2013) to evaluate their
sleep situation and mental status. In addition, all participants were
right-handed, as assessed using the Edinburgh Handedness Inventory
(Oldfield, 1971). The study was approved by the Ethics Committee of
Guangdong Second Provincial General Hospital. All participants com-
pleted informed written consent before inclusion in the study.

2.2. Image acquisition

For both datasets, T1-weighted and rs-fMRI datasets was acquired.
Furthermore, T2-FLAIR images were obtained for every participant to
detect clinically silent lesions. Subjects were instructed to keep their
eyes closed, stay awake, and remain still during rs-fMRI scanning. After
scanning, all subjects confirmed they were awake during the scanning.

2.2.1. Short-term/acute insomnia
The short-term/acute insomnia patients were scanned using a 3.0-T

MR scanner (Skyra; Siemens, Germany) at the Department of
Radiology, Maoming General Hospital. The rs-fMRI data were acquired
using the following parameters: repetition time (TR) = 2000 ms, echo
time (TE) = 30 ms, flip angle = 90°, slice thickness = 3.6 mm (with a
0.7 mm gap), voxel size: 3.6 × 3.6 × 3.6 mm, matrix = 64 × 64, field
of view (FOV) = 240 × 240 mm2; 35 transverse-planes parallel with
the anterior commissure–posterior commissure line were imaged, with
240 dynamic scans, for a total of 8,400 images. Additionally, individual
high-resolution anatomical images were acquired using a 3D magneti-
zation-prepared, rapid-acquisition, gradient-echo (MPRAGE), T1-
weighted sequence: 160 axial slices, TR = 10.4 ms, TE = 4.3 ms, flip
angle = 15°, slice thickness = 1.0 mm, no gap, matrix = 256 × 256,
FOV = 256 × 256 mm2.

2.2.2. Chronic insomnia
The chronic insomnia dataset patients were scanned using a 3.0-T

MR scanner (Ingenia; Philips, the Netherlands) at the Department of
Medical Imaging, Guangdong Second Provincial General Hospital. The
rs-fMRI data were acquired using the following parameters:
TR = 2000 ms, TE = 50 ms, flip angle = 90°, slice thickness = 3.6 mm
(with a 0.7 mm gap), voxel size: 3.6 × 3.6 × 3.6 mm, ma-
trix = 64 × 64, field of view (FOV) = 230 × 230 mm2, 35 transverse
planes parallel with the anterior commissure–posterior commissure line
were imaged, with 240 dynamic scans, for a total of 8,400 images.
Additionally, individual high-resolution anatomical images were ac-
quired using T1-weighted, 3D MPRAGE: 160 axial slices, TR = 25 ms,
TE = 4.1 ms, flip angle = 30°, slice thickness = 1.0 mm, no gap,
matrix = 256 × 256, FOV = 230 × 230 mm2.

During rs-fMRI data acquisition, participants were asked to lie
quietly in the scanner with their eyes closed and not think of anything
specifically. The rs-fMRI scan lasted for 8 min, and a total of 240 vo-
lumes were obtained for each participant. After the examination, all
participants were asked questions to verify the degree of their co-op-
eration.

2.3. Image pre-processing

We used data processing and brain imaging analysis (Yan et al.,
2016) to pre-process the rs-fMRI data. This processing procedure in-
cluded the following steps: (1) removing the first 10 functional vo-
lumes, (2) correcting for acquisition time delay between slices, (3)
realigning all volumes to a selected reference volume to correct for
head motion, (4) co-registering individual T1-weighted images to mean
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functional images, (5) segmenting the co-registered T1 images into grey
matter, white matter, and cerebrospinal fluid tissue maps using Dif-
feomorphic Anatomical Registrations Through Exponentiated Lie Al-
gebra (DARTEL) segmentation (Ashburner, 2007), (6) using the ac-
quired transformation parameters to normalize the functional image to
the Montreal Neurological Institute (MNI) space, and then re-sampling
the image into 3-mm isotropic voxels, (7) removing the linear trend and
several nuisance signals, including Friston’s 24 head motion para-
meters, global signal, and the average white matter and cerebrospinal
fluid signals, (8) temporal bandpass filtering (0.01–0.1 Hz) was per-
formed voxel-by-voxel.

