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A B S T R A C T

HIV-1 envelope (Env)-based vaccines have so far largely failed to induce antibodies that prevent HIV-1 infection.
One factor proposed to limit the immunogenicity of cell-associated Env is its low level of expression on the cell
surface, restricting accessibility to antibodies. Using a vaccinia prime/protein boost protocol in mice, we ex-
plored the immunologic effects of mutations in the Env cytoplasmic tail (CT) that increased surface expression,
including partial truncation and ablation of a tyrosine-dependent endocytosis motif. After vaccinia primes, CT-
modified Envs induced up to 7-fold higher gp120-specific IgG, and after gp120 protein boosts, they elicited up to
16-fold greater Tier-1 HIV-1 neutralizing antibody titers, although results were variable between isolates. These
data indicate that the immunogenicity of HIV-1 Env in a prime/boost vaccine can be enhanced in a strain-
dependent manner by CT mutations that increase Env surface expression, thus highlighting the importance of the
prime in this vaccine format.

1. Introduction

The HIV-1 pandemic remains a major threat to global public health,
with 2.6 million new infections annually, and a safe and effective
vaccine is urgently needed (Wang et al., 2015; Harmon et al., 2016).
Passive immunity experiments have demonstrated that anti-HIV-1
neutralizing antibodies (NAbs) can confer protection from infection in
nonhuman primate models (Gautam et al., 2016; Parren et al., 2001;
Hessell et al., 2009; Emini et al., 1992; Baba et al., 2000; Mascola et al.,
2000); as a result, such antibodies are a major target of ongoing vaccine
efforts (Haynes and Burton, 2017). The sole target of neutralizing or
other protective antibodies on HIV-1 is the envelope glycoprotein
(Env), which assembles as a trimer of heterodimers composed of surface
gp120 and transmembrane gp41 subunits. The HIV-1 Env has evolved a
variety of mechanisms to evade host antibody responses, including its
ability to tolerate escape mutations in immunogenic epitopes (Wei
et al., 2003; Moody et al., 2015), extensive glycosylation (Behrens

et al., 2016; McCoy et al., 2016; Stewart-Jones et al., 2016; Zhou et al.,
2017), conformational masking (Kwong et al., 2002), mimicry of host
proteins (Yang et al., 2013), and low expression of Env on virus-infected
cells and virions (Zhu et al., 2003; Chertova et al., 2002). Together,
these features create substantial barriers to the design of an effective
Env-based vaccine.

Despite extensive pre-clinical studies and six phase 2 or 3 clinical
trials of HIV-1 vaccines (Rerks-Ngarm et al., 2009; The rgp120 HIV
Vaccine Study Group, 2005; Buchbinder et al., 2008; Pitisuttithum
et al., 2006; Gray et al., 2011; Hammer et al., 2013), only the RV144
trial has shown any efficacy, with 31.2% protection in humans at 42
months post-vaccination (Rerks-Ngarm et al., 2009). The RV144 vac-
cine regimen included four intramuscular inoculations of replication-
incompetent canarypox vector expressing HIV-1 Gag, protease, and Env
antigens and two injections of purified gp120 protein in alum. The
primary correlates of protection were non-neutralizing IgG antibodies
in plasma that bound to variable loops 1 and 2 (V1/V2) of gp120 and
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low levels of anti-Env IgA (Haynes et al., 2012). Secondary correlates in
a post-hoc analysis included modest NAb activity and the ability of
antibodies to mediate antibody-dependent cellular cytotoxicity (ADCC)
on HIV-1-infected target cells (Haynes et al., 2012; Chung et al., 2014).
These results have generated renewed interest in the potential ad-
vantages of poxvirus prime/protein boost vaccine approaches, as well
as the antiviral functions of non-neutralizing antibodies (Corey et al.,
2015; Ackerman et al., 2016; Huang et al., 2016; Forthal et al., 2013).
Studies have since attempted to improve on the efficacy of RV144 by
optimizing various aspects of the vaccine regimen, including dose
schedule, vector, adjuvant, and Env sequence (Teigler et al., 2014;
Vaccari et al., 2016; Easterhoff et al., 2017; NCT02404311, NC-
T02968849). There is considerable biological diversity among Env
variants that can be used in the prime or boost, including differences in
glycan organization (Stewart-Jones et al., 2016), epitope exposure
(Sanders et al., 2013; de Taeye et al., 2015), and cell surface expression
(Ye et al., 2004; Wyatt et al., 2008), but the exact contributions of these
attributes to immunogenicity remain poorly understood.

