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Abstract

Background and Objectives: Immune thrombotic thrombocytopenic purpura (iTTP) is a 

rare, but potentially fatal blood disease, resulting from autoantibodies against A Disintegrin 

and Metalloprotease with ThromboSpondin Type 1 Repeats, 13 (ADAMTS13). While major 

progress has been made in past decades concerning early diagnosis and management of iTTP, the 

mechanisms underlying the formation and the mechanism of action of these autoantibodies against 

ADMATS13 are still unknown. This review will provide a narrative review of pathogenesis and 

novel therapeutics of iTTP.

Methods: We did PubMed literature search using a combination of thrombotic thrombocytopenic 

purpura and treatment or pathogenesis from 1955 to November 2022. A total of 4,767 articles with 

full text were found and only relevant articles in English were further reviewed and summarized.

Key Content and Findings: We found that the primary mechanism underlying severe 

ADAMTS13 deficiency in patients with iTTP is autoantibody-mediated inhibition and/or 

accelerated clearance of ADAMTS13 metalloprotease. Other factors including allosteric 

regulation and post-translational modifications (i.e., glycosylation and citrullination, and arginine 

methylation, etc.) may affect ADAMTS13 secretion and function and also contribute to the 

pathogenesis of iTTP. The standard of care for iTTP today consists of therapeutic plasma 

exchange, anti-von Willebrand factor (vWF) caplacizumab, and immunosuppressives (e.g., 
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corticosteroids and rituximab), known as the triple therapy, which has significantly reduced 

exacerbation and mortality rates.

Conclusions: We hope that the information provided in the review article helps better 

understand the pathogenesis of iTTP, which may guide design novel and more effective 

therapeutics for this potentially fatal disorder.
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Introduction

Immune thrombotic thrombocytopenic purpura (iTTP) is a rare, but potentially fatal blood 

disorder. It is caused by severe deficiency of a plasma metalloenzyme A Disintegrin 

And Metalloprotease with ThromboSpondin Type 1 Repeats, 13 (ADAMTS13) activity 

(1–3). The incidence of iTTP ranges from 3–6 cases per million residents per year 

(4,5). Immunoglobulin (Ig) G-type autoantibodies bind and inhibit plasma ADAMTS13 

activity; additionally, immune complexes may be cleared from circulation resulting in 

significantly reduced ADAMTS13 protein in some cases (6–9). The severe deficiency of 

plasma ADAMTS13 activity renders an inability to cleave newly released ultra-large (UL) 

von Willebrand factor (vWF) multimers which are anchored on endothelial surface (10–

13) and circulating in blood (14–17). This results in an enhanced platelet adhesion and 

aggregation, and the formation of occlusive thrombi in small arterioles and capillaries, 

leading to systemic organ damage and even death (18,19). Following acute episode, patients 

may experience disease relapses (20,21), cognitive decline, depression (22), and increased 

risk of cardiovascular diseases (23,24), etc., as part of long-term complications.

While the mechanism underlying the autoimmunity resulting in the formation of 

ADAMTS13 antibodies is still not known, limited data available to date have demonstrated 

that polyclonal IgG autoantibodies appear to bind multiple domains of ADAMTS13 

with the cysteine-rich and spacer domains being the most frequent targets of all (25). 

Current treatment of iTTP includes therapeutic plasma exchange (TPE), caplacizumab, and 

immunosuppressives (such as rituximab, corticosteroids, or other regimens) (26,27). This 

triple therapy has significantly reduced the exacerbation, relapse, and in-hospital mortality 

of iTTP (28–31). The present review summarizes some of these progresses concerning the 

pathogenesis and novel therapeutics of iTTP. We present this article in accordance with the 

Narrative Review reporting checklist (available at https://aob.amegroups.com/article/view/

10.21037/aob-22-29/rc).

Methods

We conducted PubMed literature search using a combination of keywords thrombotic 

thrombocytopenic purpura and novel therapeutics or treatment from 1955 to November 

2022. Of 4,767 articles published with full text, only small number of articles in English 
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related to the topic were selected for further review and citation in this narrative review 

article (Table 1 and Figure 1).

