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Abstract: This review summarizes recent developments in conjugation techniques for the synthesis
of cell-penetrating peptide (CPP)–drug conjugates targeting cancer cells. We will focus on small
organic molecules as well as metal complexes that were used as cytostatic payloads. Moreover,
two principle ways of coupling chemistry will be discussed direct conjugation as well as the use
of bifunctional linkers. While direct conjugation of the drug to the CPP is still popular, the use of
bifunctional linkers seems to gain increasing attention as it offers more advantages related to the
linker chemistry. Thus, three main categories of linkers will be highlighted, forming either disulfide
acid-sensitive or stimuli-sensitive bonds. All techniques will be thoroughly discussed by their pros
and cons with the aim to help the reader in the choice of the optimal conjugation technique that
might be used for the synthesis of a given CPP–drug conjugate

Keywords: cell-penetrating peptides; peptide–drug conjugates; bioconjugation; peptide synthesis;
anticancer drugs

1. Introduction

Cancer is one of the main causes of mortality and intensive research activities on effec-
tive treatment strategies are required to tackle this severe disease. During the last years,
several new anticancer drugs have been designed and developed to cure cancer. Although
promising in activity, they often face various limitations such as poor targeting capacity,
restricted cell penetration, or low biocompatibility, to name only few. As a consequence,
efficient drug delivery has emerged as a must to achieve and is one of the main research
foci in this field. Indeed, different systems have been developed for conjugating such anti-
cancer drugs to a platform that allows for targeted delivery directly to the tumor avoiding
unwanted delivery to healthy cells, thus limiting side effects. Among them, antibody–drug
conjugates (ADCs) emerged as highly useful owing to their extremely selective binding
affinity [1,2]. However, ADCs are often expensive to produce and have other drawbacks
such as limited tissue penetration. Other strategies include the encapsulation of drugs into
decorated micelles, or the use of nanoparticles as delivery modalities [3,4]. One other way
that has been come more and more attractive is the design of peptide–drug conjugates
(PDCs) [5,6]. They stand out by several advantages such as their good biocompatibil-
ity, cost-effective synthesis, possibility of chemical optimization, and the opportunity to
assemble the system with the support of cell-penetrating peptides (CPPs).

CPPs are usually 5–30 amino acid long positively charged peptides able to over-
come plasma membranes either via endocytosis or direct translocation pathways in a
non-invasive manner and without disturbing the membrane integrity [5,7]. Besides, they
usually have a very good tolerability and do not evoke any immunogenicity. In the last
decades, CPPs were often used to generate either covalent or non-covalent drug conjugates,
including a different spectrum of therapeutic molecules, such as small molecule drugs, nu-
cleic acids (like siRNA), or proteins. Recently, liposomes or nanoparticles were additionally
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included creating multifunctional delivery systems [8–12]. While very different medical
targets were accessed with the use of CPPs they have also been described to be versatile
to create PDCs having anticancer drugs as payloads [13,14]. This review summarizes
and discusses recent advances and trends reported in the very last years on the chemical
synthesis of anticancer CPP–drug conjugates including small molecule drugs and metal
complexes. Metal complexes have gained an increasing interest as anticancer therapeutics
and, therefore, we will imply studies that demonstrate the efficiency of such CPP–drug
conjugates. Moreover, we will concentrate on covalent bioconjugation techniques and leave
out any studies on non-covalent complex formation between the CPP and drug.

Table 1 summarizes most of the CPPs mentioned within this work. For example,
TAT and Penetratin are included, which are well-known and one of the first described
CPPs. Penetratin is a 16 amino acid long peptide of the Antennapedia homeodomain in
Drosophila melanogaster, which was discovered in 1994 [15]. TAT is a part of the transacti-
vating protein of HIV-1 containing several positively charged amino acids, particularly
arginine [16,17]. Inspired by the amino acid sequence of TAT, Sugiura et al. created pol-
yarginine peptides comprising a series of several arginines ([Arg]n, with n = 4–16), and
it was demonstrated that peptides with about eight arginine residues exhibited the best
translocation efficiency [18]. However, in our group we have developed the CPP sC18
and have used it to generate various CPP–drug conjugates during the last years. sC18
is a 16 amino acid long amphipathic CPP, which is derived from the C-terminal region
of the antimicrobial peptide CAP18 (cathelicidin). We demonstrated that sC18 exhibited
comparable uptake efficiency to TAT [19] and also showed that a shortened version, namely
sC18*, still exhibited valuable uptake potency [20] making it a useful drug transporter.

Some examples of the used drugs discussed within this review are depicted in Figure 1.
Many of them suffer from poor selectivity and/or water solubility which diminishes their
efficiency, thus rendering the PDC strategy attractive. For example, doxorubicin (DOX), as
well as daunorubicin (Dau) are well-known anticancer anthracycline drugs acting directly
on topoisomerase II inhibiting DNA, RNA, or protein synthesis. However, their usage is
restricted owing to their poor water solubility and undesired side effects leading to high
toxicity [47]. Notably, both drugs possess an amine, which is not part of their pharma-
cophore, and can be used as coupling position. On the other side, camptothecin (CPT)
is a natural product isolated from Camptotheca acuminate exhibiting anticancer potency
by inhibiting topoisomerase I leading to DNA damage [48,49]. Like the previous drugs,
CPT suffers from insolubility in aqueous media. A useful coupling position for CPT was
observed to be the free hydroxyl group, which will then require a slightly different coupling
chemistry. Methotrexate (4-amino-10-methylfolic acid, MTX) is an auspicious drug to treat
resistant cancer cells. Once internalized by cancer cells, it undergoes polyglutamation by
the attachment of 5–8 glutamic acid residues which makes the compound non-responsive
to efflux pumps. In addition, the polyglutamylated form of MTX is able to inhibit dihy-
drofolate reductase and timidylate synthase, enzymes which are both involved in DNA
synthesis. However, polyglutamylated MTX derivatives are highly hydrophilic compounds
and, therefore, can be only poorly translocated inside cells [33]. Other drugs described
herein that are utilized for generating CPP–drug conjugates will be presented within the
respective paragraphs.

Over the last five years, a wide diversity of conjugation techniques have been used
to conjugate drugs to CPPs. From this variety we picked out only few examples that
we think are very popular and useful, e.g., amide bond chemistry and linker chemistry
including maleimide, succinyl, disulfide or stimuli-reactive linkers (Figure 2). We will first
describe the most basic amide bond coupling, and following, introduce more complex
coupling techniques.
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Table 1. Overview of the cell-penetrating peptides (CPPs) discussed within this review. Underlined sequences describe
cyclization; small letters stand for the D-conformation of the respective amino acids; Aib: 2-aminoisobutyric acid; Kβ-A:
beta-alanine is coupled to the ε-NH2 group of lysine via amide bond.

Name Sequence Citation

ACPP RRRRRRRRGGGPKKKKKK [21]

Buforin IIb RAGLQFPVGRLLRRLLRRLLR-NH2 [22]

CHAP-1
CHAP-2
CHAP-3

KR-Aib-IRLFTK-Aib-LK
KR-Aib-IRLFTK-Aib-FK
KR-Aib-FRLFTK-Aib-FK

[23]

[C(WR)4K2(β-A)] RCKβ-ARWRWKWRW [24]

[C(WR)4K] RCRWRWKβ-AWRW [25]

H3-V35C ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGCKK [26]

LH LHHLLHHLHHLLHH [27]

LH2 (monomer) Acetyl-LHHLCHLLHHLCHLAG-NH2 [28]

KRP CSSKEKKKGKKRKKKREREGQKEGGRRKEKRKEKKRKEGGREGRKEGRKSADHPS [29]

LMWP VSRRRRRRGGRRRR [30]

MCF-7 targeting CPP RLYMRYYSPTTRRYG [31]

P1 Kβ-AWRWRWRWRW [32]

Penetratin(desMet) RQIKIWFQNRRKWKK [33]

pHLIP AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG [34]

Nucleus targeting CPP RrRK [35]

L-R8 RRRRRRRR [33,36]

D-R8 rrrrrrrr [35]

R9GAL
FFFF

FFFFR9GAL

RRRRRRRRRGAL
FFFF

FFFRRRRRRRRRGAL
[37]

LGA-D-R9C LGA-rrrrrrrrrC [38]

[RW]6
[RW]3

R5W3R3

RWRWRWRWRWRW
RWRWRW

RRRRRWWWRRR
[39]

sC18 GLRKRLRKFRNKIKEK-NH2 [40–42]

sC18* GLRKRLRKFRNK [43]

T2 FKKFFRKLL [44]

TAT CGGGYGRKKRRQRRR [30,45]

TH AGYLLGHINLHHLAHL-Aib-HHIL-NH2 [46]
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Figure 1. Chemical structures of bioactive molecules coupled to CPPs and discussed within this review (coupling position
is highlighted in red).

Figure 2. Exemplified are the different bonds formed between CPPs and drugs discussed within
this work.

2. Amide Bond Formation and Related Chemistry

Maybe the easiest and most efficient way to couple small molecules and metal com-
plexes to CPPs is via amide bond formation. Similar to peptide synthesis a free amino
group (often the N-terminus) reacts with a carboxylic acid moiety present on the drug to
be conjugated (Scheme 1). The advantage of this method is that coupling steps are realized
by using standard solid-phase peptide synthesis (SPPS) conditions, while the peptide is
still linked to the solid support decreasing the possible formation of side products. It
should be mentioned that the carboxylic acid functionality has to be activated by a suitable
coupling agent (converting the hydroxyl group into a good leaving group) to achieve amide
coupling. However, in many cases the drug does not bear a free carboxylic group and thus
needs to be further modified for coupling to the CPP.
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Scheme 1. Representation of general amide bond formation and possible cleavage by prote-
olytic degradation.

