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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by

the deterioration of motor neurons. However, this complex disease extends beyond the

boundaries of the central nervous system, with metabolic alterations being observed at

the systemic and cellular level. While the number of studies that assess the role and

impact of metabolic perturbations in ALS is rapidly increasing, the use of metabolism

biomarkers in ALS remains largely underinvestigated. In this review, we discuss current

and potential metabolism biomarkers in the context of ALS. Of those for which data

does exist, there is limited insight provided by individual markers, with specificity for

disease, and lack of reproducibility and efficacy in informing prognosis being the largest

drawbacks. However, given the array of metabolic markers available, the potential exists

for a panel of metabolism biomarkers, which may complement other current biomarkers

(including neurophysiology, imaging, as well as CSF, blood and urine markers) to overturn

these limitations and give rise to new diagnostic and prognostic indicators.
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OVERVIEW

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by the death
of motor neurons in the brain and spinal cord. The loss of neuronal input leads to progressive
paralysis and patient mortality within 2–5 years from diagnosis (1). ALS likely arises from a
combination of genetic susceptibility and environmental exposures (2, 3), although it is recognized
that ALS is a complex, multi-system disease (4, 5).

Given the complex and heterogeneous nature of ALS, diagnosis and tracking of prognosis
remains difficult. Current diagnostic criteria typically follow tests to rule out other pathological
causes of symptoms and include: indicators of upper and lower motor neuron involvement,
nerve conduction tests, electromyography and “watchful waiting” (4). As a result, researchers
have attempted to utilize a wide range of biomarkers—observable biological measurements that
confirm the presence or progression of a change in body status, as a means of diagnosing and
following disease progression. While the current range of biomarkers in ALS offer some diagnostic
and prognostic benefit, there is a need to identify a biomarker that satisfies the following six
attributes: specificity to disease; reproducibility; appearance early in the disease; stability across the
diurnal period; independence of dietary status and behavior; and a notable change during disease
progression. Bymeeting these criteria, a biomarker can be used to reliably identify and track disease
progression, in a manner that can easily be reproduced in a clinical setting.

Metabolic perturbations occur in ALS patients and in mouse models of the disease; both at the
systemic and cellular level (6, 7). Clinically, an increase in resting energy expenditure (REE) and
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decline in body mass index (BMI) is linked to worse outcome
(8–10), suggesting prognostic potential in metabolic biomarkers.
Given that changes in metabolic status are generally reflected
in overall body weight, body composition, and tissue/cellular
metabolic function, metabolic changes at the anthropometric,
tissue and cellular levels may represent appreciable metabolism
biomarkers of ALS onset, progression, and/or severity (Figure 1).
A list of the potential biomarkers of metabolism in ALS, and their
quality relative to the aforementioned identifying attributes are
summarized in Table 1.

ANTHROPOMETRIC BODY MEASURES

Lower premorbid BMI is associated with increased risk for ALS
(11–13), and the degree of decline in premorbid BMI predicts
ALS risk and survival (14, 15). Lower BMI, or a decline in
BMI following diagnosis correlates with worse survival (16, 17),
although this association is not always observed (18, 19, 23, 24).
Rather, the mortality risk for ALS relative to BMI exists as a U-
shaped curve, in which mortality decreases with increasing BMI,
until BMI levels indicate premorbid obesity. Thereafter, mortality
risk increases again (8, 20). This seemingly complex association
could be explained by changes in body composition throughout
disease progression.

BMI is often used as an indirect measure of fatness.
However, conventional anthropometric measures of BMI and
body adiposity index (BAI) do not always accurately reflect
changes in fat and/or fat free mass (FFM) in ALS (69). In this
regard, fat mass (FM) and FFM at diagnosis are not associated
with survival risk (14), yet redistribution of adipose tissue does
occur in ALS (29), and visceral fat is correlated with functional
status and survival (28). Moreover, serial assessment of body
FM indicates that increases in FM are associated with longer
survival (14). While a decrease in FFM serves as an independent
prognostic factor for shorter survival in ALS (23), we did not
identify any studies that document progressive changes in muscle
mass as a potential marker of disease progression in ALS. As a
hallmark of ALS, however, there is potential to use the loss of
FFM as a marker of disease progression. Such measures must
consider the technical difficulties associated with assessing FFM
in patients who experience significant and progressive disability,
while also accounting for whole body and regional changes in
FFM, which differ greatly between patients.