Discussion

Pathophysiology

The pathophysiology of iTTP has been extensively studied since the identification and 

molecular cloning of ADAMTS13 (1,32–34) and the development of several rapid 

ADAMTS13 activity assays (35–39). The International Society of Thrombosis and 

Haemostasis (ISTH) guidelines for the diagnosis and management of TTP state that in a 

proper clinical context plasma ADAMTS13 activity less than 10 units/dL (or <10 percent of 

normal) (40) confirms the diagnosis of TTP; ADAMTS13 activity greater than 20 units/dL 

(or 20 percent of normal) essentially rules out the initial diagnosis of TTP; however, plasma 

ADAMTS13 activity between 10 and 20 units/dL or (10–20 percent of normal) is considered 

to be a broadline value (5,27).

The only known function of ADAMTS13 is to cleave newly releases UL-vWF multimers 

anchored on endothelial cells. This proteolytic cleavage is essential for normal hemostasis 

(Figure 2A) (11–13). ADAMTS13 may also cleave vWF multimers at the sites of vascular 

injury. This prevents the formation of occlusive thrombi but without affecting normal 

hemostasis (41–43). Furthermore, ADAMTS13 may cleave circulating vWF multimers 

when exposed to high fluidic shear, such as in the bifurcated or narrowed portions of blood 

vessels (44–46). If plasma ADAMTS13 protease is severely deficient, primarily resulting 

from autoantibodies-mediated inhibition or accelerated clearance of ADAMTS13, the UL-

vWF multimers or strings accumulate on the endothelial surface (Figure 2B) or at the sites 

of vascular injury, which recruit flowing platelets and form occlusive thrombi.

While severe deficiency of plasma ADAMTS13 activity may be necessary, it alone may not 

be sufficient to cause an acute episode of iTTP. Additional environmental or genetic factors 

may be required to trigger the disease. Infections (e.g., respiratory, or gastrointestinal), 

systemic inflammation (e.g., lupus), pregnancy (or postpartum), surgery (or trauma), and 

certain medications were often found to be associated with acute iTTP. The reason why 

a second hit is needed for a full-brown iTTP is not fully understood. It may be possible 

that a small amount of residual ADAMTS13 activity and/or other proteases such as 

neutrophil proteases (47) and plasmin (48) are sufficient to remove the UL-vWF strings 

from endothelial surface or at the sites of vascular injury at the basal levels. This proteolytic 

capacity may be overwhelmed when a large amount of vWF is secreted from endothelium as 

a result of an infection such as in the case of severe acute respiratory syndrome coronavirus 

2 (SARS-CoV2) infection (49–52) or trauma (53,54). Interestingly, in Baboon (55) or in 

some new born children (or neonates) (46,50,51,53,54,56), severe deficiency of plasma 

ADAMTS13 activity appears to be sufficient to cause an acute TTP, suggesting another 

potential genetic factor that might modify the susceptibility of TTP in these baboon or 

neonates.

Supporting this hypothesis comes from mutations in complement factor H (CFH) found in 

patients with hereditary TTP (57) or iTTP (8). A heterozygous or homozygous mutation 
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in cfh and Adamts13 deficiency appear to play a synergistic role in causing thrombotic 

microangiopathy in mice, but either alone is not sufficient to cause a disease (6,58). In 

fact, elevated plasma levels of complement activation markers are commonly detected in 

patients with acute iTTP (7,9,59–63). Whether an inhibition of complement activation 

during acute iTTP would be therapeutically beneficial is yet to be determined. Anecdote 

case reports demonstrate the therapeutic efficacy of adding eculizumab to chronic relapsing 

iTTP (64,65).

Autoantibodies against ADAMTS13

Almost all adult iTTP patients are caused by IgG autoantibodies against ADAMTS13 

(40,66), although the risk factors and underlying mechanism for the development of 

autoantibodies are not clear. Studies have shown that iTTP appears to be more common 

in young females, particularly African descents (67). The polyclonal anti-ADAMTS13 IgGs 

bind various domains of ADAMTS13 with the cysteine-rich and spacer domains being 

the most frequent targets. Additionally, approximately one third of patients may have IgG 

autoantibodies that bind other parts of ADAMTS13 protease. To date, there are a number 

of mouse and human monoclonal antibodies being developed or identified (Figure 3A). 

