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Determining cell mechanical properties is increasingly recognized as a

marker-free way to characterize and separate biological cells. This emerging

realization has led to the development of a plethora of appropriate mea-

surement techniques. Here, we use a fairly novel approach, deterministic

lateral displacement (DLD), to separate blood cells based on their mechan-

ical phenotype with high throughput. Human red blood cells were treated

chemically to alter their membrane deformability and the effect of this altera-

tion on the hydrodynamic behaviour of the cells in a DLD device was

investigated. Cells of defined stiffness (glutaraldehyde cross-linked erythro-

cytes) were used to test the performance of the DLD device across a range of

cell stiffness and applied shear rates. Optical stretching was used as an inde-

pendent method for quantifying the variation in stiffness of the cells. Lateral

displacement of cells flowing within the device, and their subsequent exit

position from the device were shown to correlate with cell stiffness. Data

showing how the isolation of leucocytes from whole blood varies with

applied shear rate are also presented. The ability to sort leucocyte sub-

populations (T-lymphocytes and neutrophils), based on a combination of

cell size and deformability, demonstrates the potential for using DLD

devices to perform continuous fractionation and/or enrichment of leucocyte

sub-populations from whole blood.
1. Introduction
Cell deformability is an important emerging bio-marker for a number of disease

states [1]. Deformability is indicative of underlying membrane, cytoskeletal or

nuclear changes associated with a wide range of cell functional changes, such

as differentiation or mitosis [2–4], or disease processes (e.g. cancer) [5–8].

For example, a reduction in erythrocyte (RBC) deformability is a contributing

factor seen in many human disease pathologies and has recently been a topic

of growing research interest. Diseases such as diabetes, sickle cell anaemia

and malaria, as well as hereditary blood disorders such as spherocytosis, ellip-

tocytosis and ovalocytosis all exhibit characteristic losses in RBC deformability

with onset and progression of the pathological state. For the case of Plasmodium
falciparum malaria, recent experiments have shown that the membrane stiffness

of the parasitized RBC can increase more than 50-fold during intra-erythrocytic

parasite maturation [9]; with malaria-infected erythrocytes showing progressive

stiffening with parasite growth [10]. A reduction in stiffness has recently been
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Figure 1. Schematic showing the fluid streamlines (at low Reynolds number) through an array of pillars. Each column is shifted vertically by 1l relative to the
previous column, where l is the inter-pillar distance, 1 is the column shift fraction and g the gap between the pillars. The flow between the pillars is assumed to
be parabolic with streamlines being divided by stall lines which begin and terminate on the pillars. The horizontal flow velocity is indicated by the colour intensity.
(Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
4:20140011

2

identified as a potential marker in populations of pluripotent

stem cells, while expression levels of the transcription factor

NANOG, implicated in regulating pluripotency, have been

shown to impact embryonic stem cell stiffness [11]. Leucocytes

show changes in stiffness in response to activation with anti-

gens or other stimuli [12,13], and metastatic cancer cells often

show a ‘softer’ phenotype than healthy cells of the same

origin [6].

An attractive benefit of cell stiffness as a bio-marker is

minimal requirements for sample preparation or labelling

(e.g. with magnetically or fluorescently labelled antibodies),

which reduces sample preparation time and cost. It also

leaves the cells in an unperturbed state, which can be impor-

tant when the cells are to be used for transplantation after

mechanical characterization and sorting.

The power of the mechanical phenotyping approach rests

on the fact that the stiffness is largely determined by the cytos-

keleton of cells, which in turn is involved in many important

cell processes, such as cell polarization, migration, division,

mechano-sensing or phagocytosis. Any physiological or patho-

logical change in these functions necessarily leads to a change

in the cytoskeleton and thus in cell stiffness, which can be mon-

itored by appropriate techniques. This intimate link between

cell stiffness and cell function and its implications for biotech-

nological and biomedical applications, as well as the inherent

interest in cell biological questions, has led to the development

of many different cell mechanics measurement technologies.

The most prominent methods are nano-indentation with

atomic force microscopy [14], micropipette aspiration [15],

magnetic twisting cytometry [16], microplate deformation

[17] and optical stretching [18]. All of these have particular

strengths and weaknesses, but are generally marked by rela-

tively low throughput (less than 100 cells h21), which has

hindered further biological and biotechnological application.

