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Abstract
In addition to being a forage crop, Caliph medic (Medicago truncatula) is also a model

legume plant and is used for research focusing on the molecular characterization of the

interaction between rhizobia and plants. However, the endophytic microbiome in this plant

is poorly defined. Endophytic bacteria play a role in supplying plants with the basic require-

ments necessary for growth and development. Moreover, these bacteria also play a role in

the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utili-

zation of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this

project from within the interior of the roots of this plant by pyrosequencing of the small ribo-

somal subunit gene (16S rDNA) using a cultivation-independent approach. In addition, the

differential abundance of these bacteria was studied following exposure of the plants to

salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six

libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that

the abundance of ~70% of the OTUs was significantly (p� 0.05) altered in roots that were

exposed to salinity stress. Sequence analysis showed a similarity between some of the

identified species and other, known, growth-promoting bacteria, marine and salt-stressed

soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments

to the bacterial community due to salinity stress in Caliph medic provides a crucial step

toward developing an understanding of the association of these endophytes, under salt

stress conditions, in this model plant. To provide direct evidence regarding their growth pro-

moting activity, a group of endophytic bacteria were isolated from inside of plant roots using

a cultivation-dependent approach. Several of these isolates were able to produce ACC-

deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4
-3. This data is consistent

with the predicted occurrence (based on cultivation-independent techniques) of these bac-

teria and provides some insight into the importance of the endophytic bacteria in Caliph

medic when grown under normal and saline conditions.
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Introduction
Endophytic bacteria refers to those species that are able to grow within plant tissues without
showing disease symptoms, and survive by forming a symbiotic relationship with the host
plant [1]. Endophytes can promote plant growth by increasing the availability of some nutri-
ents, such as nitrogen, phosphorus, iron and zinc; by synthesizing growth hormones, such as
indole-3 acetic acid, cytokinins and gibberellic acids [2]; and by producing 1-aminocyclopro-
pane-1-carboxylic acid (ACC) deaminase, an enzyme responsible for the cleavage of ACC,
which is the immediate precursor of the hormone ethylene in all higher plants [3,4]. Endo-
phytic bacteria are important for both the routine growth and the developmental processes of
plants, as well as when plants experience biotic and abiotic stresses including salinity [5,6].
Under saline conditions, some endophytic microorganisms ameliorate the stress in plants by
synthesizing osmoprotectant molecules, such as proline and/or trehalose [7], quaternary
ammonium compounds in the cytoplasm [8,9], volatile organic molecules [10], and exopoly-
saccharides [9,11].

Salinity can severely affect plant health and yield by causing an imbalance in nutrient
uptake, by increasing the negative osmotic water pressure on plant cells [12,13], and by reduc-
ing the availability of nutrients in the soil [14]. Recent research, however, has revealed that
plant growth-promoting bacteria including both endophytic and rhizospheric bacteria can
improve the survival chances and performance of plants under saline conditions [6,15,16]. For
example, the inoculation of cucumber [17] and canola [3] with Pseudomonas putida UW4 has
been found to enhance plant growth under saline conditions. Likewise, the treatment of pepper
seedlings with Brevibacterium iodinum, Bacillus licheniformis and Zhihengliuela alba halotoler-
ant bacteria reduced salt-induced ethylene synthesis and, as a result, promoted plant perfor-
mance under the same conditions [18].

Alfalfa (Medicago sativa) and Caliph medic (Medicago truncatula) are important fodder
crops worldwide, but their production has been severely reduced in recent decades due to soil
salinity [19,20,21]. In addition,M. truncatula is considered to be a model legume plant for
molecular research on rhizobium-legume symbiosis [22]. For this reason,M. truncatula was
chosen for the current study into the impact of soil salinity on endophytic community richness
in Caliph medic and other related species such as alfalfa.

