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ABSTRACT

In 2003, we developed an ab initio program, ZCURVE
1.0, to find genes in bacterial and archaeal genomes.
In this work, we present the updated version (i.e.
ZCURVE 3.0). Using 422 prokaryotic genomes, the
average accuracy was 93.7% with the updated ver-
sion, compared with 88.7% with the original version.
Such results also demonstrate that ZCURVE 3.0 is
comparable with Glimmer 3.02 and may provide com-
plementary predictions to it. In fact, the joint appli-
cation of the two programs generated better results
by correctly finding more annotated genes while
also containing fewer false-positive predictions. As
the exclusive function, ZCURVE 3.0 contains one
post-processing program that can identify essential
genes with high accuracy (generally >90%). We hope
ZCURVE 3.0 will receive wide use with the web-based
running mode. The updated ZCURVE can be freely
accessed from http://cefg.uestc.edu.cn/zcurve/ or
http://tubic.tju.edu.cn/zcurveb/ without any restric-
tions.

INTRODUCTION

Proteins perform many functions in organisms, and they are
fundamental for every cell. Protein-coding genes are rec-
ognized in sequenced genomes by three methods (1). First,
the experimental transcription track may be the most spe-
cific method with the fewest false-positive results. However,

this method is only applicable to constitutively expressed
(housekeeping) genes and those expressed at the investi-
gated experimental stage. In comparison, genes that are ex-
pressed in limited conditions will be missed by this method.
Similarly, a search using basic local alignment search tool
(BLAST) is another effective method to recognize genes.
Homologs of known genes in public databases could be
selected using this method. However, strain-specific genes
would be missed, and there may be a large problem when
sequenced strains do not have any close relatives in public
databases. Finally, composition-based ab initio constitutes
the most commonly used method (2). With more and more
genomes being sequenced, this method increasingly plays
an important role in the field of gene annotation.

In 2003, we published an ab initio gene-calling program
named ZCURVE 1.0 (3), which can be used independently
or jointly with other programs to annotate bacterial and ar-
chaeal genomes; this program is based on the Z-curve the-
ory of DNA sequence (4). So far, ZCURVE 1.0 has over
100 registered users and has been used in dozens of genome-
sequencing projects of prokaryotes (5). The original publi-
cation describing ZCURVE 1.0 has attracted 170 citations
in the past 12 years according to Google scholar. For ex-
ample, in their very excellent work, Egan and colleagues
used ZCURVE 1.0 to predict coding potentials to support
their functional analysis (6). In this work, we updated the
ZCURVE program to version 3.0 through extending its
function by appending a new module and improving the ac-
curacy by modifying the algorithm.
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MATERIALS AND METHODS

ZCURVE algorithm improvement

Compared with ZCURVE 1.0, ZCURVE 3.0 has been im-
proved in the following four aspects. First, in the origi-
nal version, we only considered the frequencies of codon-
position-dependent single nucleotides and the frequencies
of phase-specific dinucleotides occurring at the codon posi-
tions 1–2 and 2–3 and transformed them into the Z format
(4 × 3 × 3/4 + 42 × 2 × 3/4 = 9 + 24 = 33 variables). To
extract more information and achieve higher accuracy, cur-
rently we further consider the short-term correlation among
three or four adjacent nucleotides. That is to say, frequen-
cies of 192 (43 × 3) phase-specific trinucleotides are trans-
formed into 144 (192 × 3/4) Z variables and frequencies of
768 (44 × 3) phase-specific tetranucleotides are transformed
into 576 (768 × 3/4) Z variables. In addition, the frequen-
cies of phase-specific dinucleotides occurring at the codon
positions 3–1 are also taken into account and there will be
36 (42 × 3 × 3/4) corresponding variables for dinucleotides.
Hence, the number of characteristic variables changed from
33 to 765 (9 + 36 + 144 + 576) in ZCURVE 3.0. The Z trans-
formation is responsible to change the four nucleotides into
three distributions of purine versus pyrimidine, amino ver-
sus keto, and weak hydrogen bonds versus strong hydrogen
bonds. If you want to learn more details and see the math-
ematical formula about the transformation, please refer to
(7).

