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Abstract: This work evaluates the feasibility to manufacture polylactic acid (PLA) composites using
jute fiber fabrics. For characterization, PLA-fused filament was successfully deposed onto jute fabrics
to print dog-bone tensile specimens (Type I specimen from ASTM D638). The jute fabrics were
chemically modified, treated with flame retardant additives, and sprayed with aerosol adhesive to
improve the mechanical properties of PLA/Jute fabric composites. The elastic modulus and the
strength of PLA were higher than PLA composites, and the plastic deformation of the PLA composites
was slightly lower than PLA. Tomography scans revealed the fabrics were well oriented and some
adherence between jute fabrics and PLA. Viscoelastic properties of PLA composites resulted in the
reduction in storage modulus and the reduction in intensity in the damping factor attributed to
segmental motions with no variations in the glass transition temperature. Flame retardant and
spray adhesive on jute fabrics promoted better response to time of burning than PLA and PLA with
modified fibers. The results presented in this work lead to the need for a more detailed investigation
of the effect of plant fiber fabrics as reinforcement of 3D printed objects for industrial applications.

Keywords: jute fabrics; 3D printing; mechanical properties; eco-friendly composites

1. Introduction

Additive manufacturing (AM) of polymers is an automated process for producing
three-dimensional objects from computer-aided design (CAD) data, and it is mostly used
for prototyping that cannot manufacture one-piece products. The relevance of this technol-
ogy has been constantly evolving over the years, and it is standardized by the common
standards ISO/ASTM 52900:2015.

FFF, also known as fused deposition modeling (FDM), is the 3D printing of polymers
based on the extrusion process. The object is built by depositing melted thermoplastic
layer-by-layer through a heated nozzle onto the platform or over previously printed
layers until the designed element is completed. Conventional-fused filaments, such as
polyamide, acrylonitrile–butadiene–styrene (ABS), polyether ether ketone (PEEK), and
PLA, are commercially available for domestic users. PLA is an aliphatic polyester corn
starch-based thermoplastic and has been extensively examined in the literature as the most
popular biodegradable material used for AM [1–10].

It is possible to find extensive literature, including several reviews, related to develop-
ing new experimental thermoplastic filaments prepared by the extrusion process to enhance
the mechanical properties of 3D printed objects [1–3,11–14]. Part of this extensive research
is aimed to find alternatives to recycled and biodegradable filaments for the sustainability
of 3D printing [3,14,15].

Santana et al. [16] developed an exciting work of unifying the technology of textile
concrete and additive manufacturing to develop composites of geopolymer matrix rein-
forced with printed polyethylene terephthalate glycol, commonly known as PETG, mesh.
The composites were subjected to the notched prism bending test. The homogeneous rein-
forcement (volumetric polymer content of 4.75%) and the graduated (volumetric polymer
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content of 3.34%) produced an increase in toughness of 47 and 52 times, respectively, in
addition to conserving the maximum load supported and reducing the volumetric con-
tent of the reinforcing material without compromising the mechanical performance of
the composites.

Other works are focused on polymer modification and blends [4,5,17]. However, the
most attractive seems to be the reinforced fused filaments with metal particles [18–20], clay
minerals [6,21–23], graphene [8,24–26], glass [27], or carbon chopped fibers [28,29], and,
more recently, continuous fibers [9,30,31].

A particular interest for several industrial applications is the use of continuous natural
fibers as a substitute for glass fibers because of their mechanical and acoustic properties
in combination with their end-of-life management and positive alternative to reduce
carbon footprint. Ecological 3D printed objects are currently produced by combining
long natural fibers and melted plastic, which are embedded in the hot block and deposed
in a simultaneous manner [12,13,32–34]. Cellulosic fibers are widely available in most
countries and are cost-effective with low density. They are biodegradable, renewable,
non-hazardous, and non-abrasive. Furthermore, its specific mechanical properties are
comparable to glass fibers. The purpose of adding these monofilament cellulosic fibers is
to improve the mechanical properties of composite materials, including the construction
industry, to improve the ductility and post-crack toughness of the composites [35]. Besides
many advantageous properties of the natural fiber reinforced ecological composites, there
are also some drawbacks, such as incompatibility with hydrophobic matrices, high water
absorption, lower processing window, and bad surface appearance.