Although numerous bacterial taxa were previously identified as endophytes inM. sativa,
endophytes have not been studied inM. truncatula. For example, in addition to the well-
known S.meliloti, a detailed study using Terminal-Restriction Fragment Length Polymorphism
(T-RFLP) analysis, quantitative PCR and sequencing of the 16S rRNA gene showed that the
root system of alfalfa was enriched with a wide range of species classified under the Sphingomo-
nadaceae andMethylobacteriaceae bacteria families [23]. Other studies have shown that the
bacteria community also includes Bacillus megaterium [24], Brevibacillus choshinensis and
Microbacterium trichothecenolyticum [25], Endobacter medicaginis [26] andMicromonospora
sp. [27].

Describing a microbial community structure, in which each bacterial member of the com-
munity is isolated, is not currently possible because we lack the knowledge to cultivate a large
percentage of these microbes. In addition, determining the change to the community structure
when the community is exposed to salinity stress requires a differential quantitative method in
order to individually estimate the taxon abundance within the community. Currently, the use
of the 16S rRNA gene sequencing in studying the microbial community structure is much
more comprehensive than using culture-based approaches [28,29]. Therefore, in the project
reported herein, a next-generation pyrosequencing method was used to characterize the struc-
ture of the endophytic community and to estimate the corresponding changes that occur in
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response to salinity stress inM. truncatula root tissues. These changes may provide an insight
into the role of the endophytic microbial community in salinity tolerance in Caliph medic.

Material and Methods

Soil analysis
The physical and chemicals properties of the soil, including the electrical conductivity (E.C.)
and the pH, were measured as described previously [30] by the Ministry of Agriculture and
Fisheries’ soil analysis laboratories in Jomah, Oman.

Plant materials
Caliph medic (Medicago truncatula) seeds were surface-sterilized with 75% ethanol for 10 min-
utes and then with a 5% sodium hypochlorite solution for five minutes. Next, caliph medic seeds
were rinsed three times with sterile distilled water. Seeds were planted in pots containing soil col-
lected from fields used to grow differentMedicago species such as alfalfa and caliph medic, which
were located at the coordinates 23°39'42.5"N and 58°00'34.0"E, Jomah, Oman. Plants were grown
in two–liter pots and placed in the field, where the day and night temperatures were respectively
28±2°C and 20±2°C, and in the natural daylight. Six pots were used, with each pot containing at
least 10 seedlings. Three of the pots were used for the control treatment, while the other three
pots were used for the NaCl treatment. The plants used in the control treatment were watered
weekly with distilled water, while the salinity-treated plants were watered for the first two weeks
with distilled water and then with increasing levels of saline solution on a weekly basis, starting
with 50 mM, followed by 75 mM and then 100 mMNaCl for two successive weeks.

Plant roots were collected from the seedlings 50 days after planting. Roots of 10 different seed-
lings were pooled and considered as one replicate. Three replicates of the control and the NaCl
treated pools were used in this experiment. The collected roots were surface-disinfected in line as
described previously [31]. Briefly, a pool of roots from the control and the salinity-treated plants
were separately washed in running water, then disinfected by treatment with 5.25% bleach for 3
minutes followed by 3% hydrogen peroxide solution for 3 minutes, and then washed twice with
sterile distilled water containing a 10% solution of Tween 20. Finally, the roots were rinsed twice
with sterile distilled water. To examine the surface disinfection efficiency, a sample of the roots
from each pool was planted in solid TSAmedium for one week at 28°C. Subsequently, the plates
were examined for the presence of microbial-growing colonies. The surface-disinfected roots
were flash-frozen in liquid nitrogen and kept at -80°C in a freezer until they were used for DNA
extraction. The roots were grounded in liquid nitrogen using a sterile mortar and pestle. The
DNeasy Plant Maxi Kit (Qiagen) was used to extract the total DNA, which contained both the
plant cellular DNA and the microbial DNA of the endophytic community.

The bacteria communities were fingerprinted according to the ribosomal DNA (16S rRNA)
sequences, using the pyrosequencing method (GS FLX+) and a 454 platform sequencer
(Roche). The V3-V4 16S rRNA was amplified by PCR-fusion [32] using universal oligonucleo-
tides (S1 Table). The PCR products were purified using AMPure9 beads and quantified using a
Picogreen assay [33], while the CD-HIT-OTU (version 454–0.0.2) was used to assemble the
raw data de novo. The amplicons were sequenced and assembled using the next-generation
sequencing facilities at Macrogen, Inc. (Seoul, the Republic of Korea).