2.1. CPP–Drug Conjugates Comprising a Classical Amide Bond

The use of classical amide bond coupling to create a CPP–drug conjugate was recently
presented in the work of Szabó et al. [33]. The aim was to generate a conjugate containing the
drug methotrexate (MTX) with the intention to increase its bioavailability, its selective tumor
delivery, and to overcome drug resistance of MTX. Therefore, they coupled pentaglutamy-
lated MTX, which is not a substrate of the multidrug resistance protein (MRP 3) [50] and the
folate transporter systems [51], to two different CPPs. The CPPs chosen were octa-arginine
or a modified version of Penetratin lacking methionine at position 12 (Penetratin(desMet)),
both of which offer different entry mechanisms. First, Glu5 was N-terminally coupled ei-
ther directly or via a Gly-Phe-Leu-Gly (GFLG) peptide spacer to the CPPs, where in turn
MTX was N-terminally coupled to the resulting peptide via an amide bond using HOBt-
DIC as coupling agents. GFLG is a cathepsin B cleavable linker and was used since this
enzyme is overexpressed in many cancer cells [52]. In vitro cellular uptake and cytostatic
activity studies of the peptide–drug conjugates using drug-resistant breast cancer MDA-
MB-231 and drug-sensitive breast cancer MCF-7 cells revealed that all conjugates showed
internalization into both cell lines. Although the uptake of pentaglutamylated conjugates
was decreased, some of the conjugates exhibited significant cytostatic activity. Interestingly,
the Penetratin(desMet) conjugates were more active compared to the R8 conjugates. MTX-
Glu5-Penetratin(desMet) and MTX-Glu5-GFLG-Penetratin(desMet) demonstrated the highest
antiproliferative activity. While MTX-Glu5-Penetratin(desMet) only showed activity against
the resistant cell line (IC50 = 0.1 µM), MTX-Glu5-GFLG-Penetratin(desMet) was active in both
cell lines (IC50 = 0.4 µM in MDA-MB-231 and IC50 = 0.3 µM in MCF-7 cells). In contrast, free
MTX was only toxic to drug-sensitive MCF-7 cells (IC50 = 0.8 µM) and showed no apprecia-
ble toxic effects to drug resistant MDA-MB-231 cells (IC50 > 100 µM). The efficiency of the
CPP–drug conjugate was higher when the cathepsin B linker was introduced, proving again
its potency for a selective drug release at the target site.

Similar to Szabó et al., the Ramakrishnan group reported on the conjugation of MTX
to CPPs using classical amide bond formation [23]. As CPPs, they used different newly
designed cationic helical amphipathic peptides (CHAP), which were topologically con-
strained to form a helical structure [53–55]. Such a structure is expected to improve the
cell penetration efficiency. Conjugation of MTX was achieved again N-terminally via the
two free carboxylic moieties of the drug which are not part of its pharmacophore (see
Figure 1). Uptake studies revealed that the CHAP peptides were able to enter cancerous
MDA-MB-231 and HeLa cells more efficiently than non-cancerous HEK-293 cells. Also,
the cellular uptake mechanism seemed to be independent from energy and temperature.
The CHAP–MTX conjugates showed increased cytotoxicity against the two cancer cell
lines (MDA-MB-231: IC50 = 0.39–1.52 µM; HeLa: IC50 = 0.45–1.95 µM) compared to free
MTX (MDA-MB-231: IC50 > 40 µM; HeLa = 3.99 µM). In contrast, the cytotoxic effects of
the CHAP–MTX conjugates towards HEK-293 (IC50 between 5.20–>50 µM) cells were de-
creased compared to free MTX (2.24 µM) and also lower than the toxicity of the conjugates
towards the two cancer cell lines, suggesting higher selectivity of the conjugates towards
cancer cells.

Recently, we designed a cell-permeable mitochondria targeting chimeric peptide and
conjugated it to the anticancer drug chlorambucil via classical amide bond formation [40].
Chlorambucil (Cbl) is able to alkylate DNA and was used in this approach since it has been
demonstrated that targeting mtDNA, instead of nuclear DNA, results in higher mutation
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rates due to the lack of many DNA repair systems in cancerous cells [56,57]. The cell-
permeable mitochondrial targeting chimeric peptide developed in this study comprised a
mitochondrial targeting peptide derived from yeast aldehyde dehydrogenase 5 (ALD5MTS

(2–17)) and the CPP sC18 [40]. The sequences of the two parts were either directly coupled
or via the already mentioned GFLG linker. Notably, ALDMTS-sC18 alone showed efficient
cellular internalization and was preferably localized within the mitochondrial matrix.
Moreover, only low cytotoxicity towards HeLa, MCF-7 and mouse fibroblast cells was
observed. On the other hand, all peptide–drug conjugates, in which Cbl was coupled using
classical amide bond chemistry, showed about a 16–20-fold increase in cytotoxicity towards
HeLa cells (IC50-values between 1.71–2.23 µM) compared to free Cbl (IC50 > 35 µM),
speaking in favor for an efficient delivery of the drug into the mitochondrial matrix [40].

To overcome poor water solubility of the anticancer drug gambogic acid (GA) Lyu et al.
conjugated it to the CPP Tat [45]. First, an amino hexanoic acid was introduced N-
terminally to the peptide. Then, gambogic acid was coupled via its free carboxylic moiety
(see Figure 1) using unspecified amide coupling conditions. The resulting GA–TAT con-
jugate was characterized by highly improved water-solubility compared to GA alone.
Cell assays using human bladder cancer (EJ) cells revealed significantly increased cellular
uptake, cytotoxicity and apoptosis of GA–TAT. Further investigation of the underlying
mechanism showed that GA–TAT increased the anticancer effect of GA alone against EJ
cells by elevating the level of reactive oxygen species (ROS) resulting in ROS-mediated
apoptosis. N-acetyl-L-cysteine, which is a well-known ROS scavenger, inhibited GA–TAT-
induced ROS formation and apoptosis in EJ cells. Moreover, Western Blot analysis revealed
that caspase-3 and caspase-9 were activated by GA–TAT, while the Bcl-2/Bax ratio was
down-regulated. Interestingly, those effects were mostly recovered by the presence of
N-acetyl-L-cysteine.

Within the next example, the presented conjugation chemistry seemed to be more
sophisticated. In order to increase water solubility and drug efficiency of camptothecin
(CPT), the Tiwari group coupled it to a cyclic CPP and compared two different coupling
strategies; CPT was either conjugated by a classical amide bond or by a disulfide bond [32].
The used CPP (named P1) consisted of four alternating Arg and Trp residues flanked
by an N-terminal Trp and a C-terminal Lys bearing a β-alanine (β-Ala) on its ε-amino
group. Cyclization was performed between the N- and C-terminal (Figure 3). P1 was
further modified in two steps by first using tritylthiopropionic acid in DMF/DIPEA/HBTU
to introduce a thiol on the β-Ala. Subsequently, this thiol function was deprotected in
order to introduce 2-[(2-pyridinyl)dithio]ethanamine via a disulfide bond as a linker to
yield so called new peptide P3 (Figure 3). CPT itself offers only one hydroxyl group,
which was then turned into chloroformate as a better leaving group by reacting CPT with
triphosgene in DCM under N2 atmosphere (Figure 3). This chloroformate CPT was then
either conjugated via amide bond to P1 using DMF/DIPEA (CPT1), or via disulfide bond
formation to P3 using DIPEA/DMSO (CPT2). Notably, both conjugates, CPT1 and CPT2,
exhibited increased water solubility compared to free CPT. Following cytotoxicity assays
using breast cancer MCF-7 cells revealed that CPT2 offered a similar cytotoxicity (62%
reduced cell proliferation) to free CPT (68%), while toxicity of CPT1 was significantly lower
(39%). The authors explained the observed differences by the different linkage chemistry.
The redox-sensitive disulfide bond is presumed to be reduced after internalization by thiols
like glutathione [58], resulting in a more efficient release of the drug. On the other hand,
the amide bond is more stable under physiological conditions and is degraded mainly
by proteases [59], resulting in a less efficient release of the drug once internalized. This
suggests that the conjugated pro-drug exhibited decreased anticancer activity than the
released drug.
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Figure 3. Chemical structure of the cyclic CPP P1 and P3 (after linker introduction). Chemical
modification of the drug camptothecin (CPT) before its coupling, according to reference [32].

2.2. CPP–Metal Complex Conjugates

Over the last decades, metal complexes containing transition metals have received
increasing attention in the treatment of many diseases, including cancer. The versatile prop-
erties of the transition metals, such as redox potential or charge variation, play a critical role
in the therapeutic effects of the complexes [60]. Cisplatin (Figure 1), which was discovered
by Barnett Rosenberg in the 1960s [61], and its successors carboplatin and oxaliplatin are
the most prominent metal complexes used as chemotherapeutics against numerous types
of cancers [61–63]. Inspired by cisplatin, complexes containing other transition metals such
as ruthenium or cobalt were also investigated as anticancer drugs [62]. However, many
potent metal complexes exhibit only poor water-solubility and poor cellular uptake [64].
Thus, conjugating the metal complexes to CPPs has been seen a promising solution to
circumvent those drawbacks and to increase their bioavailability [64].