One patient with short-term/acute insomnia was removed because
of failure during normalization (See Supplementary Fig. 1). In the
chronic insomnia group, one subject was removed due to head motion
exceeding 3 mm and 3°during fMRI scanning, and another was removed
because of motion artefact in the T1-weighted image (see
Supplementary Fig. 2).

Ultimately, we included 29 subjects in the short-term/acute in-
somnia group and 44 subjects in the chronic insomnia group. See
Table 1 for the demographic information of both datasets. PSQI was not
significantly correlated with age in either acute/short insomnia group (r = -
0.13, p = 0.50) or chronic insomnia group (r = 0.006, p = 0.97). We
calculated the mean root mean square (RMS) framewise displacement to
measure the head motion for each subject. The head motion also did not
significantly correlate with PSQI in either short insomnia group (r = -0.25,
p = 0.19) or chronic insomnia group (r = 0.08, p = 0.59).

2.4. Whole-brain resting-state functional connectivity strength feature
extraction

The human Brainnetome atlas (https://atlas.brainnetome.org/) was
used, which parcellates the entire grey matter into 246 regions (123 in
each hemisphere) consisting of 210 cortical and 36 subcortical regions
(Fan et al., 2016). For each subject, a regional mean time series was
calculated by averaging the time series over all voxels within the re-
gion, and thus a total of 246 regional mean time series were yielded.
The resting-state functional connectivity (rsFC) between each pair of
regions was computed using Pearson’s correlation between two regional
mean time series. For each region, the nodal rsFC strength (rsFCS) was
calculated, which corresponds to the centrality measure in graph theory
and is simply defined as the sum of the rsFC values between that region
and all other regions (245 in total) (Buckner et al., 2009; Liu et al.,
2017). A whole-brain nodal rsFCS feature vector, with 246 features in
total, was extracted for each subject. It was then used to predict be-
haviour in the subsequent analysis.

2.5. Individualized prediction of PSQI using nodal rsFCS

Based on whole-brain nodal rsFCS features, we applied multivariate
RVR to predict individual differences in PSQI scores (Fig. 1). All codes
are publicly released on Github (https://github.com/ZaixuCui/Pattern_
Regression_Clean). RVR is formulated in a probabilistic Bayesian
learning framework and obtains sparse solutions to a multivariate re-
gression model (Tipping, 2001). The function takes the form as below:
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and the most weights were set as zero. The samples (number l < N)
with non-zero weights, termed the ‘relevance vector’, were used to train
the model. Maximum likelihood estimation was used to find the weights
of these samples. The regression coefficients of all features were de-
termined as the weighted sum of the feature vector of all ‘relevance
vector’ samples. This algorithm (Cui and Gong, 2018) has no algorithm-
specific free parameter and is computationally more efficient than other

Table 1
The demographic and clinical characteristics of insomnia participants (short-
term/acute insomnia N = 29, Image acquisition by the Skyra; Siemens),
(chronic insomnia N = 44, Image acquisition by the Ingenia; Philips,).

Acute Insomnia (n = 29) Chronic Insomnia (n = 44)

Handedness(R/L) 29/0 44/0
Gender(M/F) 7/22 15/29
Age(years) 28.621 ± 6.961 38.068 ± 10.281
Education(years) 13.035 ± 3.581 10.159 ± 3.831
Smoking (Y/N) 0/29 0/44
Drinking(Y/N) 0/29 0/44
Course disease(weeks) 4.817 ± 4.052 65.955 ± 61.683
Drug treatment(Y/N) 0/30 0/44
PSQI 16.567 ± 3.159 18.432 ± 2.267
ISI 20.933 ± 6.236 20.136 ± 5.630
ESS 17.000 ± 4.871 9.046 ± 6.164

Values are represented as mean ± SD. R, right; L, left. M, male; F, female. Y,
yes; N, no.