A recent development in the field of cell mechanics is the

use of microfluidic approaches to facilitate sample handl-

ing and allow high-throughput probing of cell mechanical

properties. A particular variant, deformability cytometry,

allows the measurement of up to thousands of cells per

second, but only for a few seconds [7,19]. Analysis occurs

post-measurement making instantaneous sorting during the

measurement impossible. The most promising microfluidic

techniques rely on inertial focusing and other hydrodynamic
forces generated in microfluidic channels with carefully

designed geometries; these devices do allow for continuous

high-throughput single-cell sorting [20].

Deterministic lateral displacement (DLD) is another

powerful microfluidic technique capable of high-resolution

continuous sorting of cells and other microscopic particles

[21–24]. DLD devices consist of arrays of pillars positioned

within a flow channel. Objects smaller than a critical size

move in the direction of flow (i.e. along the channel axis) and

objects larger than the critical size move in a direction defined

by the pillar arrangement (i.e. they are laterally displaced). For

rigid spherical objects, the operation of the device is straight-

forward [25]. However, biological objects (e.g. cells) are often

compliant and non-spherical and their deformability and

shape are known to influence the trajectories in DLD devices.

Our group and others [26] have recently developed microflui-

dic DLD devices capable of sorting cells according to both size

and deformability.

Figure 1 shows the typical pillar arrangement found in a

DLD device. An array of micrometre-sized pillars is set at an

angle to the direction of fluid flow through a microfluidic chan-

nel. Figure 1a shows a simulation of the flow velocities through

an infinite array of such pillars. As described previously [25],

the total fluid flux through the gap between the pillars can be

divided into a number of flow streams (drawn as black lines

in the figure), each of which carries equal fluid flux. Particles

flowing in the DLD device will follow different trajectories

through the device depending on their size. To a first approxi-

mation particles above and below a critical size Dc will follow

different paths through the array of pillars. The critical diam-

eter being a function of the pillar diameter; the inter-pillar

gap, g; the array period, l; and the row shift fraction, 1 as

described in figure 1b. The inter column distance for the devices

used in this work is also l, giving a pillar lattice slope of 1 to the

average direction of flow.

The dynamics of rigid spherical particles flowing in DLD

arrays are well understood, and the critical particle size is

reasonably well described by the following equation:

Dc ¼ 2hg1, (1:1)

where g is the gap between the pillars and h a parameter

which accounts for non-uniform parabolic flow through the

gap. It is possible to continuously separate a range of particle
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sizes by placing arrays of different critical particle sizes

in series.

The behaviour of non-spherical particles, such as erythro-

cytes, is less well understood and they demonstrate complex

dynamic behaviour as they flow through the pillar array.

Shear forces acting on non-spherical particles will tend to

align these particles with their long axis along the direction

of flow and presenting their short axis as the apparent size in

the DLD device (e.g. the displacement properties of biconcave

erythrocytes in the DLD devices will appear as that of a sphere

of diameter approx. 2.7 mm). Shear-related particle orientation

is a well-understood phenomenon and has been previously

described for non-spherical particles flowing in DLD devices

[26]. With increased flow velocity comes higher shear forces

and particle deformation becomes an issue of increased impor-

tance, further complicating the dynamic behaviour of particles

in these systems. Particles therefore present an ‘apparent size’

to the DLD device, which is a result of both shear-related

orientation and deformation.

In this work, we present characterization of deformabil-

ity-based cell separation in a DLD device. Cells of defined

stiffness (glutaraldehyde cross-linked erythrocytes) are

used to test the performance of the device. Optical stretching

and digital holography are used to independently measure

differences in the viscoelastic properties of these cells,

thus allowing better understanding of the DLD system for

deformability-based cell separation. We also demonstrate

the effect of shear rate on the lateral displacement of leuco-

cyte sub-populations within similar devices and show our

work towards continuous fractionation of whole blood

leucocyte populations.
2. Material and methods
2.1. Cell samples and buffers
Blood samples were obtained via fingerprick: 50 ml of whole

blood was collected and the cells washed three times in 2 ml of

isotonic phosphate buffered saline (PBS) solution (0.01 M phos-

phate, 0.137 M NaCl, 0.0027 M KCl) containing 2 mM EDTA.