These are critical reagents for investigating the structure-function relationship and allosteric 

regulation of ADAMTS13 function.

Most inhibitory antibodies appear to bind the spacer domain (68–71) although the 

mechanism of inhibition remains to be elucidated. Hydrogen-deuterium exchange plus 

mass spectrometric (HX-MS) analysis demonstrates that the anti-spacer domain antibodies, 

isolated from iTTP patients, bind 5 small flexible loops where vWF binds, suggesting that 

these antibodies may physically block the interaction between ADAMTS13 enzyme and 

its substrate vWF (69). An alternative hypothesis is also possible in which the binding 

of these antibodies to the spacer domain may result in a conformational change in the 

catalytic domain, thus affecting the cleavage efficiency of ADAMTS13 protease (72,73). 

More studies are needed to delineate the mechanism of antibody-mediated inhibition of 

ADAMTS13 activity.

Unlike anti-spacer antibody, the antibodies that bind the distal domains of ADAMTS13 

such as T8-CUB (e.g., scFv4-3) or CUB (e.g., 17G2, 7H12 and 12H6) may induce 

conformational changes in ADAMTS13 (72,74,75), thus activating ADAMTS13 enzyme. 

However, how these polyclonal antibodies interact with ADAMTS13 resulting in inhibition 

of ADAMTS13 activity and/or accelerated clearance in vivo remains to be a subject of great 

interest for researchers.

Posttranslational modifications of ADAMTS13

Apart from vWF and antibodies targeting the C-terminal domains that activate 

ADAMTS13, post-translational modifications on ADAMTS13 protein may also impact 

its secretion and functions. ADAMTS13 may be modified at posttranslational levels by 

oxidation, glycosylation, citrullination, fucosylation or mannosylation (76–80), and possible 

methylation (Figure 3B). Glycosylation is a process by which a carbohydrate is covalently 

attached to the target protein. Glycosylation plays a variety of critical roles in many cellular 
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events ranging from protein secretion, signaling, and protein-protein interaction (77,80,81). 

Changes in glycosylation can modulate inflammatory responses, enable viral immune 

escape, promote cancer cell progression or regulate cell death (82–84). N-glycosylation 

on ADAMTS13 has been shown to alter its secretion, conformation, and proteolytic activity 

(77,80). For instance, N146Q and N828Q mutants of ADAMTS13 exhibit a decreased 

secretion and proteolytic activity (77). It is also known that the loss of N-glycan in the 

T2-CUB region of ADAMTS13 where the molecular flexibility exists results in alteration 

of ADAMTS13 conformations (85). Citrullination may occur on arginine residues, which 

are converted to the citrullinated residues. This may impact ADAMTS13 protein structure, 

function, stability, and protein-protein interactions resulting from the loss of positive charges 

in the arginine residues. The citrullination process is catalyzed by an enzyme, peptidyl 

arginine deiminase-4 (PAD4) (80,83,84,86). Citrullination process is involved in pathology 

of many autoimmune disorders including rheumatoid arthritis and multiple sclerosis and 

other thrombo-inflammatory disorders such as sepsis and venous thrombosis (79,87,88). 

A recent study has demonstrated that ADAMTS13 can be citrullinated by PAD4 in vitro 
and in vivo (88). Mass spectrometry localized the citrullinated residues to arginine 190 

and arginine 636 on ADAMTS13, which is within the metalloprotease and spacer domain, 

respectively. The citrullinated ADAMTS13 exhibits a reduced proteolytic activity towards 

vWF substrates (88).

Methylation is another post-translational modification that may occur on arginine residues of 

ADAMTS13. This process is often catalyzed by protein arginine methylation transferase-1 

(PRMT1), which catalyzes the transfer of a methyl group from a co-substrate S-adenosyl-

L-methionine (SAM) to the guanidine nitrogen of a peptidyl arginine residue. PRMT1 

performs over 80% of methylation activity in cells (89). Using MeMo and PRmePRed 

web tool (90,91), we estimate approximately 35 asymmetric dimethylated arginines and 

35 mono-methylated arginines on ADAMTS13. Whether one or several arginines on 

ADAMTS13 are methylated and how this posttranslational modification affects ADAMTS13 

secretion and proteolytic function are under intense investigation in our laboratory.