The low expression of HIV-1 Env on the cell surface has long been
hypothesized to impede an effective antibody response to membrane-
associated forms of Env, as in viral infection or gene-based vaccines
(Marsh et al., 1997). This low expression has been attributed at least in
part to the presence of multiple endocytosis motifs within the long
cytoplasmic tail (CT) of Env (Boge et al., 1998; Rowell et al., 1995;
Bowers et al., 2000; Egan et al., 1996; Berlioz-Torrent et al., 1999; Wyss
et al., 2001; Byland et al., 2007). One well-described signal in the CT of
HIV and SIV Envs is the membrane-proximal tyrosine (Tyr)-dependent
endocytosis motif formed by the consensus amino acids GYxxΦ, where
x is any amino acid and Φ is a bulky hydrophobic residue. This highly
conserved motif binds to cellular adaptor protein complex 2 (AP-2) and
recruits Env that is not incorporated into virions into clathrin-coated
pits, thereby mediating internalization and clearance from the cell
surface (Boge et al., 1998; Rowell et al., 1995; Bowers et al., 2000; Egan
et al., 1996). GYxxΦ has also been shown to mediate directional bud-
ding of virus in polarized cell types (Lodge et al., 1997; Deschambeault
et al., 1999) and to contribute to pathogenesis in SIV infection of pigtail
macaques (Fultz et al., 2001; Breed et al., 2013, 2015). Additional but
less well characterized internalization signals are present in the more
distal CT (Wyss et al., 2001; Byland et al., 2007), consistent with the
view that a low steady-state expression of Env on infected cells is an
important and conserved viral property.

Surface expression of HIV and SIV Envs can be increased by muta-
tions in the CT that ablate endocytosis signals. Our lab has previously
described a variant of SIVmac251 termed CP-MAC that exhibited a

marked increase in surface expression on infected cells. This increase
was shown to be the result of a substitution of Tyr in the GYxxΦ motif
and a premature stop codon immediately prior to the overlapping
second exons of tat and rev (LaBranche et al., 1994, 1995; Sauter et al.,
1996)—a truncation that arises commonly when SIVs are propagated in
human cells (Kodama et al., 1989). It is unknown whether comparable
mutations in the HIV-1 Env CT would confer a similar increase in sur-
face expression, thereby making a potentially useful immunogen. At
least two studies have directly compared the immunogenicity of HIV-1
Env CT mutants with increased surface expression to that of wild-type
(WT) Envs (Ye et al., 2004; Wyatt et al., 2008), and both noted in-
creases in gp120-binding IgG. However, the impact of high surface
expression on IgG and especially NAb responses in the context of a viral
prime/protein boost vaccine regimen has not yet been well defined.

In the present study, we used a clinically relevant vaccinia prime/
gp120 protein boost protocol to evaluate the impact of mutations in the
HIV-1 Env CT that ablate known endocytosis signals and increase ex-
pression on the cell surface. We hypothesized that the magnitude and
particularly the quality of the antibody response would correlate with
the level of Env cell surface expression driven by the vaccinia vector
and thus the amount of native Env antigen available for interactions
with B cells.

2. Materials and methods

2.1. Ethics statement

The investigators faithfully adhered to the “Guide for the Care and
Use of Laboratory Animals” by the Committee for the Update of the
Guide for the Care and Use of Laboratory Animals, Commission on Life
Sciences, National Research Council. The animal facilities at the
University of Pennsylvania are fully accredited by the American
Association for Accreditation of Laboratory Animal Care (AAALAC). All
studies were conducted under protocols approved by University of
Pennsylvania IACUCs.