Second, the Fisher linear discriminant was used as the
classifier to differentiate genes and non-coding ORFs. In
ZCURVE 3.0, instead the most widely used machine learn-
ing algorithm, support vector machine is employed, which
has shown excellent performance in many classifying prob-
lems, particularly when both the positive and negative sam-
ple groups have a balanced size. In our program, the SVM-
light toolbox is used and it could be freely available at http:
//svmlight.joachims.org/ (8). Among the four provided ker-
nel functions, linear kernel is chosen because of the larger
number of variables. For all the other parameters, their de-
fault settings are used.

Third, as a newly added function, ZCURVE 3.0 has the
capacity to select the most important subset-essential genes
from the complete list of genes in a certain genome. Essen-
tial genes are critical for the survival of an organism under
any condition, and they play a significant role in pharma-
ceutics and synthetic biology (9). Usually, essential genes
are experimentally determined in optimal growth condition.
Because of the high cost and huge amount of labor required
to determine essential genes by wet experiments, researchers
recognized that computational prediction may be an easy
and feasible method (10). Furthermore, experimental re-
sults may bias to some extent because there may be contro-
versy among groups in deciding what are the most favorable
growing conditions (10). Our research group developed an
automatic program to predict essential genes in prokaryotic
genomes (11). Geptop combines results of comparative ge-
nomics from diverse reference sets by weighting them with
evolutionary distances (11). Through the weighting integra-
tion, it achieves significantly higher accuracy than previous
algorithms for predicting prokaryotic essential genes (12).

Tests using 19 prokaryotes show that the area under op-
eration character curve (AUC) ranged from 0.569 to 0.978
(please refer to Figure 5 of (11) for the details). The AUC
is as high as 97.8% and 95.2% in the two most thoroughly
investigated model genomes, Escherichia coli MG1655 and
Bacillus subtilis 168, which have the most accurate genome-
scale experimental essentiality data. The Geptop program
(11) is embedded within the ZCURVE 3.0 package as a
post-processing tool. Currently, ZCURVE is the only avail-
able program that can automatically select essential genes
from predicted gene list.

Fourth, the old version of our program is a standalone
tool that needed to be downloaded from the Tubic website.
To facilitate its use, we have provided a web-based running
mode for the latest version. Users can freely and easily use
the program by visiting either of our two websites, Tubic or
Cefg.

Like the old version, ZCURVE 3.0 uses the subpro-
gram GS-finder to assign translation start sites for predicted
genes. It has rather reliable predictions of translation start
sites and correctly assigned 90% of 5′ termini in experimen-
tal sets from E. coli and B. subtilis (13). A recent review
(14) indicated that GS-finder could generate better results
than RBS-finder, which is used by Glimmer. Alternatively,
the users could deal with the 5′ terminus of the ZCURVE
results using some other post-processing tools such as Tri-
TISA (15).

Input and output of ZCURVE 3.0 web service

For the input, we provide an example of the Portiera aley-
rodidarum TV (NC 020831) genome on our ZCURVE web
server, which has a very small genome size that enables
a quick loading time. When annotating one anonymous
genome, the users must prepare a standard FASTA se-
quence file as well as the example. Also, our server can
handle multiple FASTA-formatted sequences, which is es-
pecially useful when users submit contigs of a draft genome.
Our program can output four files by selecting each of the
four output options. One is the chromosomal coordinates
of all predicted genes. The second file includes DNA se-
quences of all genes in FASTA format. The third file corre-
sponds to amino acid sequences encoded by each predicted
gene. The last output file contains the essentiality of all pre-
dicted genes provided by our post-processing program Gep-
top. The essentiality score indicates the importance of the
gene function: the higher the essentiality score, the more
important the gene function. The first three files are out-
put immediately (usually within several seconds), whereas
the essentiality information needs over one hour to output.
Therefore, users must record the outputting link and view
the results two or three hours later. Figure 1 illustrates the
submission interface, option menu, and one example of the
output for the coding potential and essentiality prediction.