Fig. 1. Schematic overview of one loop of leave-one-
out cross-validation (LOOCV) prediction framework.
One subject was used as testing and the remaining
subjects were used as training dataset. Each feature
was linearly scaled between zero and one across the
training dataset, and the scaling parameters were
also applied to scale the testing dataset. Relevance
vector regression was used to train a model, which
was used to predict the PSQI of the testing subject.
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algorithms. RVR has been widely used to predict age and behaviour. We
used the codes from the PRoNTo toolbox (http://www.mlnl.cs.ucl.ac.
uk/pronto/; Schrouff et al. (2013)) to implement RVR.

2.5.1. Prediction framework
We applied LOOCV to estimate the generalizability of the model.

Specifically, N-1 subjects were used as the training set and the re-
maining subjects were used as the testing set. Each feature was linearly
scaled from a range of zero to one across the training dataset, and the
scaling parameters were applied to scale the testing dataset (Cui and
Gong, 2018; Cui et al., 2018). A prediction model was constructed using
all the training samples and then used to predict the PSQI score of the
testing sample. The training and testing procedure were repeated N
times so that each subject was used once as the testing set. The Pearson
correlation r and mean absolute error (MAE) between the predicted and
observed PSQI were used to quantify the prediction accuracy (Cui and
Gong, 2018).

2.5.2. Significance of prediction performance
The permutation test was applied to determine whether the ob-

tained correlation r and MAE values were significantly better than ex-
pected by chance (Cui and Gong, 2018). Specifically, the above pre-
diction procedure was re-applied 1,000 times. For each time, we
permuted the PSQI scores across the training samples without re-
placement. The P-value of correlation r was calculated as the proportion
of a permutation that showed a higher value than that acquired in the
real sample. The P-value of the MAE was the proportion of permuta-
tions that showed a lower value than that acquired in the real sample.

2.5.3. Contributing regions
If the above prediction was significantly higher than that acquired

by chance, the model had shown that the distributed representation in
the brain was related to PSQI. We used all subjects to construct a new
model that could identify the contributing regions to the model (Cui
and Gong, 2018; Cui et al., 2018). The absolute value of the contribu-
tion weight represented the importance of the corresponding feature in
the prediction (Cui and Gong, 2018; Cui et al., 2016). We defined the
top 50 regions with the highest absolute contribution weight as the
most contributing regions.

2.5.4. Validation
We next conducted two additional analyses to validate our results.

Firstly, we tested whether the predicted PSQI score was significantly
correlated with observed PSQI score after controlling for ESS or head
motion. Secondly, we applied 10-fold CV to validate the results ac-
quired using LOOCV. We randomly split the data into 10 subsets, of
which nine were used as training data and the remaining one was used
as a testing set. We scaled the features on training data and then applied
the acquired parameter to scale the testing data. We trained a predic-
tion model using the training data, which was used to predict the PSQI
of the testing data. This procedure was repeated 10 times, so that each
subset was used as testing data once. As the split into 10 subsets was
random, we repeated the above 10-fold CV procedure 20 times and
reported the average prediction accuracy. Permutation testing (i.e.,
1000 times) was used to evaluate the significance of the prediction
accuracy.

Finally, for both the two groups, we evaluated the correlation be-
tween nodal strength and age controlling for sex, education for each of
the 50 regions with the highest absolute contribution weight. FDR
correction was used to account for multiple correction comparison. We
also evaluated the correlation between nodal strength and ESS, con-
trolling for age, sex and education, and the correlation between nodal
strength and motion, controlling for age, sex and education.

2.6. Individualized prediction of PSQI using rsFC among the top 50 most
contributing regions

Having demonstrated that nodal rsFC predicted an unseen in-
dividual’s PSQI score and identified the most contributing regions, we
next sought to understand how functional connectivity among these
regions contributed to this prediction. Specifically, we extracted the
rsFC among the top 50 most contributing regions, resulting in a feature
vector of 1,225 features for each subject. The acquired rsFC features
were applied to predict an unseen individual’s PSQI, which was eval-
uated using the above LOOCV prediction framework. The top 50 con-
nections with the highest absolute contribution weight were displayed.