2.2. Generation of CT-modified HIV-1 Env constructs

Mutant Env constructs were generated using HIV-1 R3A env
(Meissner et al., 2004) (Genbank accession AY608577) in the pHSPG
plasmid, HIV-1 89.6 env (Collman et al., 1992) (Genbank accession
U39362) in the pCIneo plasmid (Promega), or JRFL env (Koyanagi
et al., 1987) (Genbank accession U63632) in the pSVIII plasmid. The
89.6 and JRFL Envs each contain portions of sequence from strain HXB2

Fig. 1. Schematic of HIV-1 Env cytoplasmic tail mutants. (A)
Partial amino acid sequences of HIV-1 R3A and SIVmac239 Envs
are shown, including part of the membrane-spanning domain and
the highly conserved Tyr-dependent endocytosis motif (GYxxΦ).
For both viruses, the positions overlapping the second exons of
Tat and Rev in alternative reading frames are shown. The in-
dicated segment from SIVmac (+SIV) was substituted into the
HIV-1 Env CT to create Env constructs shown in Panel B. (B) HIV-
1 Env CT mutants created to evaluate effects on Env surface ex-
pression. Substitutions included a Y712I substitution (HXB2
numbering) and/or a premature termination codon (*). Mutations
were also made in the same positions in the Envs of HIV-1 89.6,
89.6 N7 (N197Q), and JRFL. Dashes (–) are used to facilitate
alignment and highlight SIV residues with no homology in HIV-1
(SSPPSY). The sequence of SIV CP-MAC, which exhibits high le-
vels of Env surface expression (LaBranche et al., 1994, 1995;
Sauter et al., 1996), is shown for reference.

M.J. Hogan et al. Virology 514 (2018) 106–117

107



(Genbank accession K03455) based on their cloning strategies; these
correspond to the signal peptide and the distal CT, C-terminal to amino
acid 751 in HXB2 numbering. The 89.6 N7 (N197Q) mutant was gen-
erated from 89.6 WT, as previously described (Li et al., 2008). Amino
acid sequences of all CT mutations used herein are shown in Fig. 1. Env
CT mutant TM1 was generated in each Env isolate using a three-step
process with QuikChange II XL reagents (Agilent) and the following
primers: 1.) 5′-CAGAGTGCGGCAGGGCATCCGGCCAGTGAGCTTCTAG-
ACACTGCTG-3′; 2.) 5′-GGCATCCGGCCAGTGTTCAGCTACTTCTAGAC-
ACTGCTG-3′; 3.) 5′-CGGCCAGTGTTCAGCAGCCCCCCCAGCTACTTCT-
AGACACTGCTG-3′.

2.3. Env expression analysis in plasmid-transfected HEK 293T cells

To measure the surface expression of CT-modified HIV-1 Envs, each
Env mutant or WT/parental Env was co-transfected with pmax-GFP
(Lonza) into human embryonic kidney (HEK) 293T cells (ATCC). HEK
293T cells were cultured in Dulbecco's modified Eagle medium (DMEM)
supplemented with 2 mM L–glutamine (Life Technologies) and 10%
fetal calf serum (FCS) (HyClone), and 9 μL of Fugene 6 was used for
each transfection in a 12-well plate format. For 89.6 Envs in pCIneo
vector, 1.5 μg Env plasmid and 0.3 μg GFP was used. For JRFL Envs in
the lower-expressing pSVIII vector, a higher Env:GFP plasmid ratio was
used: 1.5 μg Env and 0.1 μg GFP. The pHSPG vector expressing R3A
Envs also expresses GFP, so 1.5 μg of pHSPG was used without separate
GFP plasmid. At 18 h post-transfection, cells were harvested and
stained for Env gp120 using 7.5 μg/mL 2G12 (obtained through the
NIH AIDS Reagent Program from Polymun Scientific) and 1:300 sec-
ondary goat anti-human IgG Alexa Fluor 647 (Invitrogen A-21445).
Cells were fixed with 4% paraformaldehyde and fluorescence was
measured on a FACSCalibur (BD Biosciences). Analysis was performed
using FlowJo software (Tree Star). Events were gated on GFP+ cells and
median fluorescence intensity (MFI) was recorded and expressed re-
lative to WT or parental Env.