A recent example was presented by the group of Barton that developed a ruthenium
metal complex targeting DNA mismatch [35]. In one of their previous studies, they attached
this complex to the CPP D-octa-arginine, but the overall positive net charge provided by the
CPP led to undesired non-specific uptake of the construct [65]. In order to overcome this
issue, they therefore coupled the metal complex to the tetrapeptide RrRK [35], which was
previously reported to accumulate in the nuclei of HeLa cells [66]. For conjugating both
parts they had first to introduce a carboxylic moiety to the metal ligand. As outlined in
Scheme 2, a modified bipyridine was used bearing a carboxylic moiety allowing an amide
coupling to the free N-terminal amine of the peptide via HOBt/HBTU activation. The novel
conjugate stood out due to its better water solubility compared to the free drug. Besides,
presence of RrRK supported nuclear localization of the ruthenium complex, when the
concentration exceeded a distinct threshold. On the other side, the threshold of RrRK was
higher than that for the Ru-D-R8 conjugate indicating a general lower cell entry efficiency
for the RrRK–drug conjugate. Furthermore, the influence of the payload towards delivery
efficiency and localization of the peptide was demonstrated, since it was found out that
RrRK complexed to Ru exhibited less delivery efficiency than RrRK complexed to thiazole
orange. Thus, the metal complex seemed to negatively affect the internalization ability of
the CPP.
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Scheme 2. Simplified synthesis of the modified ruthenium complex, according to reference [35].

The Metzler-Nolte group specializes in the design and synthesis of peptide–metal
complex conjugates [67–69]. Motivated by their long-standing experience in bioconjugation
chemistry [70–73], they recently explored how to introduce cobalt complexes to peptide
delivery systems, as those have yet not been extensively studied for their anticancer
potential [37]. To achieve the coupling, the authors designed a Schiff base ligand by
condensation of salicylaldehyde with 3,4-diamino benzoic acid (Scheme 3). This ligand
comprised a carboxylic acid moiety, which was further used for coupling to the CPP via
an amide bond. Afterwards, it was complexed with Co(II) and subsequently added to
the N-donor ligand to let the complex oxidize switching from Co(II) to Co(III). As CPPs,
they used three different peptides, namely FFFF, R9GAL and F4R9GAL, which were N-
terminally modified with the metal complex using TBTU/HOBt activation. Following
antiproliferative assays revealed that the new conjugate comprising the Co(III) complex
coordinated by an L-histidine methyl ester in axial position and the CPP F4R9GAL exhibited
1.3, 1.5 and 1.4 times enhanced antitumor activity in A549, HepG2 and GM5657T cancer
cells, respectively, compared to the parent Co(III) complex without the CPP.

Scheme 3. Simplified synthesis scheme of the modified cobalt complex, according to reference [37].

In another work, Parker et al. designed a PDC with synergistic properties combining
the cell penetration, anti-microbial and anti-proliferative activity of the CPP buforin IIb
and the well-known classical anticancer metal drug cisplatin [22]. In terms of improv-
ing stability towards proteases, the D-stereoisomeric form of buforin IIb was used. As
demonstrated in Scheme 4, using HATU/DIPEA activation they functionalized the N-
terminal amine with a malonate linker (malBuf), which offered two carboxylic moieties
for further ligation to cisplatin at pH 6.6 via an amide bond. Following synthesis, the
anti-proliferative effect of the metal complex–CPP conjugate (cis-PT[(NH3)2(malBuf-2H)])
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was investigated in cisplatin-sensitive A2780 and cisplatin resistant A2780cisR, as well
as non-cancerous NHDF cells (in comparison to cisplatin, cis-PT[(NH3)2(malonate)] and
buforin IIb). While cis-PT[(NH3)2(malBuf–2H)] (IC50 = 12.2 µM) showed similar, decreased
and increased cytotoxicity towards A2780 cells compared to buforin IIb (IC50 = 12.3 µM),
cisplatin (IC50 = 1.3 µM), and cis-PT[(NH3)2(malonate)] (IC50 = 16.0 µM), respectively, it
was significantly more toxic in A2780cisR cells compared to all other control compounds.
However, the metal complex–drug conjugate exhibited also toxic effects to non-cancerous
NHDF cells (IC50 = 7.0 µM), although this toxicity was lower compared to that of buforin
IIb (IC50 = 5.9 µM) and cisplatin (IC50 = 2.4 µM).

Scheme 4. Simplified synthesis of the modified platinum complex, according to reference [22].

Very recently, we investigated platin-containing thiosemicarbazone complexes that
were introduced to the CPP sC18 (Figure 5). Also, in this case, coupling of the ligand
to the CPP was achieved using SPPS via an amide bond. After cleavage from the resin
and workup, the modified peptide was complexed with Pt in solution, while the final
Pt(CN) derivatives were obtained through Cl− to CN− exchange. Since the conjugates
demonstrated very good tolerability in different cell lines, they might be used in future for
late-stage labelling with Pt radionuclides in nuclear medicine [42].

In conclusion, amide bond formation is a versatile option for coupling a drug to a CPP.
Usually, the generated amide bond is very stable under physiological conditions and thus
ensures no release of the drug while being transported to its site of action. The respective
chemistry offers a wide spectrum in the choice of the adequate coupling agents including
different possibilities for demanding reactions, while still being very cost-effective. Indeed,
this type of bond is commonly used for the introduction of metal complexes, too, as the
conditions are highly suited for this kind of compounds.

On the other hand, amide bond formation also bears several drawbacks. For in-
stance, the amide bond being quite stable requires degradation by a protease to release
the drug, since some drugs are not active as conjugates (prodrug), and this process is
uncontrollable [74] (see also Scheme 1). Thus, amide bond formation between CPP and
bioactive compound should be considered as an option of choice for a proof of principle
study, but for effective drug delivery we will now discuss more interesting linkers and
coupling chemistry.

3. CPP–Drug Conjugation Using Functionalized Linkers

A well-established tool to tether the CPP with the drug is the usage of functionalized
linkers. When choosing the linker, however, several aspects should be considered, e.g.,
the stability, length, hydrophilicity, functional groups included within the structure and
release mechanism [75]. This means the linker could potentially influence the efficacy of the
loaded drug or the internalization efficiency of the CPP. Additionally, the linker should be
stable until the drug is delivered to its site of action. In this context, this chapter highlights
different types of linkers with different tumor-specific drug release strategies that have
been recently used for CPP–drug conjugation.

3.1. Bifunctional Succinyl Linkers

The succinyl linker is a commonly used bifunctional linker based on succinic acid.
Here, the drug is connected to the succinyl linker via ester bond, while amide bond
coupling is used to tether the linker to the CPP (Scheme 5). The idea behind this linker is
the controlled release of the drug, once internalized by the cancer cells, due to hydrolysis by
carboxylesterases or under acidic conditions [75–77]. Following the work of Kiew et al. [78],
Valizadeh and coworkers used such succinyl linker to couple gemcitabine (Gem) to variants
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of the CPP R8, in which several arginine residues were replaced by tryptophan resulting in
a dramatic increased uptake into A459 cells [39]. When Gem was coupled to those peptides
containing block sequences of arginine (R5W3R4), and some alternating Trp/Arg sequences
(like [RW]6 and [RW]3) the conjugates showed indeed enhanced antitumor activity in A549
cells. In particular, cell viability was about three times lower for R5W3R3-Gem, 1.5 times
for [RW]6-Gem and 2.9 times for [RW]3-Gem compared to free Gem.

Scheme 5. Schematic representation of succinyl linker introduction and cleavage.

Nam et al. recently explored a way of targeting breast cancer cells by using a pH-
responsive PDC consisting of the CPP LH2 and the drugs PTX and MTX, respectively [28].
The CPP consisted of a dimer of two LH monomers, alternating Leu and His sequences,
linked via a disulfide bridge between Cys at position 5 and 12. The resulting dimer was
either assembled in parallel or anti-parallel hairpin structure. Histidine residues possessing
a pKa around 6 were supposed to get protonated specifically in tumor cell environment,
resulting in a positively charged CPP with increased cellular uptake ability. PTX was
introduced via a succinyl linker to the N-terminal lysine of the CPP, while MTX was
introduced via classical amide bond coupling. The resulting LH2 peptides showed efficient
uptake into MDA-MB-231 cells at nanomolar concentrations (10–25 nM), and particularly
at acidic pH (pH 6.0–6.5). Cytotoxicity experiments towards MDA-MB-231 cells revealed
that both MTX-LH2 and PTX-LH2 showed higher cytotoxicity compared to the free drugs.
Interestingly, when keeping the cells at lower pH, higher toxicity values were observed,
especially for PTX-LH2 (in the range of 50 nM). Furthermore, PTX-LH2 showed sustained
circulation in the body and accumulated in tumors. In vivo experiments using an MDA-
MB-231 mice xenograft model revealed that PTX-LH2 exhibited remarkable anti-tumor
efficacy already at low doses (1.17 µmol/kg; injection of the conjugate three times a week).
In contrast, free PTX at similar doses only showed negligible anti-tumor effects.