In particular, the analysis using functional connectivity between the
most contributing regions to predict PSQI may have involved over-
fitting. However, the aim of this analysis was to further understand how
connectivity among these regions contributed to the prediction of sleep
quality rather than to increase prediction accuracy. Moreover, it was
not statistically certain that the connectivity among the most con-
tributing regions could predict the PSQI.

3. Results

3.1. Whole-brain nodal rsFC predicted an unseen individual’s PSQI score

Evaluated using LOOCV, the partial Pearson’s correlation between
observed and predicted PSQI scores was r = 0.37 controlling for age,
sex, and education in patients with short-term/acute insomnia
(Fig. 2A). A permutation test (1,000 permutations) suggested a sig-
nificance of Pperm = 0.033 (Fig. 2B). The MAE between the observed
and predicted PSQI scores was 2.4 (Pperm = 0.029) (Fig. 2C). In patients
with chronic insomnia, the partial correlation r between observed and
predicted PSQI scores was r = 0.22 (Pperm = 0.030) controlling for age,
sex, and education, and the MAE was 1.91 (Pperm = 0.006) (Fig. 2D, E,
F).

3.2. The most contributing regions for the prediction of PSQI score

The regions contributing most to the prediction of PSQI were
widespread, located in the parietal, temporal, and frontal areas in both
the short-term/acute (Fig. 3A, Supplementary Table 1) and chronic
(Fig. 3B, Supplementary Table 2) insomnia group. Some common
regions, such as the pre-frontal and entorhinal cortex, parahippocampal
gyrus, temporal gyrus, and thalamus, contributed greatly in both the
short-term/acute and chronic insomnia groups. Some specific regions
only contributed to one group but not the other. Specifically, the
amygdala, insula, cingulate gyrus, and right frontal areas mainly con-
tributed to PSQI prediction in the short-term/acute insomnia group
(Fig. 3A), while the superior parietal lobule mainly contributed to PSQI
prediction in the chronic insomnia group (Fig. 3B).

3.3. Validation analysis

First, after controlling for ESS and other covariates we used in the
main analysis, the correlation between the predicted and observed PSQI
scores was still significant in both short-term/acute insomnia group
(r = 0.36, Pperm = 0.037) and chronic insomnia group (r = 0.22,
Pperm = 0.04). Second, after controlling for head motion and other
covariates we used in the main analysis, the correlation between the
predicted and observed PSQI scores was still significant in and chronic
insomnia group (r = 0.19, Pperm = 0.049) and had a trend to be sig-
nificant in short-term/acute insomnia group (r = 0.30,
Pperm = 0.057). Third, 10-fold CV suggested nodal strength sig-
nificantly predicted PSQI scores (short-term/acute insomnia: r = 0.35,
Pperm < 0.001; MAE = 2.40, Pperm < 0.001; chronic insomnia:
r = 0.20, Pperm < 0.001, MAE = 1.97, Pperm < 0.001).

Finally, for each of regions contributing the most to the prediction,
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the nodal strength was not significantly correlated with age or ESS in
either short-term/acute insomnia group or chronic insomnia group.
Also, nodal strength was significantly correlated with head motion in
only one brain region (i.e., dorsalmedial parietooccipital sulcus) in
short-term/acute insomnia group and there is no significant correlation
in chronic insomnia group.

3.4. Multivariate analysis revealed the relationship between rsFC and
individual differences in PSQI score

Having demonstrated that nodal rsFC predicted an unseen in-
dividual’s PSQI score and identified the regions that most contributed,
we next sought to understand how functional connectivity among these
regions contributed to the prediction. Using the rsFC of the top 50 most
contributing regions to predict PSQI score, as evaluated using LOOCV,
Pearson’s correlation between the observed and predicted PSQI scores

Fig. 2. Whole-brain patterns of regional functional connectivity strength significantly predict an unseen individual’s sleep quality in both short-term/acute and
chronic insomnia. (A) Scatter plot of the correlation between the observed and predicted PSQI scores across all patients with short-term/acute insomnia. The
permutation distribution (1,000 times) suggests that both (B) the correlation r and (C) the mean absolute error (MAE) between the observed and predicted PSQI
scores were significantly better than those acquired by chance in the short-term/acute insomnia group. Similarly, (D) for patients with chronic insomnia, both (E) the
correlation r and (F) MAE between the observed and predicted PSQI scores are significantly better than those acquired by chance.