Despite BMI and BAI being poor predictors of body
composition in ALS, changes in BMI may offer reliable measures
for progressive changes in the overall nutritional status of the
patient, and by proxy, disease progression. As documented by
Kasarskis et al. a progressive decline in body weight is commonly
observed in ALS patients in the months prior to death, and
this reduction in body weight or BMI likely reflects a state of
undernutrition (25). In recent years, lower BMI has been found
to be associated with lower ALSFRS-R scores (70), and a loss of
body weight (14, 21, 23, 24, 26, 27, 71) and BMI (14, 17, 22, 24)
throughout disease course is consistently associated with shorter
survival. Not surprisingly, these observations, while serving as

markers for disease progression, have resulted in the adoption of
interventions aimed at slowing weight loss in ALS (72).

SKELETAL MUSCLE PATHOLOGY

With findings suggesting that FFM is a prognostic factor in ALS
(23), analysis of skeletal muscle, the primary component of FFM,
may offer insights into tissue-specific metabolism biomarkers.
Assessment of cellular metabolic changes in skeletal muscle can
be challenging, especially when weighing the clinical benefit
against that of an invasive procedure on a patient undergoing
significant muscle wasting. Furthermore, heterogeneity in site of
disease onset leads to variable muscle pathophysiology between
patients (73).

Despite these limitations, creatine kinase, an enzyme that
is linked with muscle damage and deterioration, has been
studied intensely in ALS. While not strictly a metabolic marker,
creatine kinase can be considered as an important modulator
of body composition (74). As such, it may indirectly influence
systemic metabolic processes. Numerous reports of increased
creatine kinase in ALS (36–43), and particularly in limb-onset
patients (38, 43), highlight the potential for its use as a marker
of disease. However, contradictory observations of associations
between creatine kinase and clinical parameters of disease, and
disease progression and survival attest to the need for further
investigations into determining the utility of creatine kinase as
a biomarker in ALS.

MITOCHONDRIAL DYSFUNCTION

In human ALS muscle, mitochondrial defects including
dysregulation of respiratory complex I (44), decreased
respiratory complex I and IV activity (45, 75), decreased
muscle mitochondrial protein expression (75) and upregulation
of muscular mitochondrial uncoupling protein 3 (76) indicate
that impairments in mitochondrial function could serve as a
metabolic marker of ALS. It should be noted, however, that
these studies were unable to correlate mitochondrial defects with
functional parameters of disease progression, despite studies in
animal models reporting a strong relationship between the two
(77–79). Therefore, while there is clear evidence of mitochondrial
defects in ALS, mitochondrial defects per se cannot currently be
used as a biomarker due to the difficulty in both easily observing
these defects in a clinical setting, and linking such defects to a
marker of disease progression and/or survival. Instead, emphasis
could be placed on the assessment of the more easily detectable
metabolites that drive mitochondrial function.

GLUCOSE METABOLISM

Glucose use in the brain of ALS patients has been evaluated using
fluorodeoxyglucose F18 positron emission tomography (F18-
PET) (30–33). These studies have identified decreased glucose use
in the primary motor cortex of ALS patients, suggesting that this
brain region is hypometabolic (32). Other studies have reported
a decrease in the use of glucose across other brain regions
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FIGURE 1 | Potential metabolism biomarkers in amyotrophic lateral sclerosis (ALS). Metabolic alterations in ALS offer opportunities to use metabolism biomarkers for

the diagnosis, categorization, and tracking of disease. Non-invasive anthropometric measures include body weight, body mass index (BMI), fat free mass, fat mass,

and fat distribution. Invasive measures include the use of F18-PET to assess glucose metabolism in the central nervous system, or require the sampling of saliva,

blood, cerebrospinal fluid (CSF), muscle tissue, and urine. Although few independent markers are specific, reproducible or able to track disease in ALS, used together

with complementary biomarkers (including neurophysiology and imaging), these markers may provide deeper insights into metabolic perturbations that are potentially

involved in the onset and progression of disease.

(31, 33); although this may reflect the differences in experimental
cohorts. In this regard, Claassen et al. investigated a cohort of
patients with primary lateral sclerosis, while the study by Ludolph
et al. evaluated ALS patients with both upper and lower motor
symptoms. Given that the degree of cerebral hypometabolism
in ALS is correlated with the duration of clinically-identified
symptoms (30), the ability of the motor cortex to utilize glucose
may allow for monitoring of disease progression. However, since
brain glucose hypometabolism is not specific to ALS (80), its use
as a diagnostic/prognostic marker is limited.