In conclusion, the succinyl linker is a user-friendly tool to attach a drug bearing a
hydroxyl group to the amino function of a given CPP in a straightforward synthesis route.
Furthermore, the length of the linker provides optimal separation of drug and peptide. Thanks
to the ester bond connecting the drug with the linker, the drug, once internalized, can be
easily released by carboxylesterases or under acidic conditions [39,75,77,79]. However, the
stability of the ester linkage in the blood must be carefully examined to prevent unwanted
drug release and off-target adverse effects [77].

3.2. Redox-Sensitive Disulfide Linkers

In order to support proper folding, proteins own disulfide bonds, which occur be-
tween two thiol moieties of cysteines. Inspired by nature, chemists often mimic this bond
since it offers fast degradation within a reductive milieu (Scheme 6). Many cancer cells
typically exhibit elevated levels of glutathione [58,80], and thus, this type of linker, based
on 2,2′-dithiodipyridine, allows for efficient drug release by reducing the disulfide once
internalized into cancer cells (Scheme 6).

For instance, Darwish et al. used this kind of bond to generate a double loaded drug–
CPP conjugate. It consisted of a cyclic CPP providing improved drug delivery [24], and a
double payload of curcumin and DOX, respectively, since it was already demonstrated that
single drug treatment might promote drug resistance. To attach the drugs to the cyclic CPP
[C(WR)4K2(β-A)] in solution, they were first modified. For this, DOX was reacted on its free
amine (Figure 1) using Traut’s reagent (2-iminothiolane hydrochloride) in TEA followed by
reaction with dithiodipyridine in acetic acid. Then, this DOX-SS-Pyridyl derivative was
coupled to Cys of the cyclic peptide under aqueous conditions. Next, a glutaric acid spacer,
which is similar to the above described succinyl spacer (Figure 2), was introduced on the
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free hydroxyl moiety of curcumin via a ring opening reaction in TEA/Toluene/DMAP
leading to the esterified curcumin monoglutarate, which was then coupled using amide
bond coupling reaction to the free amine of the cyclic peptide. For the cyclic peptide–
doxorubicin and the cyclic DOX–peptide–curcumin conjugates, antiproliferative activity
was investigated in human ovarian carcinoma (SKOV-3), human leukemia carcinoma
(CCRF-CEM), and normal kidney cells (LLCPK). Both cyclic peptide-DOX and cyclic DOX-
peptide-curcumin conjugates showed no antiproliferative activity against LLCPK cells after
72 h incubation with 5 µM of the conjugates, while they inhibited proliferation of SKOV-3
(55% and 30%, respectively) and CCRF-CEM cells (73% and 41%, respectively), indicating
cell specificity of the conjugates towards cancer cell lines. In contrast, free DOX showed
high cytotoxicity in all three cell lines (60–79%) under similar conditions.

Scheme 6. Schematic representation of disulfide linker introduction and cleavage, according to
reference [81].

In a follow-up work, Darwish et al. designed a similar CPP–DOX conjugate [25],
in which DOX was coupled to the CPP by a disulfide bond and investigated in more
detail the pharmacological profile of the novel PDC [58]. As CPP, they again used the
cyclized peptide [C(WR)4K] [82–84]. DOX was modified prior its introduction to the CPP
to circumvent sterically hindrance. As described in their previous work, Traut’s reagent
was applied to thiolate DOX at its free amine. Subsequently, the amine was activated
with dithiodipyridine yielding an activated DOX that was coupled to the CPP via thiolate-
disulfide exchange using water as a polar, protic solvent. Following flow cytometry studies
of the DOX-CPP conjugate using several different cell lines (HT-1080, HEK-293, SKOV-3
and CCRF-CEM cells) revealed that free DOX and DOX-SS-[C(WR)4K] showed similar
uptake values, while further fluorescence microscopy studies proved high cellular uptake
and mainly nuclear localization of the conjugate. Moreover, DOX-SS-[C(WR)4K] exhibited
similar cytotoxic effects in HT-1080, HEK-293, SKOV-3 and CCRF-CEM cells compared to
free DOX after 24 h of incubation. In contrast, after 72 h incubation, the antiproliferative
inhibition of the conjugate was increased in HEK-293 and HT-1080 cells compared to free
DOX, indicating an enhanced accumulation of DOX inside the cells based on retention of
DOX by the conjugate. Furthermore, the peptide–drug conjugate provoked less cytotoxicity
in mouse myoblast cells compared to free DOX. Of note was that intracellular ROS levels
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were low, demonstrating that there was no evidence for ROS induction after incubation
with DOX-SS-[C(WR)4K] and Fe2+, while ROS production was significantly enhanced after
cell treatment with free DOX and Fe2+.

In another study, Zhang et al. [27] also used disulfide bond coupling for generating a
CPP–drug conjugate in order to profit from the oxidative release of the drug by glutathione
within tumor cells. Additionally, they aimed to further increase the tumor cell specificity
of their CPP LK (LKKLLKLLKKLLKL-NH2), which offered high potential as delivery
vector due to its remarkable internalization efficiency [85,86]. Therefore, they created
a LH variant where all lysine and two leucine residues were replaced by histidine. As
already mentioned, the tumor surrounding is often characterized by an acidic extracellular
microenvironment [87–90], which should result in protonation of the histidine residues
and then, in an increased cellular uptake efficiency of the peptides [91]. However, LH
was initially coupled to the anticancer drug camptothecin (CPT) via a disulfide carbonate
releasable linker. The synthesis of such linker was performed according to a previously
described method [92,93]. For later coupling, CPT was first modified on its 20-OH group
(Figure 1) with triphosgene in DCM using an excess of DMAP as base resulting in the
chloroformate form of CPT. Modified CPT was then reacted with the linker in DCM afford-
ing pyridyldithioethyl carbonate camptothecin. Finally, the CPT-linker was conjugated
via the cysteine of the CPP using DMSO. Uptake studies in HeLa cells revealed that LH
showed an increased internalization at pH 6.0 while the penetration activity at pH 7.4 was
remarkably lower. Additionally, LH alone provoked less cytotoxicity in both pH conditions
towards HeLa and MDA-MB-231 cells compared to LK. On the other side, the LH–CPT
conjugate exhibited pH-dependent antitumor activity, indicating the high potential of LH
as a tumor-targeting delivery vector.

Interestingly, the Wang group employed a similar strategy. As CPP, they used their pre-
viously developed pH-responsive CPP named TH (AGYLLGHINLHHLAHL(Aib)HHIL-
NH2; Aib: 2-aminoisobutyric acid), which was shown to facilitate activated internalization
into tumor cells due to protonation of its histidine residues [94]. In order to increase the
protonation in acidic tumor microenvironments, the authors further modified all histidine
residues of the CPP at the C-2 position by introducing different electron donating groups
(ethyl, isopropyl, butyl) [46]. CPT was then coupled to the CPP at an N-terminal Cys via
a disulfide carbonate releasable linker as it was reported in a previous publication [92].
In vitro cytotoxicity measurements in HeLa cells revealed that butyl-TH-CPT exhibited the
strongest pH-response with about 50% of surviving cells when the conjugate was applied
at pH 6.8, while at pH 7.4 about 65% of the cells survived.

To note is also the study of Zhang et al., in which a tumor targeting CPP–drug
conjugate was designed using the so called pHLIP carrier peptide, a 36 amino acid peptide
derived from the C-helix of bacteriorhodopsin [34]. This water-soluble peptide easily
inserts into cell membranes through conformational transitions at acidic pH conditions.
Indeed, the authors expected to overcome multidrug resistance of DOX thanks to this
unique entry mode. Additionally, they included a glutathione (GSH)-responsive disulfide
linker to support site-directed drug delivery. In fact, it was assumed that at physiological
pH the CPP should only weakly interact with cell membranes, but once the pH decreases
the peptide was supposed to form a transmembrane helix inserting its C-terminus inside
the cytoplasm, where the intracellular reductive environment should reduce the linker
finally leading to the release of DOX. To obtain the conjugate, they first introduced a linker
to DOX through a two-step reaction. This started with an exchange reaction between
2,2′-dithiodipyridine and 3-mercaptopropionic acid in ethanol to avoid the homo-coupling
of 3-mercaptopropionic acid, while an excess of 2,2′-dithiodipyridine and acetic acid was
added. The resulting 2-pyridyl-2-carboxyethyl disulfide was then activated in acidic
conditions using HBTU in DMF before adding DOX in its hydrochloride form and DIPEA
to form the corresponding amide bond with the free amine of DOX (see Figure 1). Finally,
this modified DOX was then coupled to cysteine through thiol/disulfide exchange in
DMF yielding pHLIP-SS-DOX. Subsequent uptake studies using drug-sensitive MCF-7
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and drug-resistant MCF-7/Adr cells revealed that the uptake of pHLIP-SS-DOX at pH
6.0 in both cell lines was about two times higher than that at pH 7.4. Also, the uptake
of the conjugate at pH 6.0 was about two times higher in MCF-7 cells and about four
times higher in MCF-7/Adr cells compared to free DOX. This indicated that the peptide–
drug conjugate targeted tumor cells with respect to the acidic microenvironment and also
harmed multidrug resistant cancer cells. Furthermore, cytotoxicity assays in MCF-7 cells
revealed that pHLIP-SS-DOX at pH 6.0 with artificial elevated glutathione levels were
significantly more toxic than at normal GSH levels. In contrast, no significant cytotoxic
effects were detected when cells were kept at pH 7.4 with normal or artificial elevated GSH
levels. In conclusion, it was demonstrated that pHLIP-SS-DOX efficiently entered tumor
cells when in an acidic microenvironment, where elevated GSH levels enhanced the release
of DOX from the pro-drug further increasing its overall cytotoxicity.

