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ABSTRACT In 1998, it was claimed that an 80-year-old glass tube intentionally filled
with Bacillus anthracis and embedded in a sugar lump as a WWI biological weapon
still contained viable spores. Today, genome sequencing of three colonies isolated in
1998 and subjected to phylogenetic analysis surprisingly identified a well-known
B. anthracis reference strain isolated in the United States in 1981, pointing to acci-
dental laboratory contamination.

IMPORTANCE Next-generation sequencing and subsequent phylogenetic analyses
are useful and reliable tools for the classification of recent and historical samples.
The reliability of sequences obtained and bioinformatic algorithms has increased in
recent years, and research has uncovered the identity of a presumed bioweapon
agent as a contaminant.

The recent rapid development of next-generation sequencing (NGS) technologies
combined with bioinformatics provides useful tools for reliable microbial isolate

identification down to the strain level. For comparative genomic investigations, NGS
leads to a better understanding of the epidemiology and evolution of various microbial
organisms. Sequencing of historical specimens represents previously unattainable evo-
lutionary data. Thus, contemporary emerging isolates are sequenced (1) and so are
historical specimens (e.g., Yersinia pestis [2] from teeth of victims of the Justinian plague
or Variola major [3] from a 400-year-old mummy).

The oldest isolate of Bacillus anthracis, the causative agent of anthrax, dates back to
1917 (4). The German spy Baron Otto von Rosen was imprisoned in 1917 in Karasjok,
Norway, near the current Finnish border and accused of smuggling a biological weapon
consisting of anthrax-filled glass capillaries hidden in sugar lumps with the intent to
sabotage the transportation lines that relied upon reindeer during the Great War (5).
The confiscated sugar lumps were stored for 8 decades at the police museum in
Trondheim, Norway, before “rediscovery” and sent to the Defence Evaluation Research
Agency, Chemical and Biological Defence, in Porton Down, United Kingdom, in 1997 (4).
Direct PCR of the vial contents with species-specific primers identified the presence of
B. anthracis DNA. Following extensive culturing efforts, four bacterial colonies were
isolated. By using B. anthracis-specific PCR assays targeting sequences of the chromo-
some and both B. anthracis-specific plasmids, the identity of the colonies as B. anthracis
was confirmed and published, emphasizing the sturdiness of spores (4) having survived
more than 80 years at ambient temperature.

In this study, we reinvestigated three of the four colonies by NGS with the intent to
subtype and characterize a 100-year-old B. anthracis strain. The DNAs were sequenced
independently, and this resulted in three draft genomes (~5.5 Mb). The genomes of
strains sugar 2 and sugar 4 were identical to each other and differed from that of strain
sugar 3 by a single nucleotide polymorphism (SNP) at position 883096 (C ¡ T). In a
direct alignment of the three sugar draft genomes with that of the Ames “ancestor,”
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there were 5,474,730 high-quality nucleotide positions available for genotypic compar-
ison.

The initial molecular subtyping by canonical SNP typing (6, 7) assigned the strains
to the A.Br.Ames clade. Multilocus variable-number tandem-repeat analysis (MLVA)
with two different established systems (6, 8) revealed the same allelic patterns as for the
Ames ancestor strain. Subsequent in silico analysis confirmed the laboratory results.
Further in silico investigations by whole-genome SNP typing revealed only two non-
synonymous SNPs, at positions 1798709 (A ¡ G) and 4212867 (G ¡ A) compared to the
Ames ancestor. No difference was detected in the virulence plasmids, whose complete
sequences were also determined. This high identity was unexpected, as the Ames
ancestor strain was isolated from a cow in Sarita, TX, in 1981, 64 years after the historical
sample’s discovery (9). Extensive research after the 2001 Amerithrax letter attacks
showed that members of the A.Br.Ames clade were naturally uncommon (10). Phylo-
geographic analysis was consistent with the derived Ames clade’s historical importation
into North America, perhaps from China, where many close relatives are found (11).

In particular, the Ames ancestor and its identical sister genome, FTD1004, are very
high quality closed and finished sequences that represent two stocks derived directly
from the original 1981 Texas B. anthracis isolate. These two stocks were independently
established in May 1981 after material was transferred to USAMRIID. Together, they
represent the oldest known laboratory stocks of the original Ames strain, established
within months of the bovine anthrax case.

Directly diverging from these five genomes (Fig. 1) is that of strain Porton Down
Ames, with 65 unique SNPs. Careful examination of the data argues that these are not
sequencing errors but rather represent mutations that occurred during laboratory
growth. A similar divergence from other Ames isolates was reported by Read et al. and
attributed to mutations that occurred during a plasmid-curing regimen (12, 13).

We can only speculate about the direct linkage between the original Texas 1981
Ames strains and the Porton Down sugar isolates of 1998. The Porton Down scientists
were the world leaders in anthrax research, and their plasmid-cured Ames strain is still
in use in reference laboratories worldwide. Therefore, they were well aware of the value
of this historical sample and fumigated the class 3 microbiological safety cabinet with
formaldehyde prior to opening the vials to avoid contamination (4). These careful
protocols were invoked to cultivate these historical specimens, which would lead to the
oldest B. anthracis strains ever described, as previously the oldest samples were from
1954 (14).