F18-PET has also been used to assess the uptake and
utilization of glucose in the cervical spinal cords of ALS
patients (34, 35, 81). Overall, observations of spinal cord glucose
hypermetabolism (34, 35, 81) is congruent with increased levels
of glucose in the CSF of ALS patients (47). In a study by
Yamashita et al. glucose hypermetabolism on the ipsilateral side
to the patient’s symptoms was found to be positively correlated
with ALSFRS-R, suggesting that changes in spinal cord glucose
metabolism are specific to the affected corticospinal tract and
the degree of disease severity (35). By contrast, the study by

Marini et al. reported spinal cord glucose hypermetabolism
independent of disease duration and functional impairment (34).
As such, the degree of glucose use in the spinal cord may present
some use for diagnostic testing, but provides limited insights
for evaluation of disease progression and prognosis. Indeed,
glucose hypermetabolism in the spinal cord extends to other
neurological conditions (82, 83), thereby limiting its use as a
specific biomarker for ALS. Finally, as the reproducibility of F18-
PET in both the brain and spinal cord is low (84), more rigorous
testing is required to determine if results are consistent across a
heterogeneous ALS population.

Alterations in glucose metabolism in ALS extend beyond the
central nervous system (CNS). Glucose tolerance tests conducted
by Pradat et al. indicate that ALS patients have a significant
increase in blood glucose levels following the provision of a
glucose load when compared to age- and sex-matched controls.
Within ALS patients, a degree of heterogeneity was observed,
with 33% of participants meeting World Health Organization
criteria for impaired glucose tolerance (53). Impaired glucose
tolerance is in line with reports of insulin resistance in ALS
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(85), and could explain observations of increased expression of
pyruvate dehydrogenase kinase 4 (PDK4) in skeletal muscle of
ALS patients (46). Similarly, mannose, an epimer of glucose that
has recently been shown to be a predictor of insulin resistance
(86), has been reported to be significantly increased in the plasma
of ALS patients (54). While the assessment of glucose tolerance
and insulin resistance is relatively straightforward, these tests
lack reproducibility and specificity to ALS (87–89). Therefore,
although glucose metabolism is altered in ALS, it cannot be used
as an independent biomarker for ALS diagnosis and prognosis.

FATTY ACIDS AND KETONES

In patients with ALS, the resting level of circulating free fatty
acids (FFAs) is significantly increased (53). While higher levels
of FFAs has been linked to impaired glucose tolerance in ALS,
it has not been shown to be correlated with any markers of
disease progression or severity. Ketones, including β-hydroxy-
butyrate (63) and 2-hydroxy-butyrate and α-ketoglutarate (54),
which are produced through fatty acid metabolism under fasting
conditions, are also significantly increased in ALS. Similar
to FFAs, no correlations have been observed between disease
status and the expression of ketones. Thus, FFAs and ketones
cannot currently be considered as reliable biomarkers for ALS,
and the lack of specificity for ALS-centric pathology indicate
that they may not present as particularly valuable diagnostic
markers individually.

DOWNSTREAM METABOLITES

Metabolites, the downstream indicators of metabolic function,
are also impacted in ALS. While not specific to ALS, altered
expression of metabolites may offer a potential avenue for
biomarker discovery. In line with disease heterogeneity, reported
levels of metabolites in the blood and CSF are variable. Notably,
the levels of lactate (47, 50) and pyruvate (51) in the CNS
are increased, potentially reflecting an increase in metabolic
output, or increased release of metabolites into the CSF following
neuronal deterioration. Given that mitochondrial dysfunction is
observed in ALS, further evaluation of the ratio between these
metabolites may hold significant informative value in ALS due to
the diagnostic value of this test for mitochondrial disorders (90).

Blood levels of acetate are increased in ALS (63), although
this is not readily observed in the CSF (47, 51). Acetate is
a key metabolite in the oxidation of fatty acids. As acetate
synthesis precedes the formation of citric acid in the Krebs cycle,
changes in circulating acetatemay occur due to excess production
via an increase in fatty acid oxidation, increased release from
deteriorating muscle cells, or other disruptions to mitochondrial
membrane integrity (e.g., due to the presence of free radicals).
Such potential mechanisms align with ALS pathology. As a whole,
downstream metabolites hold promise as potential biomarkers,
and further work that can interrogate relationships between
metabolites and clinical parameters of disease would add merit
to their use as metabolic biomarkers of disease.

ENDOCRINE MODULATORS
OF METABOLISM

Insulin is an anabolic hormone that has been reported to be
decreased in the blood (64) and CSF (52) of ALS patients. By
contrast, other studies have reported no significant differences
in plasma insulin levels in ALS patients (91, 92). Other anabolic
hormones that have been found to be decreased in ALS include
growth hormone (in CSF and blood) (52, 92–94) and gastric
inhibitory peptide in blood (64). Conversely, hormones that
promote catabolism, such as cortisol (65, 67), and adiponectin
(64) are increased or dysregulated in saliva and blood of patients
with ALS. Furthermore, ghrelin, an important modulator of
appetite, is also reduced in the plasma/blood of ALS patients
(64, 66). Given that alterations in these hormones are likely
to be symbolic of a change in metabolic function/homeostasis,
studies that confirm a link between endocrine markers of
metabolism and clinical markers of disease offer potential for
their development as prognostic biomarkers.