In terms of improving its cytotoxic profile, Lelle et al. created a DOX dimer, which was
supposed to exhibit higher DNA binding affinity. For this, the DOX dimer was first linked
via disulfide bond to a lysine based heterobifunctional cross-linker [95] and then coupled
to the CPP octa-arginine [36]. With the synthesized peptide–drug conjugates in hand, the
authors demonstrated that the dimeric DOX molecule exhibited higher binding affinity
to Cy5-labeled double-stranded model DNA (7.9 × 106 M−1) compared to single DOX
(8.8 × 105 M−1). Although the antiproliferative effect of the peptide–drug conjugate was
lower in drug-sensitive MCF-7 cells (~4 times lower IC50) and Kelly-WT cells (~13.5 times
lower IC50), the conjugate showed increased cytotoxicity in multi-drug resistant Kelly-ADR
cells (~2.5 times higher IC50) compared to unmodified DOX, indicating the ability of the
peptide–drug conjugate to overcome drug-resistance. The results were further confirmed
by fluorescence confocal laser scanning microscopy (CLSM) studies in Kelly-WT and Kelly-
ADR cells. Although the unmodified DOX was more enriched in drug-sensitive Kelly-WT
cells after 72 h compared to the drug–CPP conjugate, in drug-resistant Kelly-ADR cells the
signal of the conjugate was obviously stronger. Concluding the dimeric DOX conjugate
demonstrated promising uptake and cytotoxic profile in drug-resistant cells.

Recently, Chen and co-workers developed a cell-penetrating and tumor-targeting
peptide–PTX conjugate to increase PTX tumor specificity and membrane penetration [44].
They chose LHRH (pEHWSYGLRPG) as the tumor-targeting moiety, an endogenous
peptide agonist targeting LHRH receptors, which is overexpressed in various tumor
types [96,97], while the peptide FKKFFRKLL, which they named T2, served as the CPP. In
addition, they introduced a cleavable spacer between the two peptide sequences, namely
PGLAG, a linker peptide that is recognized and cleaved by cell surface enzymes such
as matrix metalloproteinase-2 [98], overexpressed in many cancer cells [99]. The drug
was introduced via a disulfide linker at a C-terminal cysteine yielding the PDC named
LTP-1. Following uptake studies revealed a two-fold increased uptake of LTP-1 into LHRH
overexpressing MCF-7 cells compared to free PTX, which was in-line with an observed
increased cytotoxicity of LTP-1 (IC50: 3.8 nM; free PTX: 6.6 nM). In contrast, LTP-1 caused
less cytotoxicity to non-cancerous cells (NCM460, HEK-293). Also, the cytotoxic effects of
LTP-1 against paclitaxel-resistant A2780/PTX cells was about 30 times higher compared to
free PTX. Further in vivo experiments in MCF-7 xenograft mice model showed increased
tumor growth inhibition (83.4%) after 12 µmol/kg treatment that was significantly higher
than that of PTX (65.7%) without apparent toxicities. All in all, the presented LTP-1 con-
jugate was characterized by its high cell uptake, good selectivity index, efficacy against
drug-resistant cells and promising in vivo activity.

In conclusion, the main advantage of generating disulfide bonds between a drug and
CPP are the possible cell selectivity effects based on the cleavage of the disulfide by the
present intracellular glutathione. Moreover, the frequently used 2,2′-dithiodipyridine (or
derivatives) is a suitable tool to ‘activate’ the drug by introducing a thiol group at the drugs
site, which enables the coupling to a cysteine of the CPP via a disulfide bond.
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3.3. Acid-Sensitive Linkers

Beside elevated glutathione levels, cancer cells also exhibit other characteristics that
distinguish them from healthy cells. One of these characteristics are increased lactic acid
production as a result of upregulated aerobic and anaerobic glycolysis. As a consequence,
the extracellular tumor cell environment (pH 6.2–7.0), endosomes (pH 5.0–6.5) and lyso-
somes (pH 4.5–5) become more acidic than healthy tissues and blood (pH ~7.4) [76,100,101].
Based on these properties, some acid-sensitive linkers have been designed to facilitate
tumor-specific drug release of CPP–drug conjugates (Figure 4), which will be highlighted
in the following paragraphs.

Figure 4. Targeting ability of an acid-sensitive linker (the lightning bolt in red represents cleavage of
the linker either extracellularly or within acidic environment in endosomes/lysosomes).

Acid-sensitive bifunctional linkers bearing a maleimide are currently one of the most
famous and frequently used strategies for drug conjugation. A fact that is reflected in the
huge number of publications that are found in this area. Usually, the linker part consists
of a maleimide group, introduced via amide bond chemistry directly onto the drug or
via a succinyl spacer, which is then connected to the CPP via a Michael addition. Such
reaction thus requires the presence of a free thiol, usually delivered by a cysteine in the
CPP sequence (Scheme 7). Interestingly, the growing interest in the use of the maleimide
linker relies on its acid sensitivity, which results in specific cleavage within the tumor
environment. In fact, the thioether linkage is stable at physiological pH but undergoes
rapid hydrolysis and subsequent drug release when the pH drops to more acidic values.
Of course, this has raised several concerns related to the use of maleimide linkages in ADC
research, where maleimide is still one of the most popular choices [102].

Scheme 7. Representation of maleimide linker introduction.

However, in a recent study, Yu et al. designed a new CPP named KRP [103] and loaded
it with DOX through a maleimide linker [29]. The aqueous solubility of DOX was increased
due to the high hydrophilicity of KRP, and increased selectivity was expected thanks to the
enhanced permeability and retention (EPR) effect. The EPR effect is based on physiological
and biochemical differences between many tumors and normal tissues. To supply tumors
with nutrients and oxygen, new blood vessels are often formed (angiogenesis). However,
these new blood vessels are usually abnormal in their vascular structure. Compared to
normal capillaries, the endothelial cells of these newly formed blood vessels exhibit wide
fenestrations and are therefore more permeable for macromolecules. Additionally, tumors
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generally show deficiencies in the lymphatic system, which prevents effective lymphatic
drainage, resulting in a longer retention of macromolecules in tumors [104–106]. The
synthesis of the KRP–DOX conjugate proceeded according to a previous method [107].
Shortly, DOX was first reacted with 3-(maleimido)propionic acid N-succinimidyl ester
(BMPS) and triethylamine as base in DMF resulting in DOX-Mal which was then coupled
to KRP via an N-terminal cysteine. Fluorescence microscopy studies of the resulting
conjugate partly deciphered the uptake mechanism in cancerous osteosarcoma MG63 cells.
It was suggested that after endocytic uptake the conjugate escaped the endolysosomes
and accumulated in the nuclei. The subsequent preliminary in vivo studies delivered
promising results, since from 30 min to 48 h after intravenous administration of KRP-DOX
into xenograft osteosarcoma mice, no free DOX was detected within circulating blood.
Simple diffusion was effectively replaced by the EPR effect resulting in significant tumor
growth inhibition, and after 28 days the tumor volume of KRP–DOX treated mice were
about five times lower compared to control mice [103].

Using the same method Zhang et al. reported about coupling of DOX to a so-called
activatable CPP (ACPP) [21]. To decrease undesired DOX delivery to healthy cells, they
introduced a masking group, 2,3-dimethylmaleic anhydride (DMA), to all ε-amino groups
of present lysine residues. At physiological pH, DMA is negatively charged, allowing
the formation of non-covalent bounds with arginine in the sequence, compacting and
bending the PDC. On the other side, when reaching the tumor microenvironment, DMA
degradation readily occurs uncaging the positive charges of lysine, thus triggering selective
cell penetration of the PDC in tumor cells. DOX-ACPP-DMA internalization was followed
in HeLa and COS7 cells using CLSM and flow cytometry, and the authors recognized a
significant increase in fluorescence when mimicking the tumor microenvironment (by a pH
drop from 7.4 to 6.8). In vitro cytotoxicity studies using the same two cell lines revealed
a pH-dependent toxicity, in which about 40% of tumor cells were effectively targeted
by the novel conjugate while at physiological pH no toxicity was observed even when
higher concentrations of the PDC were applied. In vivo anti-tumor evaluation using H22
xenografted mice revealed that DOX-ACPP-DMA exhibited a significant inhibitory effect
on tumor growth. The observed tumor volumes were 40 times smaller compared to the
control, and almost no noticeable DOX side effects were monitored.