Indexes to evaluate the performance of ZCURVE 3.0

The performance of ZCURVE 3.0 in the prediction of cod-
ing potentials and essentiality was evaluated in this work.
To measure coding potentials prediction, we used the fol-
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Figure 1. Submission interface (left top panel), option menu (left bottom panel), and an example of output information (right panel) using the Portiera
aleyrodidarum genome.

lowing indexes:

Sensitivity (Sn) =
the number of correctly predicted genes in one genome

the number of all annotated genes in the genome
(1)

Pecision (PPV) =
the number of correctly predicted genes in the genome

the number of all predicted genes for the genome
(2)

Because negative samples could not be determined in a
test set that was used to evaluate coding potential, the pre-
cision index was adopted instead of the specificity index.
Hence, we define the accuracy index as follows:

Accuracy = Sn + PPV
2

(3)

We also defined the following index to denote the percent-
age of additional prediction:

Additional positive rate (APR) =
the number of additionally predicted genes

the number of annotated genes
(4)

Note that the prediction is better when the former three
indexes are higher. However, a low value is better for addi-
tional positive rate.

The numbers of essential genes and non-essential genes
are extremely imbalanced. For example, there are only 288
essential genes in the E. coli MG1655 genome; however, the
number of non-essential genes is as large as 3852. For this
special case, we primarily used the integrated index to eval-

uate the essentiality prediction of our program.

Overall accuracy (OA) =
the number of correctly predicted essential genes plus nonessential genes

the total number of both essential genes and nonessential genes
(5)

The commonly used indexes, sensitivity and specificity,
are also used as additional references.

Sn =
the number of correctly predicted essential genes

the number of all annotated essential genes for the genome
(6)

Sp = the number of correctively predicted nonessential genes
the number of all annotated nonessential genes for the genome

(7)

A gene would only be considered a correct prediction if
ZCURVE 3.0 not only found the gene but also correctly
decided its essentiality. Experimentally determined essen-
tial genes in optimal growing conditions were taken as the
benchmark of testing our program.

RESULTS AND DISCUSSION

The performance of ZCURVE 3.0 on 422 completely se-
quenced genomes

To evaluate the performance of ZCURVE 3.0 in the predic-
tion of coding potentials of prokaryotic genes, we selected
422 genomes that were sequenced before 2007 that did not
use the ZCURVE program in the annotating process so that
the genomes could be used as a strict test set. For these
genomes, we downloaded ‘*.fna’ and ‘*.ptt’ files from the
RefSeq site at the National Center for Biotechnology In-
formation (NCBI) (16). A gene could be considered a cor-
rect prediction only if the prediction and annotated gene
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had a consistent 3′ terminus. Results for each genome are
listed in Supplementary Table S1 and are summarized in
Table 1. As demonstrated, the sensitivity and precision of
ZCURVE 3.0 were 95.3% and 92.1%, respectively, whereas
those of ZCURVE 1.0 were 95.5% and 82.0%. This indicates
that our updated version has an accuracy (93.7%) that was
5% higher than that of the original version (88.7%). Con-
versely, Glimmer 3.02 (17), which is the most common ab
initio prokaryotic gene finder, has an accuracy of 93.0%.
In detail, Glimmer 3.0 has 1.0% higher sensitivity than
ZCURVE 3.0. However, the latter has 2.5% higher preci-
sion than the former. Therefore, we can safely conclude that
our program gives similar performance with Glimmer in the
identification of protein-coding genes. Note that the stan-
dard deviation of the accuracies for Glimmer 3.02 is 1.3%
higher than that of ZCURVE 3.0, indicating that ZCURVE
may have more robust results than Glimmer. In fact, Glim-
mer produced poor results for a few genomes, whereas
ZCURVE did not. For example, the sensitivity of Glimmer
3.02 was as low as 56.9% for the genome Anaeromyxobac-
ter dehalogenans (NC 007760), and the precision was only
62.4%. In contrast, ZCURVE 3.0 gave stable results for this
genome, with a sensitivity of 94.3% and precision of 95.7%.
As another example, the precision of Glimmer 3.02 was
only 44.8% for the Trichodesmium erythraeum (NC 008312)
genome, whereas ZCURVE yielded a precision of 87.2%;
both programs yielded a sensitivity of ∼94%.