Novel therapeutics

ISTH published the first guidelines for the diagnosis and management of iTTP (5,27). 

When a patient with highly suspected or confirmed iTTP based on clinical presentation 

(e.g., severe thrombocytopenia, microangiopathic hemolytic anemia and organ injury) or 

ADAMTS13 activity less than 10 units/dL, a combination of TPE, caplacizumab, and 

immunosuppressive (e.g., corticosteroids, rituximab, etc.), known as the triple therapy, 

should be given as early as possible (5,27,92). Such a therapeutic modality has been 

shown to significantly reduce the exacerbation and in-hospital mortality (29,93–95). As 

soon as the clinical diagnosis is made, emergent TPE should be initiated, followed by early 

caplacizumab and corticosteroids.

TPE is presumably removes IgG autoantibodies against ADAMTS13 (92) and damage-

associated molecular patterns (DAMPs) such as S100A8/9 (96) and histone-DNA complexes 

(96) while replenishing the deficient ADAMTS13 enzyme (Figure 4A). Longitudinal study 

demonstrated that TPE alone is not sufficient to remove all antibodies and supply sufficient 
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amount of ADAMTS13 to overcome the inhibition, particularly in those with high-titer 

inhibitors (92).

Caplacizumab, an anti-vWF nanobody, that binds vWF-A1 domain and inhibits the 

adhesion of platelets to UL-vWF, thus inhibiting thrombus formation (97,98) (Figure 

4B). This prevents further tissue damage while plasma ADAMTS13 activity remains low 

and inhibitors are present. Despite of daily plasma exchange and early administration of 

rituximab, it may take weeks, if not months, to eliminate anti-ADAMTS13 IgG production 

(99,100).

Rituximab, an anti-CD20 monoclonal antibody, should be prescribed to patients as early 

as possible to halt the production of anti-ADAMTS13 autoantibodies (Figure 4C), which 

accelerates the recovery of ADAMTS13 and prevents exacerbation and relapses (101–103).

Other emergent therapeutic products, including recombinant ADAMTS13 (104–106), 

gain-of-functional (GoF) and antibody-resistant ADAMTS13 variants (107), and platelet-

delivered ADAMTS13 (43,108), are all under development. All these approaches are 

expected to overcome or bypass the inhibitory antibodies against ADAMTS13 in patients 

with iTTP. The first in human trial for hereditary TTP has been completed and reported 

(104). An infusion of recombinant ADAMTS13 at 5, 20, and 40 IU/kg body weight 

resulted in a dose-dependent increase of plasma ADAMTS13 activity and an increase of 

platelet counts from the baseline. No significant adverse events were observed. A similar 

trial of recombinant ADAMTS13 for the treatment of acquired iTTP in conjunction with 

TPE and other immunosuppressive therapies has been closed but data are not published 

(NCT03922308). These well-designed clinical trials hope to demonstrate pharmacokinetics, 

therapeutic efficacy, and safety of these potential treatments for both hereditary TTP 

and iTTP. GoF-ADAMTS13 variants have been created and shown to have an increased 

specific activity and significant resistance to autoantibody-mediated inhibition, which may 

be explored for therapeutic purpose (107,109). Alternative strategy to avoid autoantibody-

mediated inhibition of recombinant ADAMTS13 is to pack recombinant ADAMTS13 inside 

platelet α-granules through genetic engineering (43) or in vitro uptake (108). In this case, 

autoantibody does not have a chance to interact with recombinant ADAMTS13 inside 

platelets. Upon activation, platelets release recombinant ADAMTS13 at the site where 

proteolysis of UL-vWF is most needed (43,108).

Conclusions

In summary, tremendous progresses have been made in past decades in our understandings 

of pathogenesis, diagnosis, and management of iTTP. However, the mechanisms underlying 

anti-ADAMTS13 autoantibody production and inhibition remain to be elucidated. 