Similarly, Qi et al. developed a masking strategy to trigger the selectivity of a nona-
arginine CPP when in the vicinity of cancerous cells [38]. Based on matrix metalloproteinase
2 and 9 (MMP-2/9), frequently overexpressed proteases in tumor environment [108],
they constructed a masked CPP–DOX conjugate. DOX was modified with BMPS and
introduced via a present C-terminal cysteine. A cleavage motif, the peptide PLA*LAG,
was introduced N-terminally to nona-arginine, and additionally, a negatively charged
sequence was coupled onto it resulting in a β-hairpin masked PDC (mCPP–DOX). The
cleavage peptide was then expected to be specifically attacked by MMP-2/9 setting free
the nona-arginine–DOX conjugate only at the tumor site, and further triggering its cellular
uptake and subsequent targeted drug release. Peptide cleavage was assessed in vitro
verifying the efficient MMP-2/9 degradation with the following Michaelis–Menten kinetic
parameters: KM = 6.61 µg/mL; Vm = 38.61 µg/(mL × h). Additional cytotoxicity studies
confirmed the sensitivity of mCPP–DOX to MMP-2/9-rich tumor cells, with the IC50 value
for the masked conjugate being two times lower in MMP-2/9-rich HT-1080 cells than in
MMPs-depleted MCF-7 cells. Following in vivo studies using a HT-1080 xenograft mice
model showed efficient tumor growth inhibition (about 100%) at a dose of 15 mg/kg DOX
equivalents similar to free DOX at a dose of 5 mg/kg (each 3 times treated). However,
the survival rate of the mCPP–DOX treated mice after 20 days (>65%) were significantly
higher compared to free DOX (~35%), indicating fewer side effects of the conjugate. Finally,
mCPP–DOX exhibited a more controllable internalization into MMP-rich tumor cells, and
remarkable in vivo toxicity decrease towards normal tissues compared to free DOX and
unmasked CPP–DOX.
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Aside from DOX, other recent examples in which drugs were coupled using the
maleimide linker include e.g., PTX, which was conjugated recently by Wang et al. to
TAT or to the newly described CPP LMWP, respectively [109,110]. For this, PTX was first
modified at its free hydroxyl group (Figure 1) using succination [30]. TAT possesses three
free amino groups which are required for its activity [111], therefore PTX was coupled
in this case by maleimide linkage to a cysteine introduced beforehand. Compared to
free PTX both PDCs created showed significantly increased cellular uptake in the two
investigated cell lines A549 and A549T, respectively. Moreover, PTX–TAT and PTX–LMWP
exhibited increased cell toxicity compared to free PTX in both cell lines studied. Further
assays revealed that both conjugates increased cell apoptosis (especially LMWP–PTX) and
decreased mitochondrial membrane potential. Additionally, cell cycle analysis suggested
that LMWP–PTX followed a different mechanism influencing mitosis in drug-resistant
cancer cells compared to free PTX and TAT–PTX. Finally, compared to PTX alone, in A549
tumor-bearing mice tumor growth inhibition was more effective for the PDC with an
increased inhibition rate about 63% for PTX–LMWP and PTX–TAT indicating a promising
in vivo antitumor efficacy of the PDC conjugates.

Thanks to its acid sensitivity bifunctional maleimide linkers have been extensively
used for tumor targeting in many applications. Beside the requirement of a cysteine
within the CPP sequence, the drug needs the presence of a free amine for modification,
independent from its pharmacophore, a condition which is not always available. Apart
from this, its introduction on the drug requires basic conditions and an excess of the drug,
a premise which might be difficult to meet. Finally, what is often not mentioned in the
cited studies is the fact that maleimide linkers can undergo a reverse Michael addition
at physiological conditions, resulting in a degraded linker and unwanted release of the
drug at undesired sites (Scheme 8). Thus, “stronger” maleimide linkers were developed by
several groups and recently reviewed elsewhere [102]. In conclusion, the maleimide linker
might be interesting owing to its targeting potency, but more work is needed to increase its
targeting capability and cell selectivity.

Scheme 8. Degradation of maleimide bond that can occur in physiological conditions.

Another acid-sensitive linker strategy relies on oxime bearing bifunctional linkers
(Figure 2). This kind of bond is supposedly stable at physiological pH (pH 7.4) but is
cleaved at pH lower than 5.5–5.0, as encountered in tumor cells [112–114]. In recent work,
we also used this conjugation strategy for the synthesis and biological evaluation of CPP–
drug conjugates. Since CPPs lack cell selectivity, we created in a first approach a tumor
targeting delivery system. Therefore, we considered the fact that integrin αvβ3 receptors
are highly expressed on several cancerous cells and can be effectively targeted by the
tripeptide sequence RGD [115–118]. Starting from this, a peptide–drug conjugate was
designed bearing a RGD targeting ligand, a CPP, namely sC18, and the classical anticancer
drug daunorubicin [41]. The RGD targeting unit was based on a cyclized diketopiperazine
scaffold and ligated to the CPP via copper (I) catalyzed alkyne-azide click chemistry.
Beforehand, sC18 was loaded with Dau. For this, the side chain of a lysine was used for
the introduction of a bis-Boc aminooxyacetic acid using 3 eq excess of DIC and Oxyma
(see Scheme 9). After cleavage from resin the peptide was dissolved in ammonium acetate
buffer at pH 5 before introducing a 30% excess of Dau for oxime ligation.
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Figure 5. Chemical structure of the final platinum complex, according to reference [42].

Scheme 9. Simplified introduction of the oxime ligation, according to reference [41].

In vitro affinity studies of the conjugates on isolated tumor-associated integrin recep-
tors αvβ3 and αvβ5 revealed that the conjugates exhibited a considerably higher affinity
to αvβ3 receptors compared to αvβ5. Different uptake studies of c[DKP-RGD]-PEG4-
sC18(Lys8-CF) (10 µM) into U87 cells, which are reported to overexpress integrin αvβ3
receptors [119], in the presence of the integrin ligand c[DKP-RGD] (competing with the
conjugate for the integrin receptors), poly(L-lysine) (masking the negatively charges of
the outer leaflet of the cell membranes) or methyl-β-cyclodextrin (agent for cholesterol
depletion) indicated that the conjugates were supposedly recognized by the αvβ3 recep-
tor, but then preferably taken up by the cells via CPP-mediated cellular internalization.
Investigation of the cytotoxic effects of all Dau-loaded conjugates on U87, HT-29 (lacking
expression of αvβ3, expression of αvβ5) [119] and MCF-7 (decreased expression of αvβ3)
cells by incubating different concentrations of the conjugates for 72 h showed high toxicity
in all cell lines (IC50 value in low micromolar range). The results of the cytotoxicity assay
supported the conclusion from the uptake studies, since there was no remarkable difference
in cytotoxicity between the tested cell lines. In order to investigate whether rapid binding
of the integrin targeting unit to the surface receptor would enhance the selectivity of the
conjugates, uptake and cytotoxicity studies with shorter contact times (15 min of incubation
before wash-out) were performed. The c[DKP-RGD]-PEG4-sC18(dau = Aoa − Lys8) conju-
gate showed significantly increased internalization and cytotoxicity for U87 cells compared
to HT-29 and MCF-7 cells. In summary, the internalization of the conjugates was mainly
mediated by the CPP, while the selectivity towards αvβ3 integrin receptor expressing cells
was supported by the targeting moiety.

In another study, we investigated a cyclic variant of a shorter version of sC18 (sC18*)
with the idea to increase the translocation efficiency of sC18* and thus create a more efficient
shuttle for anticancer drugs. The cycle was based on a 3S,6R-2,5-diketopiperazine (DKP3)
scaffold, and we also coupled Dau to the side chain of lysine 4 of sC18* via a bifunctional
oxime linker [43]. In order to test the biological activity of the conjugate, cellular uptake
studies and cell viability assays were performed. For reasons of comparison, a linear
sC18*-dau conjugate was also synthesized. CLSM studies in HeLa cells revealed that
after 30 min incubation with 5 µM of the conjugates, both the linear and cyclic conjugate
showed a cytosolic and nucleic distribution, while the uptake of the cyclic one seemed to
be more efficient. This was also confirmed by flow cytometry experiments, where the cyclic
conjugate exhibited a three-fold increased uptake into HeLa cells after 30 min incubation
with 10 µM of the conjugates. This trend was in line with the cytotoxicity studies, since the
cyclic conjugate (IC50 = 9.3 µM) exhibited a two-fold decreased IC50 value compared to the
linear conjugate (IC50 = 20.1 µM).

Oxime linkers have not been used as frequently as maleimide linkers in recent years.
The reason for this might be that their introduction is somehow more laborious compared
to the maleimide linkage. In fact, in order to introduce an oxime linkage linker, aminooxy-
acetic acid is a proven tool, reacting with a primary amine of the CPP. Subsequently, the
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primary amino group of aminooxyacetic acid reacts with a ketone or aldehyde of the drug
to form an oxime. For this, however, the drug requires an aldehyde or ketone, which is not
always the case.

In addition to bifunctional maleimide or oxime linkers, imine-containing linkers have
also gained some attention. Here, an aldehyde or a ketone of the drug reacts with a
primary amine (N-terminus or ε-NH2 group of a lysine residue) to form such a bond
(Figure 2). Imine linkers are supposed to be stable under physiological pH but undergo
hydrolysis when the pH decreases (pH 4.5–6.5) [120]. For example, Maity et al. [31]
coupled gossypol, an attractive ROS-inducing drug, via an imine linker to a CPP recently
developed by Matsushita and co-workers [121]. The CPP chosen (RLYMRYYSPTTRRYG)
was especially designed to target MCF-7 breast cancer cells, which are also the target of
gossypol. Conjugation was achieved with an excess of gossypol. The reason was that it
possesses a symmetrical structure with two aldehyde moieties (Figure 1), and the excess
was required to avoid a second coupling. After peptide dissolution in 6 M Gn·HCl buffer at
pH 5, gossypol was coupled N-terminally to an Ala via imine formation using 5 mol excess
in methanol under gentle heating (45 ◦C). With the synthesized gossypol–CPP conjugate in
hand, the authors tested the cytotoxic effect to MCF-7 (derived from breast cancer), HeLa
(derived from cervical cancer) and Wi-38 cells (normal human fibroblasts). The conjugate
showed selective cytotoxicity on MCF-7 cells since after 48 h incubation with 100 µM of the
conjugate, only 50% of the MCF-7 cells were alive while HeLa and Wi-38 cells exhibited
about 80% viability. Furthermore, the time dependent gossypol release of the conjugate
was investigated in 6 M Gn HCl buffer (pH 7) at 37 ◦C via time dependent HPLC analysis.
Both the CPP and gossypol were cleaved from the linker with a half-life of about 10 h. With
this result, they assumed that if the conjugate has similar stability in the cytoplasm, the
10 h half-life would be sufficient for the conjugate to accumulate within MCF-7 cells before
the drug is released.