Numerous researchers have investigated PLA/natural fiber composites. Recently, Wis
et al. developed over-molded jute / PLA fabric composites (OMC) on a laboratory scale. In
that work, the authors developed hybrid organic composites prepared with thermoplastic
composite technology and obtained lightweight composite components for structural
parts. In this process, a reinforcing sheet composed of continuous glass or thermoplastic
carbon fiber, called an organo-sheet, is over-molded using a thermoplastic polymer in an
injection molding process. The composite sheets obtained are rigid, high-strength, and, at
the same time, still have a detailed shape. The results obtained showed that the flexural
modulus and the strength of OMC improved compared to pure PLA. Dynamic mechanical
analysis showed that the thermomechanical resistance of PLA was improved for OMC [36].
Jerpdal et al. investigated the influence of overmolded temperature on tensile modulus,
shrinkage, and strain for an insert made of self-reinforced polyethylene terephthalate (PET).
The authors observed that a temperature above the glass transition temperature leads to
relaxation of residual stresses and reduction in tensile modulus up to 18%. The study
shows fascinating results, which may lead to new areas of application for self-reinforced
PET [37].

Despite the extensive research and development effort of plant fiber-embedded poly-
mers for 3D printing applications, there are no publications that deal with the use of fused
filament deposition onto plant fiber fabrics; this is the research gap this work pretends
to fill.

Among all-natural fibers, jute fiber seems to be a promising fiber with relevant research
fields due to its good mechanical properties compared to other natural fibers, such as kenaf,
sisal, and hemp [38,39]. The bag industry is the largest consumer of jute fibers because
they represent an ecological option. However, many jute bags at the end of their lives are
wasted and gone to the landfill every year.

This work aims to prepare new green composites through 3D printing PLA onto
jute fabrics to evaluate the mechanical performance that allows discovering multiple
industrial applications.
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2. Experimental Section
2.1. Materials

The commercial PLA-based filament with a diameter of 1.75 mm and a nominal density
of 1.27 g/cm3 from 3D MARKET® (Querétaro, Mexico) was used in this work. According
to the supplier, this PLA filament has a tensile strength break between 55–65 MPa and a
modulus of elasticity of 0.42 GPa. Natural jute fabrics with plain weave configuration and
thickness of 0.91 mm (Figure 1) were obtained from bolsas publicitarias® (Yucatán, Mexico)
The fiber contains approximately 70 threads count, elastic modulus of 11 GPa, and tensile
strength of 44 MPa. The mechanical properties were previously calculated following the
methodology of the ASTM C1557.
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Figure 1. Photographs and schematic representations of: (a) jute fabrics, (b) 3D printing on jute
fabrics, (c) tensile specimens’ solid-like configuration, and (d) specimens with gaps to place the jute
fabrics. The solid-like picture also presents the viewing directions for tomography scans.

2.2. 3D Printing Fabrication

A Zortrax M200 desktop 3D printer(Zortrax, Olsztyn, Poland) was used to print
ASTM D638 Type I tensile specimens, previously modeled using SolidWorks software
and exported to the 3D printing software as an STL file. Two different tensile specimen
configurations were modeled. The first one was a solid-like specimen printed just with
PLA. The second specimen included two longitudinal gaps of 0.91 mm, corresponding to
the space to place the jute fabric, as schematized in Figure 1.

PLA was fused through a 0.4-mm-diameter nozzle at 200 ◦C and a printing speed of
50 mm/s over a bed platform heated at 50 ◦C. The specimens were built with 0.14-mm-layer
thickness in a flat orientation with rectilinear pattern and an infill density of 90%. Jute
fabrics dog bone geometry was cut using regular scissors and placed in the 0/90 direc-
tion (parallel to the uniaxial tension). The solid-like specimen was continuously printed,
whereas the composite specimens required interrupting the 3D printing process to place
the jute fiber fabric, as presented in Figure 1b. All composite specimens contained two jute
fabric layers.