Fig. 3. The regions with the highest absolute contribution weight in the PSQI prediction model in both (A) short-term/acute and (B) chronic insomnia groups. The 50
regions with the highest absolute contribution weight are displayed, with the colour representing the different cognitive systems. VS: visual; MT: motor; DA: dorsal
attention; LM: limbic; FP: fronto-parietal; DM: default mode; SC: subcortical.
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Fig. 4. Multivariate predictive modelling further revealed the functional connectivity among the 50 most contributing regions that related to PSQI scores. The
connectivity pattern among the 50 most contributed regions significantly predict the PSQI scores in both (A) the short-term/acute insomnia group and (B) chronic
insomnia group. The between-region functional connectivity that contributed the most to PSQI prediction in both (C) the short-term/acute insomnia group and (D)
the chronic insomnia group. The sum of the contribution weights of between-network connectivity in both (E) the short-term/acute insomnia group and (F) the
chronic insomnia group. VS: visual; MT: motor; DA: dorsal attention; LM: limbic; FP: fronto-parietal; DM: default mode; SC: subcortical.
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was r = 0.65 (Pperm < 0.001) controlling for age, sex and education,
and the MAE was 2.18 (Pperm = 0.001) in the short-term/acute in-
somnia group (Fig. 4A), while the correlation between the observed and
predicted PSQI scores was r = 0.37 (Pperm = 0.002) controlling for age,
sex, and education, and the MAE was 1.84 (Pperm = 0.003) in the
chronic insomnia group (Fig. 4B).

Short-term/acute insomnia is deemed an early stage of chronic in-
somnia (Ellis et al., 2012). The functional connectivity that contributed
most to PSQI prediction in short-term/acute insomnia included wide-
spread functional connectivity among high-order cognitive systems
(i.e., fronto-parietal, default mode network, etc.) (Fig. 4C&E, Supple-
mentary Table 3). In contrast, in the chronic insomnia group, less
functional connectivity between high-order cognitive systems con-
tributed to the PSQI prediction (Fig. 4D&F, Supplementary Table 4).
Notably, connectivity between the motor system and high-order cog-
nitive systems did not contribute to PSQI prediction in the short-term/
acute insomnia group, but contributed highly in the chronic insomnia
group.

4. Discussion

Using two independent samples, we demonstrated that whole-brain
nodal functional connectivity strength predicts unseen individuals’
sleep quality in both the short-term/acute and chronic insomnia groups.
We found that some regions contributing most to the prediction of PSQI
score in the short-term/acute and chronic groups were common to both
groups, while others only contributed in one group. In particular, the
emotional regulation neural circuit mainly contributed to prediction in
the short-term/acute insomnia group, while the superior parietal areas
mainly contributed to prediction in the chronic insomnia group. Further
functional connectivity analysis suggested that between-network con-
nectivity was re-organized during the cross-sectional transition from
the short-term/acute insomnia stage to the chronic insomnia stage.
Specifically, less between-network connectivity among high-order
cognitive networks and more connectivity between the motor network
and high-order networks contributed to PSQI prediction in the chronic
insomnia group than in the short-term/acute insomnia group.

Prior studies relating insomnia to brain function have mainly fo-
cused on group comparison to investigate common abnormalities
among patients with insomnia (Yan et al., 2018; O'Byrne et al., 2014).
However, all individuals are unique in behavior, cognition, and brain
function and structure. For example, Mueller and colleagues showed
that there was a huge inter-subject variability in the functional con-
nectivity, especially in the high-order association cortex (Mueller et al.,
2013). Inter-subject variability in functional connectivity was related to
the evolutionary cortical expansion and anatomical structure (i.e.,
sulcal depth), suggesting a potential evolutionary and anatomical root
of inter-subject functional variability (Mueller et al., 2013). Moreover,
it has been showed that genetic and environmental factors are critical in
explaining the inter-individual variation in functional connectivity
(Teeuw et al., 2019). All these factors make each individual unique. The
individual uniqueness is the basis of individualized identification (Finn
et al., 2015). Therefore, each patient with insomnia is also unique, and
more recent studies have attempted to better understand the neural
substrate underlying individual differences in insomnia.