2.2. Treatment of erythrocytes with glutaraldehyde
Blood cells were resuspended at haematocrit of 2.5% by volume in

the required concentrations of glutaraldehyde (0–0.01% in PBS)

and incubated at room temperature for 45 min. The samples

were again washed three times in PBS and resuspended in running

buffer (PBS with 0.1% w/v Pluronic F108, Sigma, UK). A final cell

density of 1 � 105 cells ml21 was used in all experiments.

2.3. Fluorescent labelling of leucocytes
Fifty microlitres of whole blood was diluted into 1 ml of PBS (1 : 20

v/v) containing 2 mM EDTA. One microlitre of 1 mM CellTracker

dye (CMFDA, Molecular Probes) was then added to the sample.

The sample was incubated for 10 min at room temperature

and then run through the device, without further washing of

the sample.

2.4. Fluorescent labelling of leucocyte sub-populations
Fifty microlitres of whole blood was incubated with fluorescently

conjugated monoclonal antibodies directed against CD3 (Alexa647)

and CD16 (Alexa488) (both from BioLegend, San Diego, CA, USA)

for 15 min in the dark at 48C, to fluorescently label the T-lymphocyte

and neutrophil populations, respectively. The entire blood sample
was then diluted into 1 ml of PBS (1 : 20 v/v) containing 2 mM

EDTA and run through the device.

2.5. Microfluidic device fabrication
Two microfluidic device geometries were used throughout this

work: (i) a shallow, 4.5 mm channel height, geometry was used

for the experiments involving erythrocytes as this device con-

fined the erythrocytes (reduced the number of degrees of

freedom) ensuring they flow through the device presenting

their major axis perpendicular to the direction of flow within

the DLD device and (ii) a deeper, 25 mm channel height, geome-

try that allowed the erythrocytes to align with the flow (present

their minor axis perpendicular to the direction of flow) and pass

through the DLD device without lateral displacement. The

microfluidic devices comprised polydimethylsiloxane (PDMS)

channel structures bonded to glass microscope slides. Channel

designs were produced in AUTOCAD. Standard photolithography

techniques were used to produce a silicon (Si) master from which

PDMS channel structures were cast. The process is summarized

in the following: a chrome mask (JD Photo Tools, UK) was

used to pattern a 1.8 mm thick layer of positive tone photoresist

(Microposit S1818, Shipley, UK) spun onto a 100 mm Si wafer

(Compart Technology Ltd, Tamworth, UK). The exposed photo-

resist was developed using Microposit MF319 (Shipley, UK) and

hard-baked on a hotplate at 1158C for 5 min. The wafer was then

dry etched using an STS-DRIE system running the Bosch process,

with the patterned photoresist acting as a protective etch mask.

Following etching, the photoresist was removed in acetone leav-

ing the patterned wafer. The Si wafer was passivated by

immersing for 10 min in a 1% solution of tridecafluoro(1,1,2,2-

tetrahydrooctyl)trichlorosilane in toluene; this step allowed

subsequent release of cured PDMS from the Si master. A 10 : 1

mixture of degassed PDMS was poured onto the wafer and

baked overnight at 658C until fully cured. Individual PDMS

devices were then cut from the cured PDMS block and inlet

and outlet holes punched using a biopsy punch (Technical Inno-

vations, USA). The PDMS structures and the glass slides were

both rinsed in isopropyl alcohol and blown dry prior to

plasma treatment using a BD-20 Laboratory Corona Treater

(Electro-Technic Products Inc., Chicago, IL, USA). Glass and

PDMS were then brought into contact within a few seconds of

treatment and left in an oven overnight at 658C to fully bond.

2.6. Experimental set-up
The microfluidic chips were mounted on a fluorescence micro-

scope (Nikon Eclipse) to allow imaging of cells passing through

the device. One of two cameras was used depending on the

requirement of the experimental observation: either an Orca-ER

(Hamamatsu) or a high-speed image intensified camera (Focu-

scope SV-200, Photron). Image processing was carried out using

IMAGEJ and bespoke image analysis code written in MATHEMATICA.

Buffers and cell samples were introduced into the device under

the control of a multi-channel flow controller (MFCS-8C, Fluigent),

which allowed accurate control of the applied pressure between 0

and 1300 mbar. Sample reservoirs were connected to the chip

using small bore Tygon tubing (1/1600 outer diameter � 0.51 mm

inner diameter) and short sections of 23G stainless steel tube (Elve-

flow, Paris, France). The camera and pump were both controlled

via PC and in-house written LABVIEW code.