Isolation, identification and characterization of endophytic root bacteria
The endophytic bacteria were isolated from the surface sterilized roots of the Caliph medic
plants grown under normal and saline conditions as previously described [6,31]. The bacterial
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strains were identified based on the 16S rDNA gene sequences. The 16S rDNA genes were
amplified from the genomic DNA by PCR using the 27F and 1492R primers [34]. ACC deami-
nase activity in the newly isolated strains was determined using the procedure of Penrose and
Glick [35]. The ability to produce IAA and similar compounds using the L-tryptophan was
determined as previously described [6,31]. The capacity of the strains to produce ammonia was
measured as previously described [36], while the ability to solubilize PO4

3- and Zn2+ using the
Ca3(PO4)

2 and the ZnO insoluble salts in the Pikovskaya’s agar media respectively, was deter-
mined using previously described methods [37].

16S rRNA sequence analysis
Raw data were demultiplexed using barcode sequences without allowing for any mismatch
(Macrogen’s in-house software). Short reads were filtered, while tails and the reads that were too
long were trimmed. Duplicates and chimeric reads were removed, with the resultant reads clus-
tered with 100% identity using CD-HIT-DUP software [38]. Using a greedy algorithm [39], the
remaining representative high-quality reads from the non-chimeric clusters were clustered into
Operational Taxonomic Units (OTUs) with a similar cut-off identity at the species level as follows:
for species 98%, for genus 94%, for family 90%, for order 85%, for class 80% and for phylum 75%.

Raw data were classified based on the barcode sequences of each sample. In order to find
the best match, each sequence was compared (locally and globally) to the sequences available
in the SILVA database. QIIME 1.8.0 software [40] was used to produce the OTU count. The
similarity between the read sequences was examined in order to identify the OTUs as well as
carry out statistical analysis on the diversity and evenness of the sample species. The Shannon,
Simpson and Chao 1 indices were used to study the biodiversity based on the richness of the
species and to estimate the abundance-based richness within the community [41].

The raw abundance value was used without rarefying for analyzing diversity statistics com-
munity richness and diversity using the biom files and the QIIME software. The goods cover-
age was also calculated using the calculator provided by software QIIME.

Each group (salinity and control treatments) was composed of three biological replicates and
the validation of the data was based on p� 0.05. With regard to the QIIME software, the Mann-
Whitney U test, as a bootstrap version equal to 2,000 times, was used. The p-value was corrected
by the Bonferroni procedure for multiple comparisons [42,43]. The complete linkage between
the hierarchical cluster analysis and the visualization of the abundance values as a heat map were
carried out using the PermutMatrix software [44]. The hierarchical cluster was set at a complete
linkage and the dissimilarity was calculated based on the Euclidean distance. A neighbor-joining
phylogenetic tree was built using the Mega software package 5.0 [45] and the default settings.

Principal Coordinate Analysis (PCoA) [46] analysis was used as an ordination-based
approach to illustrate the variation between the bacterial community compositions in response
to salinity treatment using the Past 3 software package [47] and the Gower’ distance matrix
[48]. In addition, analysis of similarity test (ANOSIM) [49] and the Gower distance matrix
index were used to assess the pairwise comparisons of significant differences between the
microbial communities. The p-value was recalculated based on the Bonferroni significance.

The 16S rDNA sequences were deposited in GenBank/EMBL/DDBJ under the accession
numbers KU587127-KU587167 and KX395941-KX396022.

Results and Discussion

Salinity stress impaired the growth of seedlings
Plant species vary in their ability to cope with salinity stresses. Although Caliph medic is con-
sidered to be a moderately salinity-tolerant plant [50], this tolerance depends on the growth
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stage and the genotype of the plant [20,51]. In this study, we have identified endophytic bacte-
ria from Caliph medic at the seedling stage; therefore, the total endophytic microbial commu-
nity of this plant may not be limited to those microbes described in this study. In comparison
with the control experiment, the effect of the soil salinity stress was evident in the performance
of the seedlings (Fig 1).