Although rather rarely used in recent years, one advantage of imine linkers is that they
are traceless. This means that after cleavage of the drug, there is no structural change in the
original substance and consequently no restriction of the drug efficacy is to be expected.
However, similar to the oxime linkers, the drug requires an aldehyde or ketone to be
coupled, which is not always present in the structure.

The different types of drug release from the linkers mentioned so far all rely on the
presence of internal stimuli (such as increased glutathione levels or increased acidity in
the tumor cell environment). However, there are also more complex linkers that release
the drug in response to external stimuli such as temperature, magnetic field, ultrasound
or light [76]. As an example, Zang et al. designed a new light-responsive self-immolative
linker, namely PC4AP, for DOX conjugation to the H3 mutant H3-V35C CPP [26]. This
linker was a derivate of deoxyribose with the C4 and C hydroxyl groups O-nitrobenzyl
protected. Under light exposure (365 nm), those nitrobenzyl groups were cleaved triggering
addition/elimination reactions resulting in the release of DOX and cyclization of the
peptide without any trace of the linker. Evaluation of the stability of the PC4AP linker
demonstrated that after 24 h incubation at physiological pH (7.5) and acidic pH (5.2) the
linker remained stable. On the other side, irradiation of the conjugate at 365 nm removed
the photolabile O-nitrobenzyl groups after 3 min and subsequent addition of 20 equivalents
of benzyl amine resulted in the complete release of DOX after a further 5 min. Finally,
cell growth inhibition of HeLa cells was investigated when incubating the cells with 5 µM
solutions of H3-PC4AP-DOX. Notably, subsequent photoirradiation caused 20% cell growth
inhibition, while no inhibition was measured without irradiation. This again confirmed the
stability of the conjugate within the cells in the absence of irradiation that would minimize
off-target effects as a result of unwanted drug release.

This study impressively demonstrated the potential of linkers responding to external
stimuli and that they are exceptionally well suited for site-directed drug release. However,
unlike other well-studied linkers, such novel systems are difficult to design, and their
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in vitro and in vivo properties must first be critically investigated. That is probably why
until now, not much work was found in this field for the synthesis of CPP–drug conjugates.

4. Conclusions and Future Perspectives

Undoubtedly, coupling a drug to a CPP offers several advantages for the drug like
improved water solubility, increased stability and higher permeability, all prerequisites for
an efficient cancer therapeutic. Many techniques for coupling the drug to a CPP have been
developed over the past 3–5 years, however, we observed two major conjugation strategies
that were frequently followed: direct coupling and the involvement of functionalized
linkers. Direct coupling is mainly achieved via amide bond chemistry, the main benefit of
which is from its straightforward synthesis route. In our opinion, this method is highly
valuable for performing proof of principle studies, since the products are relatively easy
to obtain. Regarding the conjugation of metal complexes, amide bond formation is the
method of choice since the introduction of other functionalities to the ligands are often
relatively demanding and might influence the metal complex activity.

Besides, we found that three linker categories were mainly described during the last
years for the generation of CPP–drug conjugates, including disulfide redox-sensitive, acid-
sensitive and stimuli-responsive linkers. Disulfide linkers are very popular as they offer cell
selectivity towards cancerous cells, and also their chemistry is well-established. Different
acid-sensitive linkers have been presented like imine, oxime and maleimide linkages. This
acidic sensitivity is a useful way to achieve cell selectivity by specifically targeting the
acidic tumor microenvironment. Finally, stimuli-sensitive linkers were introduced as more
sophisticated systems, offering the chance to tailor the conjugate according to specific needs.
Although it is possible to gain remarkable results with those linkers, the outcome very
much depends on the conditions used and it is probably questionable how they perform in
in vivo systems and if they would deliver reproducible data.

To conclude, different points must be considered in the choice of a CPP–drug ligation strategy:

1. What functional group within the drug structure is available for coupling to the CPP?
It is important to know which groups define the pharmacophore, what positions are
useful for modifications, and which reaction conditions are selectable.

2. How does the coupled drug influence the CPP? It should be carefully considered
which cargo moieties are allowed to be introduced that do not disturb the activity of
the CPP.

3. Can the tumor/tumor environment be targeted by the chosen linkage strategy? The
microenvironment of the tumor tissue is distinguishable to that from healthy cells,
and thus, linker systems should be introduced between CPP and drug that enable the
generation of a highly active and cell selective anticancer therapeutic.

In any case, the design of the perfect CPP–drug conjugate is highly challenging and
still might not be accessible in near future, however, it is allowed to shoot for the stars, and
to aim for the moon.
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Abbreviations

A2780 human ovarian carcinoma cells
ADC antibody–drug conjugate
CCRF-CEM human leukemia carcinoma cells
CLSM confocal laser scanning microscopy
COS7 primate fibroblast-like kidney cells
DCM dichloromethane
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DIC N,N’-diisopropylcarbodiimide
DIPEA N,N’-diisopropylethylamine
DMA 2,3-dimethylmaleic anhydride
DMAP 4-dimethylaminopyridine
DMF dimethylformamide
DMSO dimethyl sulfoxide
EJ human bladder cancer cells
GSH glutathione
HBTU hexafluorophosphate benzotriazole tetramethyl uronium
HEK-293 human embryonic kidney cells
HeLa human cervical cancer cells
HOBt hydroxybenzotriazole
HT-1080 human fibrosarcoma cells
HT-29 human colon cancer cells
IC50 half maximal inhibitory concentration
LLCPK porcine kidney cells
MCF-7 human breast cancer cells
MDA-MB-231 epithelial human breast cancer
MG63 human osteosarcoma
MMP-2/9 metalloproteinase 2 and 9
MRP multidrug resistance protein
mtDNA mitochondrial DNA
NCM460 normal human colon mucosal epithelial cells
NHDF normal human dermal fibroblast cells
PDC peptide–drug conjugate
ROS reactive oxygen species
SKOV-3 human ovarian cancer cells
TEA triethylamine
U87 human primary glioblastoma
Wi-38 normal human fibroblast-like lung cells
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37. Śmiłowicz, D.; Metzler-Nolte, N. Bioconjugates of Co(III) complexes with Schiff base ligands and cell penetrating peptides: Solid
phase synthesis, characterization and antiproliferative activity. J. Inorg. Biochem. 2020, 206, 111041. [CrossRef]

38. Shi, N.Q.; Qi, X.R. Taming the Wildness of “trojan-Horse” Peptides by Charge-Guided Masking and Protease-Triggered Demasking
for the Controlled Delivery of Antitumor Agents. ACS Appl. Mater. Interfaces 2017, 9, 10519–10529. [CrossRef]

39. Zakeri-Milani, P.; Farkhani, S.M.; Shirani, A.; Mohammadi, S.; Mojarrad, J.S.; Akbari, J.; Valizadeh, H. Cellular uptake and
anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. EXCLI J. 2017, 16, 650–662.
[CrossRef]

40. Klimpel, A.; Neundorf, I. Bifunctional peptide hybrids targeting the matrix of mitochondria. J. Control. Release 2018, 291, 147–156.
[CrossRef]

http://doi.org/10.1073/pnas.88.5.1864
http://doi.org/10.1016/0092-8674(88)90262-0
http://doi.org/10.1016/0092-8674(88)90263-2
http://doi.org/10.1074/jbc.M007540200
http://doi.org/10.3390/ph2020049
http://doi.org/10.1039/c5cc08938g
http://doi.org/10.1021/acsami.5b04517
http://doi.org/10.1039/c6dt01510g
http://doi.org/10.1002/psc.3244
http://doi.org/10.1016/j.tetlet.2017.10.065
http://doi.org/10.1016/j.ejmech.2018.10.042
http://doi.org/10.1039/c9sc03016f
http://doi.org/10.1111/cbdd.13537
http://doi.org/10.1016/j.jconrel.2020.10.063
http://doi.org/10.1021/acsami.8b21027
http://doi.org/10.1080/10717544.2017.1321060
http://doi.org/10.1002/chem.201905159
http://doi.org/10.3390/molecules24071427
http://doi.org/10.1016/j.ejmech.2016.03.034
http://doi.org/10.3109/10717544.2015.1028601
http://doi.org/10.1016/j.bmc.2010.03.081
http://doi.org/10.1016/j.ejmech.2017.02.056
http://doi.org/10.1016/j.jinorgbio.2020.111041
http://doi.org/10.1021/acsami.7b01056
http://doi.org/10.17179/excli2017-249
http://doi.org/10.1016/j.jconrel.2018.10.029


Molecules 2021, 26, 1591 22 of 24

41. Feni, L.; Parente, S.; Robert, C.; Gazzola, S.; Arosio, D.; Piarulli, U.; Neundorf, I. Kiss and Run: Promoting Effective and
Targeted Cellular Uptake of a Drug Delivery Vehicle Composed of an Integrin-Targeting Diketopiperazine Peptidomimetic and a
Cell-Penetrating Peptide. Bioconjug. Chem. 2019, 30, 2011–2022. [CrossRef]