2.7. Sample introduction and channel priming
The microfluidic device was first primed with a 0.5% (w/v) sol-

ution of Pluronic F-108 surfactant in PBS. The wetting properties

of the Pluronic solution allowed for easy filling of the microfluidic

channels and purging of air bubbles. Following channel filling, the

Pluronic was allowed to incubate for a minimum of 20 min in order
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to block the PDMS and glass surfaces from further hydrophobic

and other non-specific adhesive interactions with the red cell. The

system was then flushed with 1 ml of PBS containing 1% (w/v)

bovine serum albumin. Cell samples were then introduced to the

channel sample inlet and running buffer was introduced via

the adjacent buffer inlet channels. Outlet channels were held at

atmospheric pressure.

2.8. Optical stretcher
Optical trapping and stretching of erythrocytes was performed

using a bespoke optical stretcher. The optical stretcher is an estab-

lished technique for measuring the mechanical properties of cells

in suspension using optical fields. The system used was similar

to previously described systems [27,28] and will therefore only

be briefly described here. The optical stretcher consists of a dual-

beam fibre-optical trap aligned perpendicularly to a microfluidic

flow channel (square cross-section glass capillary). The optical

fibres and flow channel were aligned and held in place using a

micro alignment structure fabricated photolithographically from

SU8 on a glass substrate. When running cells can be stably trapped,

in the optical stretcher, from a flowing fluid at a low optical power

(ca 100 mW) and held in position. If a higher power is used, the

optical forces at the surface of the cell, which are concentrated on
the beam axis, become large enough to measurably deform the

cell. The forces exerted on the cell depend on the laser power,

the arrangement of the trap and the refractive index of the cell

and suspending medium. For most cell types, the optical forces

being exerted [29,30] can be calculated, which can give the compli-

ance from the measured uniaxial deformation. In our set-up, the

light power in both beams was held at 100 mW allowing trapping

of individual cells. When transiently increased to 600 mW, the

increased radiation pressure causes the cell to deform (‘stretch’).

3. Results and discussion
Figure 2a shows a schematic of the DLD separation devices

used throughout this work. The device comprises multiple sec-

tions, each with a characteristic critical diameter. Each section

of the device is designed to laterally displace particles with a

size greater than Dc by 200 mm. The first section of the device

has Dc ¼ 3 mm and each section has a progressively larger

value of Dc increasing by 0.5 mm with each subsequent section.

Figure 2b,c shows the etched silicon master for casting of PDMS

devices and a cut section through a PDMS device clearly show-

ing the vertical pillar profiles.
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3.1. Deterministic lateral displacement of hard spherical
objects

In order to assess the performance of the DLD device, a mixed

sample of polymer beads was run through the device. Typical

particle velocities are less than 1 mm s21, and as such inertial

effects are negligible with the Reynolds number of the order of

1022. Figure 2d shows the trajectories of rigid polymer beads

(i.e. non-deformable particles) at different positions along the

DLD device. A mix of 4.3, 8.3 and 10 mm latex beads was intro-

duced to the device and imaged at various positions along the

device. Clear separation of the different size beads is observed

at the outlet and other positions along the length of the device.

3.2. Increased glutaraldehyde concentration confers
increased stiffness to erythrocytes

Human erythrocytes were treated with varying concentra-

tions of glutaraldehyde to modify the stiffness of the cells.

The glutaraldehyde acts through cross-linking of the cellular

proteins specifically those of the spectrin network and associ-

ated proteins [31]. A highly fixed cell is essentially a discoid-

shaped non-deformable rigid body (i.e. an extreme in terms

of membrane rigidity). Cells exposed to fixation under less

severe conditions (i.e. lower concentrations of glutaraldehyde)

showed differing degrees of fixation and different levels of stiff-

ness. Glutaraldehyde concentrations in the cross-linking

solution were varied from 0% up to 0.1%. Samples of cells

were treated similarly and measured using the optical stretcher

and on the DLD cell fractionation device. No observable differ-

ences were seen in the morphology of the glutaraldehyde-

treated and untreated erythrocytes; this is supported by our

observations and in agreement with previous work using

similar treatment conditions [31].