This is quite normal since the soil salinity level measured as electrical conductivity (E.C.)
dramatically increased due to the treatment from 1.23 (S.D. ±0.22) to 14.36 (S.D. ±0.4). That
increase in the E.C. not only significantly increased the Na+ and Cl+ (p� 0.05) (Table 1), but it
also increased the soluble sulphate in the soil, presumably because sodium interacts with sul-
phate to form a soluble salt [52].

Fig 1. The influence of salinity treatment on Caliphmedic seedlings.

doi:10.1371/journal.pone.0159007.g001

Table 1. Physicochemical properties of the soil used to grow Caliphmedic seeds.

Soil physicochemical properties Average Content p- value

Control NaCl-treatment

EC (dS/m) 1.23 14.40 0.001

pH 7.30 7.30 1.000

Na (meq/l) 11.16 81.27 0.001

K (meq/l) 2.86 3.57 0.130

Ca (meq/l) 18.40 19.51 0.030

Cl (meq/l) 15.03 116.33 0.001

HCO3 (meq/l) 7.24 1.17 0.001

SO4 (meq/l) 8.15 11.78 0.001

Gravel % 18.17 18.14 0.970

Sand % 93.04 94.60 0.100

Silt % 3.20 3.20 1.000

Clay % 2.30 2.30 1.000

CaCO3 22.10 21.89 0.001

N % 0.06 0.06 1.000

P (ppm) 89.70 110.80 1.000

K (ppm) 330.00 390.00 1.000

doi:10.1371/journal.pone.0159007.t001
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Soil analysis revealed a significant (p� 0.05) reduction in the bicarbonate and a slight
reduction in the calcium carbonate content of the soil in response to salinity treatment
(Table 1). This is consistent with the observation that soil salinity reduces the global soil carbon
stocks due to a reduction in microbial activity and, hence, in organic carbon decomposition
rates [53].

16S rRNA sequencing uncovered the presence of a divergent
endophytic bacterial community
Plants interact with the surrounding environment, including soil inhabitants such as bacteria;
however, these microorganisms have only a minor effect on the structure of the endophytic
bacterial community [54]. Since it was not possible to exclusively extract the microbial
genomes from the root tissues, the total DNA, including the plant genomic DNA, was extracted
from these tissues and used for bacterial DNA barcoding. Pyrosequencing of the resultant 16S
rRNA libraries yielded a total of 119,381,266 pb from three control and three treatment librar-
ies. The nucleotide sequences obtained from the control and the treated libraries were assem-
bled into 167,698 reads, 94% were coded for high quality barcode sequences with an average
length of ~712 bp. After the removal of the mitochondrion and chloroplast related sequences
from the OTU list, a total of 29,064 high quality 16S rRNA sequences were obtained from the
six libraries including 2,274 and 26,790 belonged to the control and the NaCl-treated libraries,
respectively. The relatively high number of 16S rRNA reads obtained from the communities
isolated from the roots grown in saline conditions is due to the presence of some overrepre-
sented OTUs in these communities. For example, the reads associated with the three bacterial
species Thalassospira povalilytica, Castellaniella hirudinis and Pseudomonas stutzeri account
for 39.3% (10,528) of the total reads obtained from the sequencing of these libraries (Table 2).

The taxonomy abundance ratio and the sequence similarity analysis of the 16 rRNA using
BLAST showed that about 99% of the 16S rRNAs were classified under the Proteobacteria phy-
lum, while the rest were classified under the Actinobacteria and Bacteroidetes phyla. The Acti-
nobacteria phylum included the Streptomyces family; the Bacteroidetes phylum included the
Flavobacteria and Sphingobacteriia families; and the Proteobacteria included 14 different fami-
lies including Chromatiaceae, Enterobacteriaceae, Pseudomonadaceae and Rhizobiaceae.