42. Klein, A.; Haseloer, A.; Lützenburg, T.; Strache, J.P.; Neudörfl, J.; Neundorf, I. Building up Pt(II)-thiosemicarbazone-lysine-sC18
conjugates. ChemBioChem 2020, 22, 694–704. [CrossRef]

43. Feni, L.; Jütten, L.; Parente, S.; Piarulli, U.; Neundorf, I.; Diaz, D. Cell-penetrating peptides containing 2,5-diketopiperazine (DKP)
scaffolds as shuttles for anti-cancer drugs: Conformational studies and biological activity. Chem. Commun. 2020, 56, 5685–5688.
[CrossRef]

44. Deng, X.; Mai, R.; Zhang, C.; Yu, D.; Ren, Y.; Li, G.; Cheng, B.; Li, L.; Yu, Z.; Chen, J. Discovery of Novel Cell-penetrating and
Tumor-targeting Peptide-Drug Conjugate (PDC) for Programmable Delivery of Paclitaxel and Cancer Treatment. Eur. J. Med.
Chem. 2020, 213, 113050. [CrossRef]

45. Lyu, L.; Huang, L.; Huang, T.; Xiang, W.; Yuan, J.-D.; Zhang, C. Cell-penetrating peptide conjugates of gambogic acid enhance the
antitumor effect on human bladder cancer EJ cells through ROS-mediated apoptosis. Drug Des. Devel. Ther. 2018, 12, 743–756.
[CrossRef]

46. Yao, J.; Ma, Y.; Zhang, W.; Li, L.; Zhang, Y.; Zhang, L.; Liu, H.; Ni, J.; Wang, R. Design of new acid-activated cellpenetrating
peptides for tumor drug delivery. PeerJ 2017, 5, e3429. [CrossRef]

47. Carvalho, C.; Santos, R.; Cardoso, S.; Correia, S.; Oliveira, P.; Santos, M.; Moreira, P. Doxorubicin: The Good, the Bad and the
Ugly Effect. Curr. Med. Chem. 2009, 16, 3267–3285. [CrossRef]

48. Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant Antitumor Agents. I. The Isolation and Structure
of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 1966, 88,
3888–3890.

49. Liu, L.F.; Desai, S.D.; Li, T.K.; Mao, Y.; Sun, M.; Sim, S.P. Mechanism of action of camptothecin. In Proceedings of the Annals of
the New York Academy of Sciences; New York Academy of Sciences: New York, NY, USA, 2000; Volume 922, pp. 1–10.

50. Zeng, H.; Chen, Z.S.; Belinsky, M.G.; Rea, P.A.; Kruh, G.D. Transport of methotrexate (MTX) and folates by multidrug resistance
protein (MRP) 3 and MRP1: Effect of polyglutamylation on MTX transport. Cancer Res. 2001, 61, 7225–7232.

51. Jolivet, J.; Chabner, B.A. Intracellular pharmacokinetics of methotrexate polyglutamates in human breast cancer cells. Selective re-
tention and less dissociable binding of 4-NH2-10-CH3-pteroylglutamate4 and 4-NH2-10-CH3-pteroylglutamate5 to dihydrofolate
reductase. J. Clin. Investig. 1983, 72, 773–778. [CrossRef]

52. Ruan, H.; Hao, S.; Young, P.; Zhang, H. Targeting cathepsin B for cancer therapies. In Horizons in Cancer Research; Nova Science
Publishers, Inc.: Philadelphia, PA, USA, 2015; Volume 56, pp. 23–39, ISBN 9781634822480.

53. Marshall, G.R.; Hodgkin, E.E.; Langs, D.A.; Smith, G.D.; Zabrocki, J.; Leplawy, M.T. Factors governing helical preference of
peptides containing multiple α,α-dialkyl amino acids. Proc. Natl. Acad. Sci. USA 1990, 87, 487–491. [CrossRef]

54. Conlon, J.M.; Al-Kharrge, R.; Ahmed, E.; Raza, H.; Galadari, S.; Condamine, E. Effect of aminoisobutyric acid (Aib) substitutions
on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa. Peptides 2007, 28, 2075–2080. [CrossRef]

55. Basu, G.; Kuki, A. Conformational preferences of oligopeptides rich in?-aminoisobutyric acid. II. A model for the 310/?-helix
transition with composition and sequence sensitivity. Biopolymers 1992, 32, 61–71. [CrossRef]

56. Jean, S.R.; Ahmed, M.; Lei, E.K.; Wisnovsky, S.P.; Kelley, S.O. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to
Mitochondria. Acc. Chem. Res. 2016, 49, 1893–1902. [CrossRef]

57. Kazak, L.; Reyes, A.; Holt, I.J. Minimizing the damage: Repair pathways keep mitochondrial DNA intact. Nat. Rev. Mol. Cell Biol.
2012, 13, 659–671. [CrossRef]

58. Lee, M.H.; Yang, Z.; Lim, C.W.; Lee, Y.H.; Dongbang, S.; Kang, C.; Kim, J.S. Disulfide-cleavage-triggered chemosensors and their
biological applications. Chem. Rev. 2013, 113, 5071–5109.

59. Ouellette, R.J.; Rawn, J.D. Carboxylic Acid Derivatives. In Organic Chemistry; Elsevier: Amsterdam, The Netherlands, 2018;
pp. 665–710.

60. Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy–An update from drug design perspective. Drug Des.
Devel. Ther. 2017, 11, 599–616.

61. Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature
1969, 222, 385–386.

62. Jungwirth, U.; Kowol, C.R.; Keppler, B.K.; Hartinger, C.G.; Berger, W.; Heffeter, P. Anticancer activity of metal complexes:
Involvement of redox processes. Antioxid. Redox Signal. 2011, 15, 1085–1127. [CrossRef]

63. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584.
64. Neundorf, I. Metal Complex-Peptide Conjugates: How to Modulate Bioactivity of Metal-Containing Compounds by the

Attachment to Peptides. Curr. Med. Chem. 2017, 24, 1853–1861. [CrossRef]
65. Brunner, J.; Barton, J.K. Targeting DNA Mismatches with Rhodium Intercalators Functionalized with a Cell-Penetrating Peptide.

Biochemistry 2006, 45, 12295–12302. [CrossRef]
66. Mahon, K.P.; Potocky, T.B.; Blair, D.; Roy, M.D.; Stewart, K.M.; Chiles, T.C.; Kelley, S.O. Deconvolution of the Cellular Oxidative

Stress Response with Organelle-Specific Peptide Conjugates. Chem. Biol. 2007, 14, 923–930. [CrossRef]
67. Gross, A.; Alborzinia, H.; Piantavigna, S.; Martin, L.L.; Wölfl, S.; Metzler-Nolte, N. Vesicular disruption of lysosomal targeting

organometallic polyarginine bioconjugates. Metallomics 2015, 7, 371–384. [CrossRef]

http://doi.org/10.1021/acs.bioconjchem.9b00292
http://doi.org/10.1002/cbic.202000564
http://doi.org/10.1039/d0cc01490g
http://doi.org/10.1016/j.ejmech.2020.113050
http://doi.org/10.2147/DDDT.S161821
http://doi.org/10.7717/peerj.3429
http://doi.org/10.2174/092986709788803312
http://doi.org/10.1172/JCI111048
http://doi.org/10.1073/pnas.87.1.487
http://doi.org/10.1016/j.peptides.2007.07.023
http://doi.org/10.1002/bip.360320109
http://doi.org/10.1021/acs.accounts.6b00277
http://doi.org/10.1038/nrm3439
http://doi.org/10.1089/ars.2010.3663
http://doi.org/10.2174/0929867324666170505112836
http://doi.org/10.1021/bi061198o
http://doi.org/10.1016/j.chembiol.2007.07.011
http://doi.org/10.1039/c4mt00255e


Molecules 2021, 26, 1591 23 of 24

68. Albada, B.; Metzler-Nolte, N. Organometallic–Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. Chem. Rev.
2016, 116, 11797–11839. [CrossRef]

69. Battistin, F.; Siegmund, D.; Balducci, G.; Alessio, E.; Metzler-Nolte, N. Ru(ii)-Peptide bioconjugates with the cppH linker (cppH =
2-(2′-pyridyl)pyrimidine-4-carboxylic acid): Synthesis, structural characterization, and different stereochemical features between
organic and aqueous solvents. Dalt. Trans. 2019, 48, 400–414. [CrossRef]

70. Slootweg, J.C.; Albada, H.B.; Siegmund, D.; Metzler-Nolte, N. Efficient reagent-saving method for the N-terminal labeling of
bioactive peptides with organometallic carboxylic acids by solid-phase synthesis. Organometallics 2016, 35, 3192–3196. [CrossRef]

71. Slootweg, J.C.; Prochnow, P.; Bobersky, S.; Bandow, J.E.; Metzler-Nolte, N. Exploring Structure-Activity Relationships in Synthetic
Antimicrobial Peptides (synAMPs) by a Ferrocene Scan. Eur. J. Inorg. Chem. 2017, 2017, 360–367. [CrossRef]

72. Albada, B.; Metzler-Nolte, N. Highly Potent Antibacterial Organometallic Peptide Conjugates. Acc. Chem. Res. 2017, 50, 2510–2518.
[CrossRef]
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