Most existing studies of the individual differences in insomnia have
used in-sample correlation to reveal the neural basis of individual dif-
ferences (O'Byrne et al., 2014; Spiegelhalder et al., 2013), which has
limited the generalizability of the findings. In contrast, the current
study used the out-of-sample prediction method to demonstrate that
whole-brain nodal functional connectivity strength predicted an unseen
individual’s PSQI score. Specifically, the present study applied both
LOO and 10-fold CVs to assess generalizability to unseen individuals,
and significant prediction accuracies were achieved in both the short-
term/acute and chronic insomnia groups. These models may possess
clinical significance to predict sleep quality in patients with insomnia

(Gabrieli et al., 2015).
More importantly, our study included two insomnia populations:

one with short-term/acute insomnia and the other with chronic in-
somnia. The patients with short-term/acute insomnia had generally
suffered from the condition for< 3 months, while chronic insomnia
was defined as a disease duration of > 3 months (Sateia, 2014). Recent
evidence has demonstrated some symptom differences between short-
term/acute and chronic insomnia. For example, patients with short-
term/acute insomnia typically exhibit more life events, greater per-
ceived stress, anxiety, and depression than normal sleepers, which
corroborates Spielman’s model in which insomnia appears to be pre-
cipitated by stress (Spielman et al., 1987)45. In contrast, patients with
chronic insomnia display signs of increased arousal, either on a cog-
nitive-emotional, behavioural, autonomous, or central nervous system
level (Riemann et al., 2015). Some literature has considered short-
term/acute insomnia as an early stage of chronic insomnia (Riemann
et al., 2017; Perlis et al., 2019). Short-term/acute insomnia can be re-
lieved after cessation of the stressor because normal sleep shows plastic,
automatic regulation. In contrast, chronic insomnia cannot, because
other processes that interfere with sleep regulation are activated
(Riemann et al., 2017; Espie, 2002). Individuals who have progressed
from short-term/acute to chronic insomnia are more likely to develop
first-onset depression (Ellis et al., 2014).

Some regions contributing most to the prediction of PSQI score in
the short-term/acute and chronic groups were common to both groups,
while others only contributed in one group. We observed that the pre-
frontal areas, entorhinal cortex, parahippocampal gyrus, temporal
gyrus, and thalamus contributed to PSQI prediction in both groups.
These regions have been consistently found to be abnormal in insomnia
patients compared to controls (O'Byrne et al., 2014; Zhou et al., 2017;
Wang et al., 2018; Yan et al., 2018; Bagherzadeh-Azbari et al., 2019).
The entorhinal cortex, parahippocampal gyrus, and temporal gyrus may
play a crucial role in long-term memory encoding (Schon et al., 2016;
Newmark et al., 2013; Park et al., 2011), while the pre-frontal area is
critical for working memory (D'Esposito and Postle, 2015) and the
thalamus is related to sleep regulation (Coulon et al., 2012). Beha-
vioural studies have consistently suggested that patients with both
short-term/acute and chronic insomnia suffer from sleep dissatisfaction
and declines in memory consolidation (Cellini, 2017; Sutton, 2014).
Moreover, this decline is positively related to sleep quality (Rana et al.,
2018).