In this work, various strategies were used to evaluate the feasibility of increasing the
mechanical properties of 3D printed composites. In this way, the characterization of these
materials was carried out using the materials listed in Table 1.
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Table 1. Materials description and their reference used in this work.

Reference Description

PLA PLA
PLA/J-M PLA/jute fiber modified
PLA/J-R PLA/jute fiber with flame retardant

PLA/J-MR PLA/jute fiber modified and flame retardant
PLA/J-A PLA/jute fiber with adhesive

PLA/J-RA PLA/jute fiber with flame retardant and adhesive

Firstly, jute fabrics (J-M) were washed in an ionized water bath at 75 ◦C for 2 h, and
dried at 85 ◦C for 2 h in an air convection oven. Afterward, jute fabrics were chemically
treated with 5% NaOH and diazonium salt at alkali, acidic, and neutral media to increase
compatibility with PLA.

Jute fabrics (J-R) were treated using a commercial flame retardant Flamebar S3 from
Bollom fire protection. According to the supplier, the jute fibers were immersed for 12 h in
a stainless steel container, having at least 70% of the solution, calculated on the submerged
jute fabrics’ weight. Afterward, the jute fabrics were dried at 85 ◦C for 24 h in an air
convection oven.

Jute fabrics (J-A) were sprayed with Hi-Tack 71 from 3M™, which is a mist aerosol
adhesive recommended by 3M for its use for the manufacturing composites, including
infusion and dry lamination. Spraying was carried out at a 45◦ angle before fiber placement
during 3D printing.

The jute fabrics (J-MR) were firstly modified and subsequently treated with flame
retardant. For the case of the J-MA, the J-M fabrics were treated and stored; then, the
adhesive was applied to the fabric just a few minutes before to place it on the PLA during
the 3D printing process.

2.3. Methods

Uniaxial tensile tests were performed according to ASTM D638-14 using a universal
testing machine Instron® 647(Instron®, Norwood, MA, USA) with a load cell of 10 kN.
Ten specimens of each material were tested at room temperature (23 ◦C ± 2 ◦C) and
at a 5-mm/min crosshead speed, and the curves showed in the results and discussion
section are the representative curves based on the average behaviour revelaed during
the tensile tests. Young’s modulus (E) and yield strength (σy) were obtained from the
engineering stress versus strain curves, and the elastic deformation was measured using
a video extensometer MTS Advantage video extensometer (AVX) with 25 mm lens. The
video-extensometer recognizes patterns on surfaces to acquire measurement data for strain
calculations processed by MTS TestSuite™. Photographs of the failure zone after tensile
tests were taken using a Zeiss stereomicroscope Discovery V8.

Three-dimensional computed tomography (CT) scans were performed in a GE phoenix
v|tome|x instrument to visualize the inner of the 3D printed tensile specimens and detect
adherence between PLA and jute fabrics. The analysis was conducted using X-Ray at
160 kV and 240 µA.

The viscoelastic behavior was evaluated in a Dynamical Mechanical Analysis DMA
Discovery 850 from TA Instruments (Waters Corporation, Cary, NC, USA). The tests were
performed in a single cantilever configuration at a frequency of 1 Hz and an amplitude
of 30 µm. The specimens with 50 × 12 × 4 mm nominal dimensions were tested from
20 ◦C to 145 ◦C using a heating ramp of 5 ◦C/min. The curves of storage modulus (E’) and
damping factor (tan δ) were obtained following the ASTM-D7028.