Additionally, the mechanisms of allosteric or posttranslational regulations of ADAMTS13 

activity continue to be the hot areas for future investigation in the field. Triple 

therapy including TPE, caplacizumab, and immunosuppression has significantly reduced 

exacerbation and mortality. However, the long-term effects of this novel therapeutic strategy 

on cardiovascular complications, neurocognitive and behavioral changes, and quality of life 

are still not known.
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Figure 1. 
The number of articles published in TTP pathogenesis and treatment over the years since 

1955. TTP, thrombotic thrombocytopenic purpura.
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Figure 2. 
Mechanism of ADAMTS13 action in normal and iTTP. (A) Under normal conditions, 

UL-vWF multimers are released from activated or injured endothelial cells where they are 

rapidly cleaved by ADAMTS13 at the central A2 domain (Tyr1605-Met1606). This results 

in the formation of smaller vWF multimers that are hemostatic but not thrombogenic. 

(B) In iTTP, a functional ADAMTS13 is inhibited by an autoantibody, resulting in 

acquired deficiency of plasma ADAMTS13 activity. This leads to an accumulation of 

UL-vWF multimers on endothelial surface or at the site of vascular injury. The UL-vWF 

multimers attract circulating platelets and result in the formation of occlusive thrombi 

in small arterioles and capillaries. iTTP, immune thrombotic thrombocytopenic purpura; 
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Ab, antibody; ADAMTS13, ADAM metallopeptidase with thrombospondin type 1 motif 

13; Cys, cysteine-rich; Dis, disintegrin-like; MP, metalloprotease; UL-vWF, ultra-large von 

Willebrand factor.
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Figure 3. 
Anti-ADAMTS13 antibodies and potential post-translational modifications on ADAMTS13. 

(A) ADAMTS13 protein consists of 14 different domains: MP, Dis, 8 thrombospondin 

type 1 repeats (T1-T8), Cys, and spacer. The more distal domains contain two CUB 

domains (i.e., C1r/C1s and Uegf, Bmp1). Potential binding epitopes of mouse monoclonal 

antibodies against human recombinant ADAMTS13 (top) and human monoclonal antibodies 

isolated from patients with iTTP (bottom); (B) known or potential sites for post-translational 

modifications with oxidation (♦), arginine citrullination (●), and N-glycosylation (▼), 

etc. Ab, antibody; ADAMTS13, ADAM metallopeptidase with thrombospondin type 1 
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motif 13; Arg, arginine; Cys, cysteine-rich; Dis, disintegrin-like; Met, methionine; MP, 

metalloprotease.
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Figure 4. 
Therapeutic approaches for iTTP. (A) TPE removes autoantibodies against ADAMTS13 

and other potential DAMPs while replenishing ADAMTS13 enzyme. (B) Anti-vWF 

nanobody inhibits thrombosis at sites of vascular injury. A mature vWF monomer (~250 

kDa) is synthesized with domains in the order D′-D3-A1-A2-A3-D4-C1-C2-C3-C4-C5-

C6-CK. Under high shear conditions, surface protein GP1b and GPIIb/IIIa on platelet 

separately interact to A2 domain and C1 domain of vWF that cause thrombus formation. 

Caplacizumab inhibits platelet-vWF interaction by binding to A1 domain of vWF, thus 

impeding platelet adhesion and thrombus formation. (C) Two monoclonal antibodies, 

rituximab and belimumab are the potential immunosuppressives for iTTP treatment. The 
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main strategy aims to inhibit anti-ADAMTS13 autoantibodies production, thus accelerating 

disease recovery and preventing relapses. Belimumab directly blocks the B-lymphocyte 

stimulator which is secreted by myeloid cells to support B cells differentiation into plasma 

cells. Rituximab causes apoptosis of B cells by targeting CD20, thus inhibiting antibody 

production. ADAMTS13, ADAM metallopeptidase with thrombospondin type 1 motif 13; 

Arg, arginine; Cys, cysteine-rich; DAMPs, damage-associated molecular patterns; Dis, 

disintegrin-like; iTTP, immune thrombotic thrombocytopenic purpura; MP, metalloprotease; 

TPE, therapeutic plasma exchange; vWF, von Willebrand factor.
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