3.3. Optical stretching correlates with erythrocyte
stiffness

Figure 3a shows a schematic of the optical stretcher set-up and a

cell undergoing stretching. Treatment of cells with different
concentrations of glutaraldehyde resulted in well-defined

increases in cell stiffness. Figure 3b shows images from the cell

stretching experiments for a range of different concentrations

of glutaraldehyde. The optical stretcher data showed a mono-

tonic increase in cell stiffness with increasing glutaraldehyde

concentration up to concentrations of approximately 0.02%.

Figure 3c shows stretch data up to 0.003% glutaraldehyde con-

centration. Above this concentration, the erythrocytes no

longer deform under the applied forces achievable using the

optical stretcher. This progressive increase in cell stiffness corre-

lates well with data from other groups, where very large

increases in stiffness were seen with glutaraldehyde concen-

trations in the range between 0 and 0.025% [31]. Quantitative

phase measurements, using digital holographic microscopy

(see the electronic supplementary material) showed a negligible

increase in refractive index of cells treated with glutaraldehyde;

even extremely high levels (0.1%). Glutaraldehyde treatment

introduced less than 1% bias into the stretch measurement

across the concentration range used in this work. Changes in

the optical properties of the cells following treatment with glutar-

aldehyde can therefore have only negligible influence on the

magnitude of the cell stretching observed. The degree of cell

stretching is therefore taken to be a good measure of the stiffness

of the measured erythrocytes. As the shape and refractive indices

of the erythrocytes remained the same for the different con-

ditions (i.e. across the range of glutaraldehyde concentrations),

the compliance of the cells can be assumed to be directly

proportional to the measured optically induced deformations.

3.4. Separation of erythrocytes of different stiffness
using deterministic lateral displacement

To assess the effect of stiffness on the hydrodynamic trajec-

tories of the cells flowing though the DLD device, samples

of untreated and glutaraldehyde-treated erythrocytes were

run through the DLD device under a range of flow conditions

(i.e. varying levels of shear stress). Video images of the cells

within the device and their distribution across the width of

outlet of the device were recorded. Samples of defined stiff-

ness (i.e. defined concentration of glutaraldehyde) were run
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through the device as well as mixture of cells having differing

stiffness (i.e. mixtures of cells which were exposed to different

glutaraldehyde concentrations and subsequently washed and

mixed together in known concentrations). Figure 4a shows a

microscope image of the outlet of the DLD device. The data

in the image and histogram are from an experiment where

a mixture of 0 and 0.01% glutaraldehyde-fixed erythrocytes

was run through the device with an applied pressure of

1000 mbar. The histogram shows the cell distribution at the

outlet of the DLD device (it should be noted that the displa-

cement direction across the channel is reversed with respect

to that of figures 1 and 2). The high-magnification images

(top right, figure 4a) show high-speed video images of the

deformation of compliant (0% glutaraldehyde) and stiff

(0.01% glutaraldehyde) erythrocytes as they interact with

the pillars within the DLD device. Figure 4b shows the displa-

cement of untreated erythrocytes under a range of different

flow conditions. Progressive images show the position of

the erythrocytes for increasing levels of shear rate (shear

rate increasing as images progress from left to right). The

data in figure 4c show the average lateral displacement at

the outlet of the DLD device, for three erythrocyte popu-

lations of clearly defined stiffness across a range of applied

shear rates.

3.5. Separation of leucocytes using deterministic lateral
displacement

The effect of shear rate on the separation of human leucocytes

was also investigated, again using washed whole blood. Simi-

lar devices to those described above, for the erythrocyte work,

were used to study the separation of leucocytes from 1 : 20

diluted whole blood. For this work, the DLD device channel

depth was approximately 25 mm. This channel geometry

allows the RBCs more degrees of rotational freedom and

these cells tend to align with their minor axis presenting
across the inter-pillar gap. For this pillar gap size and flow con-