Flammability is highly interesting to analyze in ecological composite systems since
it has become a crucial parameter in several industrial applications such as aeronautics,
automotive, construction, or textile clothing. The flame retardant behavior of PLA and
PLA composites was evaluated according to the methodology of chapter 3 of the Aircraft
Materials Fire Test Handbook based on the FAR 25 Appendix F part III. The methodology
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proposed in this regulation can be used to predict the behavior of plastic or textile materials
for diverse industrial sectors and aerospace applications. The test allows determining the
burning speed of the specimens supported horizontally in a stainless steel cabin with air
inlets on the top. Then, the flame (using methane gas) burns the specimen for 15 s. Subse-
quently, the ignition source is removed, and the test specimen is observed for time and ex-
tent of burning. An average burning rate is reported. Flammability tests were conducted in
a multipurpose flammability chamber Deatak model MP-1 using high-purity methane gas
(99%). Distance and time measurements were made with calibrated equipment, including
Mitutoyo rulers with a resolution of 0.5 mm and a chronometer Control Company model
1025MX with a resolution of 0.1 s. The specimens with 50 mm × 13 mm × 4 mm nominal
dimensions were conditioned at 21 ◦C and 55% humidity for at least 24 h before testing.

3. Results and Discussion

The representative tensile engineering stress versus strain curves for PLA and PLA
composites are shown in Figure 2.
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Figure 2. Stress vs strain curves corresponding to PLA and PLA composites.

It is possible to appreciate similar behavior for all materials evaluated in this work.
The curves show a linear elastic region followed by diffusive necking and relatively low
deformation until failure. It is worth noticing the presence of a shoulder in the plastic
region developed for the composites. The adherence between jute fibers and PLA matrix
requires a higher level of stress before failure, and it is the cause of the shoulder presence.
The shoulder was evident in the PLA/J-A and PLA/J-RA composites.

The tensile parameters like E, σy, and deformation at break (εb) are summarized in
Table 2.

Table 2. Mechanical parameters of PLA and PLA composites.

Material E (GPa) σy (MPa) σb (MPa) εb (%)

PLA 1.98 ± 0.02 27.93 ± 1.25 25.13 ± 1.16 14.76 ± 0.98
PLA/J-M 1.22 ± 0.23 18.81 ± 3.76 18.24 ± 1.98 11.48 ± 1.25
PLA/J-R 1.41 ± 0.13 19.84 ± 1.86 19.72 ± 1.98 7.51 ± 2.68

PLA/J-MR 1.26 ± 0.46 21.11 ± 2.33 19.41 ± 1.98 13.68 ± 1.26
PLA/J-A 1.83 ± 0.19 22.97 ± 2.16 21.88 ± 1.98 11.76 ± 1.89

PLA/J-RA 1.62 ± 0.16 21.78 ± 1.89 19.76 ± 1.98 13.36 ± 1.36
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The elastic modulus and strength of PLA are notably higher than PLA composites.
The PLA/J-A and PLA/J-RA composites presented intermediate stiffness and strength
values, and the rest had low mechanical properties.

On the other hand, PLA and PLA composites showed similar deformation values,
except for the PLA/J-R, which showed low ductility and sudden failure. In general, the
PLA specimens did not develop necking nor whitening. On the contrary, the specimens
presented a homogeneous deformation with a brittle-like break during the tensile test.

It results show that the jute fiber is not compatible with PLA, which is confirmed by
the low mechanical performance observed by the composite containing jute fiber with
flame retardant (PLA/J-R). On the other hand, the modified treatment applied to the jute
fabrics does not seem to influence the fiber-matrix interaction. Nonetheless, the combi-
nation of modified fibers followed by the flame retardant application seems to influence
the molecular compatibility, which favors the mechanical properties of the PLA/J-MR
composite. According to the mechanical results obtained, spray adhesive could prove to be
the best strategy to achieve a better interaction between jute fabrics and PLA.

Ductility decreases because the fabrics restrict plastic deformation, although an in-
crease in stiffness and strength is usually expected because the fibers promote the reinforc-
ing effect of the polymeric matrix. Lack of compatibility, lack of adhesion, and distortion of
fabrics also affect the mechanical performance of fiber-reinforced polymer systems.