The proportional enrichment of Alphaproteobacteria class was high within the microbial
community isolated from roots grown under normal conditions however, Gammaproteobac-
teria, Betaproteobacteria were dominant in response to salinity. In addition, salinity treatment
leads to the appearance of Flavobacteria and Streptomycetales classes and disappearance of the
Sphingobacteria class within the endophytic community (Fig 2A).

The analysis also revealed the presence of a total of 41 OTUs, representing 27 unique genera,
where Enterobacter,Halomonas,Marinobacter, Pseudomonas, Pseudoxanthomonas, Rhizo-
bium and Thalassospira spp. were represented more than once in the communities (Table 2,
and Fig 2B). It is quite normal to find that the majority of the identified bacteria were assigned
to Proteobacteria because it is the second largest known bacterial phylum and one of the major
ones in soil [55]. This phylum included eight different Pseudomonas species (Table 2), some of
which previously showed plant growth-promoting activity, including P. aeruginosa [56] and P.
stutzeri [57]. It is noteworthy that many bacteria have 5 to 10 copies of 16S rRNA therefore,
there is the possibility of sequence divergence between different copies of the gene from the
same organism [58].

The relationship between the 16S rRNA gene sequences based on phylogenetic analysis
showed that these sequences were clustered into three major groups, although the Streptomyces
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variabilis sequence was not among any of these clades because the unique 16S rRNA sequence
belonged to the Actinobacteria phylum (Fig 3).

The influence of salinity stress on the microbial community structure
The sequencing of the 16S rRNA library revealed the presence of a relatively low-divergence
endophytic community, indicated as the number of identified OTUs (Table 3). The biodiver-
sity and the richness of the bacterial endophytic communities were assessed based on the
OTUs, Shannon, Simpson, Chao 1 and Goods Coverage indices. Because it was not recom-
mended to use high impact treatment of data, especially when the coverage of sample diversity
is not high[59], the raw abundance value was used without rarefying.

The average number of OTUs and the evenness of species within the bacterial community
were relatively low, but was significantly increased based on p� 0.05, as indicated by the Shan-
non index, when plants were grown under saline conditions (Table 3). In addition, the proba-
bility that two randomly selected individuals in the habitat will belong to the same species was
also increased, as indicated by the Simpson index under the same conditions; however, the esti-
mated average richness for an OTU was unchanged in response to salinity stress, as indicated
by the Chao 1 index (Table 3). The Goods Coverage index indicated that the samples were very
well represented in the larger environment with an expectation value of more than 99% and
this situation did not change in response to salinity (Table 3).

The low average number of the OTUs obtained from these communities is because of the
fact that only a small number of the soil bacteria are facultative endophytes. Furthermore, the

Table 2. Bacterial OTUs identified from Caliphmedic roots based on 16S rRNA DNA sequences and the mean of abundance in the libraries pre-
pared from the control and salinity-treated plants. Significant enrichment (p� 0.05) of a certain OTU was calculated based on three biological replicates.
The OTUs were arranged based on the descending p-value.

OTU Mean of abundance p-value OTU Mean of abundance p-value

Control Treatment Control Treatment

Brucella inopinata 70.7 0 0.036 Pseudoxanthomonas mexicana 4.7 0.4 0.053

Sphingobium xenophagum 56.7 3.0 0.037 Acidovorax soli 4.0 0 0.055

Tistrella mobilis 12.0 0.0 0.041 Enterobacter sp. 0.4 744.4 0.055

Streptomyces variabilis 0.0 6.7 0.041 Cellvibrio diazotrophicus 3.4 85.7 0.057

Enterobacter kobei 0.0 79.4 0.043 Pseudomonas stutzeri 6.0 841.0 0.058

Thalassospira xianhensis 0.0 19.7 0.043 Enterobacter cloacae 5.0 704.0 0.058

Pseudoxanthomonas broegbernensis 6.4 0.0 0.044 Achromobacter pulmonis 0.7 10.7 0.058