dition used, the RBCs experience no lateral displacement

within these taller devices. The leucocyte population does,

however, experience a lateral displacement in these devices,

which is seen to vary with shear rate. This variation in the

lateral displacement with shear rate is a result of the cells dis-

torting in the fluid; this has been well documented in DLD

devices [19] and other microfluidic flow regimes [23] and

could clearly be seen in the DLD devices used in this work

(data not shown). As a result, as the leucocytes flow through

the device their apparent size decreases with increasing

shear. Figure 5a shows a fluorescence image of the outlet of

the DLD device, the leucocytes have been labelled with a fluor-

escent CellTracker dye to allow visualization and can be seen as

bright objects towards the right-hand side of the image. The

erythrocytes all flow to the leftmost outlet of the device. The

histograms in figure 5b show the characteristic distribution of

the leucocyte population at the outlet of the device as a function

of applied pressure at the channel inlet (with the outlet held at

atmospheric pressure). The leucocyte displacement follows a

similar relaxation in the magnitude of lateral displacement as

that of the RBCs (as seen in the shallow device geometry,

described above). This reduction in the lateral displacement

with increased shear rate is again attributed to the distortion

of the cell shape due to shear stress on the cells as they pass

through the device and interact with the pillars.

With increased shear rate, the leucocyte distributions, as a

whole, clearly show less lateral displacement. However, due

to the heterogeneous mixture of cell types making up the leu-

cocyte population in whole blood, one might expect that the

changing cell distributions contain regions (i.e. certain lateral

displacements) that show enrichment or depletion of certain

sub-populations of the leucocyte population. It should be

noted that any change in the apparent size of the cells due to

shear as they flow through the device will be a combination

of both cell size (the average size of the leucocyte cell
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populations differs among the cell types) and the deformability

of the cell. To this end, we performed experiments using 1 : 20

PBS diluted whole blood that had the T-lymphocyte and

neutrophil populations fluorescently labelled with different

fluorophores to allow simultaneous imaging of the distribution

of these sub-populations of cells at the outlet of the DLD

device. Figure 6a shows multiple superimposed video images

of the labelled cells flowing through the outlet of the device.

At low shear rates (applied pressure 20 mbar), all the leuco-

cytes within the sample were seen to be displaced laterally

across the majority of the width of the device and exited in a

band close to the rightmost channel wall of the device. At

higher shear rates (ca 200 mbar), the leucocytes are seen to

undergo deformation as they flow through the device. As

described above, this deformation results in an apparent

reduction of the cell size within the device, resulting in a

reduction in the lateral displacement seen at the outlet of the

device. Under certain conditions of flow (i.e. appropriately

chosen shear rates), it can be demonstrated that sub-

populations of the leucocytes exit the device with differing

degrees of lateral displacement, thus showing the potential

for the development of a continuous leucocyte fractionation

device. The histogram shown in figure 6b shows the distri-

butions of T-lymphocytes (labelled with CD3-Alexa647) and

neutrophils (labelled with CD16-Alexa488) at the outlet of

the DLD device. Two clear distributions can be seen in the

histograms. The populations show some overlap, but care-

ful design of the outlet ports of the device should allow

continuous fractionation of leucocyte sub-populations under

appropriate flow conditions.
4. Conclusion
We have demonstrated the effect of cell stiffness on separation

in a DLD device and have shown stiffness to be a useful par-

ameter for separation in such devices. Erythrocytes treated

within a range of concentrations of glutaraldehyde (0–0.01%)

show a near linear increase in cell stiffness with concentration.

Through the use of optical stretching, we measured the relative

stiffness of different cell populations and we are able to show
for the first time a direct correlation between cell stiffness and

lateral displacement in a DLD device.

The stiffness of the chemically modified RBCs used in this

work is similar to that of erythrocytes infected with the

malaria parasite P. falciparum (previously measured via opti-

cal stretching [32]), thus demonstrating the potential of using

the DLD technique as a method for isolating malaria-infected

cells from blood. We are currently continuing this work and

further developing the DLD technique, in collaboration with

colleagues at the London School of Hygiene and Tropical

Medicine with the aim of producing an integrated device

for isolation of malaria-infected cells from blood samples.

The additional demonstration that leucocytes, and even

sub-populations of leucocytes (T-lymphocytes and neutro-

phils), can be separated both from RBCs as well as from each

other, based on a combination of both size and deformability,

opens potentially new avenues for the use of DLD devices. So

far, whole blood fractionation requires tedious handling invol-

ving density-gradient centrifugation and manual pipetting; or

magnetic separation with appropriate antibodies. Using DLD,

the continuous label-free sorting of blood cells becomes

possible, reducing preparation time, cost and effort, while leav-

ing the cells in their native state. With technological advances

such as described in this paper, the promise of cell mechanics

for characterization and sorting of cell populations is

finally moving towards widespread application in biology,

biotechnology and medicine.
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