CT scan tomography is a powerful non-destructive testing tool for observing the
disposition of the natural fiber fabrics into the 3D printing PLA specimens (Figure 3). We
used CT scans to detect fabrics’ inner disruptions and reveal possible adhesion between
fibers and PLA in this work.
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Because of densities, PLA looks white, jute fiber appears grey, and the air is black.
The inspection was performed in the gage zone of the tensile specimens before the test
(Figure 1c).

The front view of PLA (Figure 3a) shows the rectilinear pattern with an infill density
of 90%. This pattern develops the configuration of a stacking sequence similar to bridge
pillars-like, as appreciated in the top and lateral views of the PLA specimens (Figure 3b,c,
respectively). On the other hand, tomography of the PLA composite reveals that the
jute fabrics are well-aligned, without distortions or fiber displacements, and are easily
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identifiable, as observed in the front view of Figure 3d. Furthermore, some interaction
between fibers and PLA seems to occur, as observed in the top and lateral views (Figure 3e,f,
respectively), although it is necessary to underline that the rectilinear pattern is altered or
distorted when the fused filament is printed onto the fabrics. The previous promotes the
shell-like appearance, compared to the top and lateral views of PLA and PLA composites
in Figure 3. Considering that the jute fabric configuration is a conventional woven (not
spread-tow), the fused filament is placed over the weft and warp surface with a different
texture than PLA filament, which could be altering the 3D printing pattern and favoring
some adherence between fibers and PLA that restrict the ductility during the tensile tests.

After the tensile test, the specimens broke suddenly due to the failure of the PLA
matrix, keeping part of the jute fiber fabric together until its complete breakage, as can be
seen in Figure 4.
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DMA provides relevant information on the viscoelastic behavior of polymers and
composites. Storage modulus measures stress stored in the specimens as mechanical
energy, while the damping factor is a typical measure of energy dissipation. DMA curves
corresponding to storage modulus and damping factor are presented in Figure 5.
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The storage modulus curve contains the glassy region, the leathery zone, and the rub-
bery plateau. In this work, the shape of the DMA curves was similar between PLA and PLA
composites (Figure 5a). All materials show that the storage modulus remains practically
constant until the onset temperature (Tonset) indicates the leathery region’s starting point,
where the modulus drops abruptly, followed by the rubbery plateau. Then, the storage
modulus increases above 115 ◦C, which is associated with the cold crystallization of the
amorphous part of PLA. The Tonset of PLA and some PLA composites is similar (between
60 ◦C and 62 ◦C). The PLA/J-M shows the higher Tonset (64 ◦C).

From 20 ◦C to 60 ◦C, the PLA presents a storage modulus of 1358 MPa, which is
notoriously higher than the value obtained for the PLA composites (~757 MPa) at the
same temperature range. The previous should imply that the jute fabrics do not act as
reinforcement in the glassy region.

The damping factor or Tan δ curves of PLA and PLA composite are similar (72.8 to
73.2 ◦C). The height of the tan δ peak is associated with the chain mobility of the amorphous
region in the polymer composites. In this study, the peak position at approximately 73 ◦C
indicates that the glass transition temperature of PLA is not altered by the addition of jute
fabrics but affected the chain mobility in the amorphous region due to the confinement
effect resulting in the reduction in tan δ peak height.

According to the methodology of chapter 3 of the Aircraft Materials Fire Test Hand-
book, the material meets the approval criteria if three specimens of the same material show
a burning rate of less than 63.5 mm/min, considering that the thickness of specimens must
be less than or equal to 13.0 mm. In this work, the specimens were out of specifications.
Nonetheless, the burn rates were obtained using a calibrated distance of 38.1 mm. A
horizontal burning test was carried out for the burning time and burning rate of the PLA
and PLA composites for the flammability properties at room temperature. Table 3 presents
the results obtained.

Table 3. Flammability test data report for PLA and PLA composites.