Pseudomonas resinovorans 3.4 8.7 0.045 Pseudomonas borbori 3.4 474.0 0.058

Marinobacter gudaonensis 0.0 31.0 0.045 Rhizobium rosettiformans 40.4 244.4 0.063

Shinella granuli 85.0 4.7 0.045 Pseudomonas indica 3.0 610.4 0.067

Fluviicola sp. 0.0 13.0 0.045 Salinicola salarius 2.7 46.7 0.067

Sphingopyxis macrogoltabida 7.0 1.4 0.047 Rheinheimera aquimaris 62.7 765.0 0.068

Inquilinus sp. 0.0 67.0 0.048 Pseudomonas aeruginosa 185 330.7 0.068

Halomonas lutea 2.0 118.7 0.049 Methylophaga sp. 1.4 16.7 0.071

Flavobacterium glycines 0.0 64.4 0.049 Halomonas sp. 92.4 628.7 0.072

Pseudomonas pseudoalcaligenes 0.0 4.4 0.050 Pseudomonas mendocina 1.4 260.4 0.073

Thalassospira povalilytica 2.4 1351.7 0.051 Sphingobacterium thalpophilum 5.7 0.0 0.185

Beijerinckia fluminensis 46.7 0.0 0.052 Rhizobium halotolerans 0.0 5.7 0.190

Marinobacter nanhaiticus 17.0 62.0 0.053 Sphingomonas koreensis 3.7 2.4 0.583

Pseudomonas sp. 21.4 5.4 0.053 Methylobacillus flagellatus 2.4 2.0 0.893

Castellaniella hirudinis 0.0 1316.7 0.053

doi:10.1371/journal.pone.0159007.t002
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Fig 2. Relative abundance of different class (A) and genus (B) in each replica of the control (C1-3) and NaCl treated (T1-3) samples. The
abundance is expressed as the percentage in the total number of reads per each OTU.

doi:10.1371/journal.pone.0159007.g002
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structure of a microbial community is altered based on the genetic basis of the microbial-host
specificity, microbial-microbial interaction [60] and even microbial-tissue specificity (within

Fig 3. A neighbor-joining phylogenetic tree that was constructed based on the 16S rRNA DNA sequences,
showing the relationships between the bacterial taxa identified in this study. The bootstrap values >50%
(based on 1,000 replications) are shown at branching points. Differential abundance OTUs (p� 0.05) in the
salinity-treated and control roots are indicated by closed red and green circles, respectively.

doi:10.1371/journal.pone.0159007.g003
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the same host) [61], as well as based on the environmental conditions. For example, Dong and
his colleagues [62] found that there are species-specific and inoculum-level variations in the
ability of some bacteria to colonizeM. sativa andM. truncatula seedlings.

The increase in the number of OTUs observed in the community, which were identified in
salinity-stressed roots, is due to the alterations in the endophytic microbial ecosystem, which
may also involve the presence of some opportunistic phytopathogens that may attack plants
during periods when the plant is stressed. For example, P. aeruginosa is an opportunistic path-
ogen and was enriched in the communities isolated from the salinity treated roots [63]. The
presence of some opportunistic phytopathogens may also associated with the appearance of
some biocontrol microbes such as P. stutzeri (Table 2), a bacterium which has the ability to
secrete hydrolytic enzymes against the Fusarium solanimycelia, the causative agent for the
root rot disease in various plant species [64].

In fact, as a consequence of the salinity treatment, eight additional OTUs were observed
within the community (p� 0.05) while five other bacterial species disappeared (Table 2). For
example, Thalassospira xianhensis and Castellaniella hirudinis were not represented in the bac-
terial communities isolated from the untreated roots while Brucella inopinata and Beijerinckia
fluminensis were not represented in the communities of the salinity-treated roots (Table 2).
Localization of the differentially enriched species of significant abundance (p� 0.05) on the
phylogenetic tree revealed that the three major clades of this tree equally embraced these bacte-
ria, regardless of their species (Fig 3).