METABOLISM OF STRUCTURAL LIPIDS

While fatty acids and their derivatives serve as energy substrates
through mitochondrial respiration, they also play an essential
role in maintaining cellular integrity. Phospholipids, particularly
phosphatidylcholine, are significantly increased in the CSF of
ALS patients (48). Sphingolipids, such as stearoyl sphingomyelin
and ceramide, are also increased in patient blood (48, 54).
Interestingly, in the study by Blasco et al. predictions of
clinical measurements, such as ALSFRS-R, were found to be
correlated to CSF sphingomyelins and triglycerides with long-
chain fatty acids (48). Such findings are favorable for the
development of biomarker assays, but further tests are required
to confirm the reliability of predictive models, before use as a
prognostic biomarker.

An increase in cholesterol esters has been observed in ALS
patient spinal cord (95). However, cholesterol and its carriers
prove to be more difficult to characterize, with variable levels
of HDL and LDL cholesterol being reported in ALS. In a
population-based longitudinal study, a positive association was
found between LDL cholesterol and ALS risk (55), however, there
was no indication of the impact of LDL on disease progression or
mortality. Nonetheless, this could serve as a diagnostic biomarker
for ALS risk. Previously, higher levels of cholesterol, LDL, as
well as an elevated LDL/HDL ratio in ALS patient blood have
been correlated with increased survival (56–58). Conversely,
similar increases in total cholesterol, LDL, and HDL cholesterol
in ALS patient blood (59, 60) and CSF (49) have not been
found to be correlated with disease progression. Furthermore,
a small number of studies contradict these findings, reporting
that cholesterol, LDL, and HDL levels do not vary between ALS
patients and controls (53, 61, 62), although lower levels of serum
lipids may correlate with worse respiratory function (61). Based
on these contradictory observations, the validity of cholesterol as
a biomarker remains uncertain. Further studies that address these
disparate data are required.
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NOVEL METABOLISM-
ASSOCIATED BIOMARKERS

p75 neurotrophin receptor (NTR) belongs to the tumor necrosis
factor family of receptors. It is a transmembrane receptor which
binds neurotrophins and pro-neurotrophins (96). p75NTR has
been implicated in processes of energy expenditure (97), glucose
uptake, and insulin sensitivity (98). In ALS, the secretion of the
extracellular domain of p75NTR (p75ECD) in urine was recently
established as a biomarker for disease progression and prognosis
(68, 99). Urinary p75ECD increases as disease progresses, and an
elevation of urinary p75ECD is observed alongside a decrease in
ALSFRS-R scores (68). While it is not clear if increases in urinary
p75ECD in ALS match metabolic derangements that accompany
disease progression (such as changes in energy metabolism,
glucose uptake and insulin sensitivity), the introduction of
p75ECD as a fluid biomarker in ALS provides an opportunity
for the evaluation and possible co-development of metabolism-
associated biomarkers.

CONCLUSION

The complexity and heterogeneity of disease between patients
limits the scope for the use of a single reliable biomarker
of ALS. Significant changes in metabolism seen in ALS may
represent a potential avenue for biomarker development. As
documented in this review, a range of markers might be
relevant (Figure 1). However, as investigations into the cause
for metabolic derangements in ALS are ongoing, and little
emphasis has been placed on the development of metabolism
biomarkers as diagnostic or prognostic indicators, few reliable
metabolism biomarkers exist (Table 1). Moreover, because

metabolic alterations in ALS likely arise from the dysregulation
of a number of processes, the utility of biomarkers for assessing
early or progressive changes in themetabolic state of ALS patients
would necessitate the development of a panel that captures the
spectrum of metabolic changes that occur at the systemic and
cellular level.

As there is no single biomarker for ALS that sufficiently
meets the six major attributes of a biomarker, it is clear
that the assessment of biomarkers that cover multiple
dimensions of the disease is needed in order to generate a
comprehensive view of the state of disease. The complementary
assessment of metabolism markers alongside other biomarkers
including neurophysiology, imaging, as well as CSF, blood,
and urine markers may form a more convincing and reliable
diagnostic/prognostic platform, while providing insights into the
multifactorial nature of disease.
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