Emotion-related anterior meso-limbic regions, including the amyg-
dala, insula, and cingulate gyrus, mainly contributed to PSQI prediction
in the short-term/acute insomnia group, while the posterior-occipital
areas, including superior parietal area, which is related to attention and
spatial working memory (Jahn et al., 2012), mainly contributed to PSQI
prediction in the chronic insomnia group. Prior studies have con-
sistently suggested that acute stressors (e.g. stress at work, ill health,
change in circumstances, or jet lag) usually trigger short-term/acute
insomnia, while chronic insomnia can develop when short-term/acute
insomnia occurs and becomes perpetuated through sleep-related cog-
nition biases (Sutton, 2014; Riemann et al., 2017). Additionally, long-
itudinal studies have demonstrated that patients with acute insomnia
often suffer stress-related emotional dysfunction or transient sleep
disturbance behaviour (Yang et al., 2013), while patients with chronic
insomnia tend to have selective impairments in spatial working
memory or attention (Chen et al., 2016). Additionally, prior study de-
monstrated that chronic insomnia patients typically present higher le-
vels of cyclic alternating pattern (CAP) fluctuation (Parrino et al.,
2012), which present topographical location over the posterior parieto-
occipital areas of the brain (Terzano and Parrino, 2000). This is con-
sistent with our observation that the contributing regions of PSQI pre-
diction in chronic insomnia mainly located in the posterior parieto-
occipital areas. These results suggested a more emotionally-driven in-
fluence in the acute form of the insomnia versus a more introspective/
self-mentation driven system in the chronic insomnia.
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Furthermore, the results suggested that the specific functional
connectivity related to sleep quality was re-organized during the cross-
sectional transition from short-term/acute to chronic insomnia. In
particular, in patients with short-term/acute insomnia, widespread
between-network functional connectivity among high-order cognitive
systems, such as fronto-parietal, default mode network, and subcortical
systems contributed to PSQI prediction (Fig. 3E). In contrast, in patients
with chronic insomnia, there were fewer connections among high-order
cognitive systems that contributed to PSQI prediction (Fig. 3F). How-
ever, the connections between the motor system and other high-order
cognitive systems did not contribute to PSQI prediction in short-term/
acute insomnia (Fig. 3E) but contributed greatly to PSQI prediction in
chronic insomnia (Fig. 3F). These results suggested that, in the early
stages of insomnia (i.e., short-term/acute), there are perturbations in
high-order cognition, whereas in later-stage insomnia (i.e., chronic),
there perturbations in basic somatomotor functions. Consistent with
this, prior literature has demonstrated that patients with chronic in-
somnia exhibit sensorimotor hyperarousal (Riemann et al., 2015). For
example, patients with chronic insomnia generally show cortisol over-
production in the hypothalamic–pituitaryadrenal axis and activity in
the autonomic nervous system (Riemann et al., 2015). In contrast,
short-term/acute insomnia is a common experience for most people
who experience stress; stress-related transient insomnia may further
elicit maladaptive variations in cognitive behaviour and emotional
arousal (Yang et al., 2013; Morin et al., 2015).

Several limitations of the current study should be addressed. First,
the study was carried out in a small cohort; to generalize the results,
further validation will be necessary using a large dataset of patients
with insomnia. However, although we only used a small sample, our
work used two independent samples from two scanners, which suggests
that our results are robust to some extent. Second, our work used a
cross-sectional sample; future studies should use a longitudinal design
to explicitly examine the functional connectivity changes underlying
the transition from the short-term/acute insomnia to chronic insomnia.
Third, further studies could combine multiple neuroimaging features
from different imaging modalities, such as grey matter volume, white
matter microstructure integrity and cerebral blood flow, for better
prediction of sleep quality of insomnic patients. Also, as prior work
demonstrated (Cui and Gong, 2018), the prediction accuracy could be
increased by training the model using more subjects. Forth, it should be
noted that the acute and chronic groups were imaged on two different
scanners. Although the same scanning parameters were used for rs-fMRI
scanning, the scanner effect could impact the differences between the
two groups. Fifth, as the attention during the rs-fMRI scan wasn’t
tracked, so further studies may test if our observed differences between
short-term/acute and chronic insomnia are related to the differences of
attention during the scan (Laufs et al., 2003; Duyn, 2011).

5. Conclusions

In conclusion, the present study demonstrated the nodal functional
connectivity strength predicted unseen individuals’ sleep quality in
both short-term/acute and chronic insomnia. We further revealed
changes in the functional connectivity pattern during the transition
from the short-term/acute insomnia to chronic insomnia. The study
may have clinical value by informing the diagnosis of sleep quality of
insomnic patients, and may provide novel insights into the neural basis
underlying the heterogeneity of insomnia. Finally, the present work
showed that it is important to differentiate the stages of sleep quality in
future studies.
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