Hierarchical cluster analysis, based on the abundance of 41 bacterial species identified from
six communities of roots grown in normal and saline conditions revealed that 39 species were
clustered into two major groups (Fig 4). These groups shared a conserved abundance profile
among the three libraries of the same treatment (control vs. salt). The first group included 28
OTUs with a high level of abundance in the bacterial communities identified in plants grown
under saline conditions, whereas the second group included 11 OTUs with a high level of
abundance in the communities identified in plants grown under normal conditions. Since they
did not have a consistent richness among the three biological replicates,Methylobacillus flagel-
lates was clustered out of the first group and the Sphingomonas koreensis was clustered out of
the second group.

Differential enrichment analysis using the Mann-Whitney U test and based on the p� 0.05
showed that, out of 41 OTUs identified in the bacterial community living in the roots, 29 were
differentially enriched when the plants were exposed to salinity stress (Table 2), of which 10
were negatively affected and 19 were enriched due to salinity treatment. For example, Brucella
inopinata, Sphingobium xenophagum and Shinella granuli were abundant in the root when
grown under normal conditions. On the other hand, Enterobacter kobei,Halomonas lutea,
Thalassospira povalilytica and Pseudomonas stutzeri were abundant in the root when grown
under saline conditions.

Table 3. Changes in the community richness and biodiversity indices among the six 16S rRNA librar-
ies in response to NaCl treatment in Caliphmedic. Significant changes based on p� 0.05, n = 3, which
were calculated using the one-way analysis of variance (ANOVA) test, are indicated by an asterisk.

Index Control NaCl-Treated p-value

OTUs 29.33 34.33 0.03*

Chao1 31.25 34.83 0.21

Shannon 0.30 3.15 0.00*

Simpsoin 0.06 0.79 0.00*

Goods Coverage 99.99 99.99 0.56

doi:10.1371/journal.pone.0159007.t003
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Fig 4. A heat map of the hierarchical cluster analysis and a dendrogram showing the normalized relative
abundance of 41 identified species from three bacterial communities, which were prepared from roots
grown under normal conditions (C1-3) and from three bacterial communities prepared from roots grown
under NaCl stress (T1-3).

doi:10.1371/journal.pone.0159007.g004
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The differentially enriched species in response to salinity included OTUs that were previ-
ously isolated fromM. sativa, such as Endobacter medicaginis [26], and other OTUs were iso-
lated from corn, such as Enterobacter kobei [65], and Enterobacter cloacae from date palm [6].
Previous studies showed that some strains of Enterobacter sp. are able to help plants growing
under saline conditions by providing ACC deaminase, the phytohormone IAA and sidero-
phores that facilitate iron acquisition under iron-limiting conditions.

It is noteworthy that other differentially enriched species identified in this study were previ-
ously isolated from marine and salt-polluted environments. For example,Marinobacter gudao-
nensis was isolated from oil-polluted saline soil [66] and aMarinobacter nanhaiticus strain was
isolated from the sediment of the South China Sea [67]. The latter strain was able produce a
suite of acylpeptidic marinobactin siderophores [68]. In addition, Streptomyces variabilis was
isolated from the marine sponge Iotrochota sp. [69] and theHalomonas lutea sp. nov., which is
a moderately halophilic bacterium, was isolated from a salt lake [70].

Some of the identified OTUs were assigned to nitrogen-fixing bacteria. For example, Cellvi-
brio diazotrophicus were isolated from the rhizosphere of salt meadow plants [71], Beijerinckia
fluminensis from the giant reed and switchgrass rhizosphere [72] and acidic soil [73], and P.
stutzeri [74] from chemically-stressed soil [75].

Identification of bacterial species from theM. truncatula roots, similar to those species iso-
lated from saline and marine environments, is not surprising since the soil used in this experi-
ment was mainly composed of a sandy texture (Table 1) and obtained from a field located near
to the seashore; therefore, the microbial community within this soil would likely have been
affected by the marine ecosystem.