We also used ZCURVE 3.0 to analyze 2787 bacterial
and archaeal genomes that were sequenced between the
year 2007 and 2013. Consequently, the average sensitivity
of ZCURVE 3.0 was 95.1%, and the precision was 92.6%
(Supplementary Table S2). The accuracy, which is the mean
value of the above two indexes, should be 93.9%. There-
fore, ZCURVE 3.0 gives stable results using large test sets.
Finally, the quality of the annotation for each of the 422
genomes differs because of the applied annotation strat-
egy. Therefore, the factual accuracy of both Glimmer and
ZCURVE might be higher than that reported here because
a few errors (particularly hypothetical genes) may exist in
the RefSeq annotation files for some genomes, which have
been used as the gold standard by us.

Joint application of ZCURVE 3.0 and Glimmer 3.02

We do not intend to replace the Glimmer system with our
ZCURVE program. Instead, we wish to provide an alter-
native solution for the issue of prokaryotic gene finding
and hope it could be complementary to Glimmer. In fact,
ZCURVE and Glimmer are based on different principles.
Glimmer is a Markov-chain–based method, which reflects
local statistical characteristics of coding sequences, whereas
ZCURVE is based mainly on global statistical characteris-
tics of coding sequences (3). Therefore, the two algorithms
are thought to be complementary. However, they would
provide basically consistent predictions for conserved genes
because they share the same aim. There may be a few differ-
ences between the predictions of species-specific genes. Note
that these genes compose only a small fraction of the gene
collective. Combining the two gene finders may generate im-
proved prediction to some extent. Here, we randomly chose
50 genomes for which ZCURVE 3.0 and Glimmer 3.02 pre-

dictions yielded similar accuracy to illustrate the results of
joint predictions. The combining strategy is detailed as fol-
lows. First, each program generated its output. There were
many consistent predictions between the results of the two
programs. These overlaps were directly retained as genes.
However, those specific predictions of either program were
retained only after performing a BLAST search (18) against
the non-redundant (nr) database at NCBI (19) and find-
ing hits in other species (Figure 2). As Figure 2 (a) illus-
trates, when we performed a BLAST search for the strain
Pyrococcus abyssi GE5 (NC 000868), we excluded the genus
Pyrococcus (taxid:2260) from the nr database. This logic
simulates the factual case when annotating an anonymous
genome because, in that case, the nr database will not con-
tain any genes from itself and relative species.

Supplementary Table S3 lists predicted results for the
joint application and for the two individual programs.
Among the 50 genomes, 33 combined applications had a
higher sensitivity than either ZCURVE or Glimmer inde-
pendently, whereas 44 had lower additional positive rate
than either program. When considering both indexes, 27
genomes had both an increased sensitivity and a decreased
additional positive rate. Such results indicate that, in most
cases, the joint prediction decreases the total gene number
but contains more true genes. On average, the sensitivity in-
creased 0.59% and 0.64% relative to ZCURVE and Glim-
mer, respectively. At the same time, the additional positive
rate decreased 1.3% and 3.0% relative to ZCURVE and
Glimmer, respectively. No predictions for any genome were
worse when the two indexes were combined. In total, the
joint application finds 740 and 724 more true genes than
ZCURVE and Glimmer, respectively, in the 50 genomes.
Furthermore, the false positive predictions decrease 2052
and 3954, respectively compared with the two single pro-
grams. Therefore, it is obvious that the joint application im-
proves the prediction by finding more genuine genes and si-
multaneously decreasing the false-positive predictions when
integrating results with the BLAST operation. However, the
single method will not reach this purpose even though when
integrating Blast operation. In fact, ZCURVE 3.0 could
also be jointly used with any other gene-finding programs
to improve the prediction result. On the basis of the above
analysis, we strongly suggest that annotating researchers use
multiple ab initio gene finders to minimize annotating er-
rors. Many researchers have adopted such tactics. For ex-
ample, in well-annotated genomes such as Tistrella mobilis
KA081020-065 (20), Amycolatopsis mediterranei U32 (21),
and five new strains of Staphylococcus aureus (22), the au-
thors used both ZCURVE and Glimmer. The pipeline illus-
trated in Figure 2(b) may be used as one way to combine
the two gene finders.