Material Length
(mm)

Width
(mm)

Thickness
(mm)

Burning
Distance

(mm)

Time of
Burning

(s)

Rate of
Burning

(mm/min)

PLA-1 51.3 13.23 4.77 38.1 49.55 46.14
PLA-2 50.49 13.27 4.75 38.1 41.65 54.89
PLA-3 50.66 13.24 4.74 38.1 40.33 56.68

PLA/J-M-1 50.36 13.69 4.94 38.1 35.08 65.17
PLA/J-M-2 51.16 13.76 5.07 38.1 48.88 46.77
PLA/J-M-3 51.59 14.03 5.13 38.1 50.83 44.97
PLA/J-R-1 51.75 13.67 4.84 38.1 64.57 35.40
PLA/J-R-2 50.72 13.53 4.81 38.1 63.62 35.93
PLA/J-R-3 49.95 13.54 5.16 38.1 70.03 32.64

PLA/J-MR-1 51.52 13.73 5.24 38.1 67.5 33.87
PLA/J-MR-2 51.7 13.41 5.11 38.1 63.29 36.12
PLA/J-MR-3 50.64 13.71 5.24 38.1 69.99 32.66
PLA/J-A-1 50.21 13.38 4.99 38.1 67.46 33.89
PLA/J-A-2 50.09 13.65 5.08 38.1 57.54 39.73
PLA/J-A-3 50.07 13.5 4.98 38.1 63.95 35.75

PLA/J-RA-1 50.38 13.45 5.01 38.1 62.5 36.58
PLA/J-RA-2 48.16 13.39 4.97 38.1 62.21 36.75
PLA/J-RA-3 50.16 13.4 5.28 38.1 60.11 38.03

It can be seen that the rate of burning of PLA and PLA composites meet the accep-
tance criteria of the reference standard, except for one value obtained for the PLA/J-M-1).
Considering that this value is out of specifications and atypical data, it could be discarded.
Figure 6 shows the time and rate of burning obtained for PLA and PLA composites.
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It is possible to appreciate that the PLA and PLA composites containing modified
jute fibers present low burning times (PLA/J-M). It means that the retardant treatment
employed in this work induces a practical function on the flammability of PLA because the
increase in burning time implies improvements in flame retardancy. Similarly, it appears
that the spray adhesive exhibits some flame retardant effect since the time of burning
exhibited for the PLA/J-A and PLA/J-RA displayed similar results to the PLA/J-R.

4. Conclusions

The results obtained in this work confirm the feasibility of producing 3D printing
objects using plant fiber fabrics as filler. PLA-fused filament was successfully deposed
onto natural fiber fabrics to print dog bone tensile specimens for characterization. In the
first instance, the mechanical properties obtained for the PLA composites are not superior
to PLA. However, viscoelastic properties allowed to identify the jute fabrics hinder the
molecular motions, and the glass transition temperature remains.

Flame retardant and spray adhesive on jute fabrics promoted better composites’
responses than PLA and PLA with modified fibers. One characteristic feature observed is
the flame retardancy which increases because of the combined effect between jute fabrics
and PLA, forming dense char which further resists the flame propagation.

The results obtained allow us to visualize the potential use of flame retardants for this
composite material and the vast flammability analysis that can be deepened through cone
calorimeter or limited oxygen index tests.

The use of plant fiber fabrics as reinforcement of 3D printed objects is a vast field
of research. This work confirms the feasibility that plant fiber fabrics can be used as
effective reinforcement. Other advantages of re-using this ecological waste material are
that natural fibers are much less dense than synthetic fibers and polymers, which leads
to developing lightweight composites and less raw material consumption for 3D printing
parts and components. The results presented in this work lead to the need for a more
detailed investigation of the effect of plant fiber fabrics as reinforcement of 3D printed
objects for industrial applications. There are many questions about these new ecological
materials, such has how the addition of distinct flame retardants, the fabric configuration,
or different treated fibers can affect their mechanical performance. Some of these questions
are being studied by our research group.
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