The bacterial species identified in this study also included OTUs that potentially are useful
in the environment. For example: Thalassospira xianhensis is a polycyclic aromatic hydrocar-
bon-degrading marine bacteria [76]; Achromobacter pulmonis was isolated from Phragmites
australis (common reeds) and is able to remove carbamazepine [77]; Pseudomonas resinovor-
ans is a carbazole- (CAR-) degrading bacterium [78]; Thalassospira povalilytica is a marine
polyvinyl-alcohol degrading bacterium [79]; and Streptomyces variabilis is also a marine-
derived bacteria, which produces the anti-cancer agent ammosamide [80].

Despite the appearance of several new OTUs in response to salinity treatment, the pairwise
overall variation analysis using the ordination-based and the ANOSIM similarity test
approaches did not confirm the appearance of a significantly totally different endophytic com-
munity in Caliph medic roots in response to salinity stress (Fig 5).

Unlike free living soil microbes, salinity may have a minor effect on the endophytic commu-
nities since plants may buffer, to some extent, the deleterious effects of salinity on the roots’
ecosystem therefore, the low bacterial variation between the communities is not unexpected.

In order to confirm the presence of endophytic plant growth promoting bacteria in the
Caliph medic roots of plants grown under normal and salinity conditions, these bacteria were
isolated, identified and their ability to produce ACC-deaminase, ammonia and IAA were mea-
sured. Moreover, the ability of these isolates to solubilize zinc and phosphorus were tested. The
results showed that the newly isolated bacteria belonged to the Enterobacteriaceae and Pseudo-
monadaceae family. The isolated bacteria from plants grown under normal condition included
strains similar to Enterobacter and Pseudomonas species (S2A Table), while those strains iso-
lated from the plants grown under saline condition included strains similar to Enterobacter,
Klebsiella and Pantoea species (S2B Table). Several of the isolated strains analyzed in this study
showed the ability to catalyze the hydrolysis of the ACC to ɑ-ketobutyrate, to produce ammo-
nia and IAA or similar compounds, and to solubilize zinc and phosphorus, regardless their
original source (from salinity treated or untreated roots) (S3 Table). Therefore, the bacterial
community present in the internal parts of the roots of Caliph medic have the potential role to
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promote plant growth under both normal and saline conditions. Several isolates identified in
this experiment were also identified using the cultivation independent approach, however,
both approaches (cultivation dependent and independent) are incomparable since other factors
such as the use of different culture media will affect the enrichment. Furthermore, the cultiva-
tion dependent method is not quantitative.

Despite the identification of this set of bacterial species fromM. truncatula roots, other bac-
teria species may remain unidentified. This is because a bacteria-host symbiotic relationship
depends on the nature of the soil and other environmental factors, such as temperature. Addi-
tionally, by using a common DNA extraction method, it is difficult to ensure the extraction of
genomic DNA and, in turn, the barcoding of every endophytic bacteria species from the root,
since some species can form refractory-coated spore-like structures that prevent complete
DNA extraction [81].

In conclusion, we were able in this report to identify a bacterial community containing a
wide range of known and unknown endophytic species that are affected by the saline condi-
tions in root tissues. The information obtained from this project is important for the isolation
and further molecular characterization of endophytes from the model plantM. truncatula.

Supporting Information
S1 Table. Oligonucleotides used in the 16S rRNA gene amplification and barcoding.
(DOCX)

S2 Table. Endophytic bacterial strains isolated from Caliph medic roots when plant grew
under normal (A) and saline conditions (B).
(XLSX)

Fig 5. Principal Coordinate Analysis (PCoA) illustrating distances between bacterial communities identified from control (C1-C3)
and NaCl-treated roots (T1-T3) of Caliphmedic. The pairwise comparison using the ANOSIM test did not show significant variation
(p = 0.0964) between the community groups identified from control plants (Cont) and NaCl plants (Trt). The first two coordinates explained
about 96% while the third coordinate explained only 2.3% of the variation.

doi:10.1371/journal.pone.0159007.g005
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S3 Table. The capacity to solubilize minerals and the ability to produce ACC-deaminase,
IAA and similar compounds by the newly isolated strains. Activity or product not detected
in the assays is denoted by N.D.
(XLSX)
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