Performance of predicting essential genes
In previous assessments of Geptop, annotated genes were
used as the initial gene set (or input). Here, the set of pre-
dicted genes was taken as the initial set when it was inte-
grated as the newly added function of ZCURVE 3.0. To
evaluate the performance of the integrated program, seven
bacteria were used in which genome-wide essentiality was
determined after the publishing date of Geptop. As Table 2
(left columns) shows, the sensitivity ranged from 48.9% to
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Table 1. General prediction results of three programs with 422 prokaryotic genomes

Sn: mean (SD) PPV: mean (SD) Accuracy: mean (SD)

ZCURVE 3.0 0.9525 (0.03253) 0.9212 (0.06026) 0.9368 (0.03563)
ZCURVE 1.0 0.9549 (0.05742) 0.8195 (0.1154) 0.8872 (0.07218)
Glimmer 3.02 0.9625 (0.03452) 0.8965 (0.08235) 0.9295 (0.04783)

Sn, sensitivity; PPV, precision; SD, standard deviation.

Figure 2. Sketch of the procedure for the joint application of ZCURVE 3.0 and Glimmer 3.02. (A) A simulated example using the Pyrococcus abyssi GE5
genome. (B) Suggested pipeline when using a newly sequenced genome.

Table 2. Prediction results of essential genes in seven genomes

Organism name
Essential gene
number

Non-essential
gene number Sn Sp OA

Bacteroides thetaiotaomicron VPI-5482 325 4453 0.489 0.930 0.900
Burkholderia thailandensis E264 406 5226 0.623 0.907 0.887
Salmonella typhimurium SL1344 353 4093 0.790 0.929 0.918
Shewanella oneidensis MR-1 402 3663 0.689 0.960 0.933
Sphingomonas wittichii RW1 535 4344 0.385 0.946 0.884
Burkholderia pseudomallei K96243 505 5213 0.372 0.893 0.847
Bacteroides fragilis 638R 547 3703 0.395 0.950 0.879

Average 0.534 0.931 0.893

Sn, sensitivity; Sp, specificity; OA, overall accuracy.

79.0%, whereas the specificity was 89.3% to 95.0% when
Geptop was integrated into ZCURVE 3.0. The more re-
liable index, overall accuracy, which combines the effects
from positive and negative samples, had an average value
near 90%. Hence, our program could accurately predict es-
sentiality in bacteria. We retained a very high specificity
but significantly lower sensitivity because the number of
non-essential genes was so large that even a quite low er-
ror rate of negative samples may cause many false-positive
predictions; this result is not expected, particularly when
the task is related to drug target discovery. Note that these
seven genomes should be taken as independent tests be-
cause Geptop was developed two years ago and now it re-
mains the original version. There is another possible cause
of lower sensitivity in our prediction. Experimental results
may also own bias to some extent because of deviation
in optimal growing conditions or other factors. For exam-
ple, for the three genomes with the lowest AUC in previ-
ous work, protein–protein association feature analysis sug-
gested that our prediction may be not as bad as apparently

illustrated (11). To our knowledge, there are no other pro-
grams that have the ability to automatically predict essential
genes. In addition to dividing them into two types of genes,
essential and non-essential genes, our program can also give
the probability value for each gene being essential. This fea-
ture will be particularly useful for bacterial pathogens be-
cause new drug target genes against the pathogen may be
identified from the list of predicted essential genes or con-
ditional essential genes (23). A newly sequenced genome
can be annotated using ZCURVE 3.0 to find both protein-
coding genes and select essential genes.

CONCLUSION

We updated ZCURVE for ab initio gene finding in prokary-
otes. A higher accuracy was illustrated with the latest ver-
sion, and it can give close accuracy with the commonly used
program Glimmer 3.02. As the most prominent advantage,
ZCURVE 3.0 can automatically select essential genes from
the list of protein-coding genes, whereas none of the other
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ab initio gene-finding programs can provide such conve-
nience. We hope that this feature will assist with identifying
drug targets to select against pathogens. To facilitate its use,
we provided a web-based automatic service for ZCURVE
3.0. The users can use the web service to analyze genomes
without providing any user information.

AVAILABILITY

http://cefg.uestc.edu.cn/zcurve/ or http://tubic.tju.edu.cn/
zcurveb/.
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Supplementary Data are available at NAR Online.
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