It is clear from their study description that the isolation process was more difficult
than the standard microbiological methods employed for B. anthracis (4). Because no
colonies were apparent from culturing of the original liquid, an 8-day enrichment in
liquid broth was used. Plating of the enriched liquid resulted in only four colonies,
which were confirmed to be B. anthracis by McFadyean’s test and species-specific PCR
assays. However, none of these techniques was able to differentiate among B. anthracis
strains. The first suitable molecular typing techniques (MLVA) using eight markers was
published in 2000 (15), 2 years later, and hence, molecular typing of the isolates was
indeed not possible at the time of the report.

Despite secure handling and microbiological safety cabinet cleaning, it seems
highly likely that the isolated strains are accidentally isolated contaminants of
formerly processed Ames strains. In 1981, the progenitor of the Ames ancestor and
FTD1004 was isolated in Texas and then transferred to USAMRIID at Ft. Detrick, MD,
United States. In 1982, an Ames culture was transferred from Ft. Detrick to Porton
Down (12). Only one phylogenetically informative SNP separates the Porton Down
genomes from the USAMRIID Ames genomes (Fig. 1). This high identity and
phylogenetic topology argue that the Porton Down Ames strain and Porton Down
sugar contaminants were derived from the Ames material sent in 1982.

In the context of spatial separation of analytical and research facilities to avoid
contamination, there were no dedicated analytical facilities at the Porton Down defense
laboratories in 1998. Therefore, analysis of the sample had to be conducted in a facility
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used for research activities. This changed in 2006, when the Defence Science and
Technology Laboratory implemented a purpose-built reception and screening facility.
Culturing of samples is now carried out in a separate facility to mitigate against the
possibility of laboratory contamination.

When genome diversity is so low that only a few SNPs differentiate critical isolates,
high-quality NGS and careful phylogenetic analyses are needed for unambiguous strain
identification. Only this ultradiscriminatory power has unraveled the mystery of the
historical B. anthracis sugar lumps, revealing that the spores really did not survive for
this extended period. Today, direct metagenomic analysis of the capillary fluid might be
capable of generating the whole genome sequence, even if there were no viable spores
(16). The investigation of historical pathogen specimens has clearly entered a new era.

Materials and methods. All strains (sugar 2, sugar 3, and sugar 4) were successfully
grown on sheep blood agar out of deep-frozen cryobank stocks in a biosafety level 3
(BSL3) area. Strain sugar 1 failed to grow. After incubation overnight at 37°C and visual
inspection for contamination, single colonies were picked and diluted. Subsequently,
the suspension was filtered with a Millipore 0.1-�m filter to obtain spore-free liquids
and its nucleic acid was purified with the Qiagen DNA Blood and Tissue kit (Qiagen,

FIG 1 High-resolution phylogeny of the Ames clade of B. anthracis. A whole-genome phylogeny based
upon 25 high-quality draft or completely finished B. anthracis genomes is shown. A total of 812 SNPs,
with no missing data, were used to construct a maximum-parsimony tree with a consistency index of 1.0.
Branches previously identified and named (16) are labeled a (A.Br.081), b (A.Br.085), c (A.Br088), and d
(A.Br.001). For the SNP genotypes used to construct the phylogeny shown, see Table S1 in the
supplemental material.
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Hilden, Germany). In accordance with standard procedures, 10% of the volume was
plated again onto sheep blood agar and incubated for 14 days without any growth
characteristics, prior to transfer of the DNA out of the BSL3 laboratory. Final DNA
concentrations were measured with the Qubit 2.0 fluorometric assay (Life Technologies,
Inc., Darmstadt, Germany) and analyzed with an Agilent Bioanalyzer.

MLVA was performed with an ABI 3130 Capillary Sequencer as described previously
(6, 8, 17). For in silico MLVA, in-house python scripts were used to determine the
corresponding fragment lengths by using the published primer sets.

NGS was performed by the Illumina MiSeq approach. In accordance with the
manufacturer’s protocol, sequencing libraries were prepared by using 2.0 ng of
genomic DNA with the Nextera XT kit (Illumina, San Diego, CA). Genomes were
sequenced on an Illumina MiSeq platform with paired-end v 3 chemistry (2 � 300 bp).
De novo genome assembly was performed with SPAdes (18) version 3.5.0 and polished
by Pilon v.1.3.0 (19).

For SNP identification, the Northern Arizona SNP pipeline was used (http://
tgennorth.github.io/NASP/) (16). This includes the alignment of raw data against the
Ames ancestor (NC_007530, NC_007322, and NC_007323) with the BWA-MEM algo-
rithm (20) and SNP calling by the UnifiedGenotyper method in GATK (21, 22). To
calculate the depth of coverage, raw data were aligned with the Ames ancestor and the
per-base depth of coverage was calculated by the GenomeCoverageBed method in
BEDTools (23).

Accession number(s). Sequence reads were deposited at the NCBI Short Read
Archive under accession no. SRR5275585 (sugar 2), SRR5275584 (sugar 3), and
SRR5275583 (sugar 4).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00440-17.
TABLE S1, XLSX file, 0.1 MB.
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