2.4. Recombinant vaccinia viruses

HIV-1 Env-expressing recombinant vaccinia virus (VACV) vectors
were made by cloning each env into a VACV shuttle vector, pGS20,
under the control of the synthetic VACV early/late promoter, and then
inserting it into the thymidine kinase gene of the v-NY strain of VACV (a
replication-competent virus that was plaque purified from the New
York City Board of Health strain) (Zarling et al., 1986; Cooney et al.,
1993) by homologous recombination. Only 89.6 Envs in VACV vectors
contain a C-terminal sequence from HXB2 (after amino acid 751 in
HXB2), and both 89.6 and JRFL Envs contain the signal peptide se-
quence from HXB2. The negative control VACV vector for immuniza-
tion studies was made similarly and encodes an irrelevant antigen,
SIVmac239 Gag-Pol, instead of Env. The empty VACV vector used in
vitro is the parental v-NY virus with an intact thymidine kinase gene.

Purified stocks, used for immunization studies, were prepared as
follows: first, VACV-infected BSC40 cell pellets (~ 1 billion cells) were
resuspended in 14 mL cold 10 mM Tris, pH = 9.0, transferred to a
40 mL glass Dounce homogenizer, and homogenized with 40 strokes of
a tight pestle on ice. The material was centrifuged for 5 min at 1360
RPM at 4 °C, and supernatant was collected. 3 mL of cold 10 mM Tris
was added and the material was centrifuged a second time.
Supernatants from both spins were pooled and then sonicated in a 550
Sonic Dismembrator at an amplitude setting of 8. The material was
sonicated at 1-min intervals three times in ice water with 1–3 min
resting periods on ice. The material was gently layered onto 36% su-
crose (10 mM Tris, pH = 9.0) and spun at 15,800 rpm in a Beckman
Coulter SW 28 rotor for 80 min at 4 °C. The supernatant was aspirated
and the virus pellet was resuspended in cold 1 mM Tris, pH = 9.0, and
sonicated as above before being stored at −80 °C.

For in vitro Env expression studies, VACV crude lysates were

prepared similarly as described above, but without sucrose gradient
ultracentrifugation.

2.5. In vitro VACV infection and Env expression analysis

For analyses of Env expressed by VACV vectors, 1.6 × 106 HEK
293T cells were infected with VACV crude lysates at a multiplicity of
infection (MOI) of 3. Virus was absorbed onto cells at 37 °C for 1 h in
0.5 mL DPBS with 10 mM MgCl2 and 0.01% BSA, and then replaced
with 2 mL of DMEM with 10% FBS. The infection was allowed to pro-
ceed for 16 h post-absorption. Harvested cells were stained for HIV-1
Env with human mAbs 2G12 or 2F5 (NIH AIDS Reagent Program) at
7.5 μg/mL and 10 μg/mL, respectively, and 1:100 secondary goat anti-
human IgG Alexa Fluor 647 conjugate (Invitrogen A-21445). VACV A33
protein was stained using 1:300 rabbit anti-A33 serum (kindly provided
by Dr. Stuart Isaacs) and 7.5 μg/mL goat anti-rabbit IgG FITC conjugate
(BD Biosciences 552420). Each antibody was incubated on cells for
30 min on ice, and each sample was stained with and without per-
meabilization with 0.1% saponin to allow total cellular stain. All sam-
ples were fixed with paraformaldehyde after staining and fluorescence
was measured using a FACSCalibur flow cytometer. Ten thousand
events were collected and live, A33+ cells were gated on to determine
the mean fluorescence intensity (MFI) of Env and A33 staining (Figs. 2
and 3).

For antigenicity analysis, HEK 293T cells were infected as above and
stained without permeabilization using 1:300 rabbit anti-A33 serum
and the Env-specific mAbs 2G12, VRC01, b12, CD4-IgG,17b, 447-52D,
PG9, PG16, 2F5, 4E10, 10E8 (NIH AIDS Reagent Program), which bind
to different antigenic determinants. Goat anti-rabbit IgG FITC and goat
anti-human IgG Alexa Fluor 647 conjugates were used as secondary
antibodies. Transduced cells were gated on using the A33 stain to de-
termine the MFI for each mAb. The ratio of the MFI of TM1 variants
relative to their parental counterparts was calculated for each mAb, and
each of these raw fold differences was divided by that of the 2G12 stain,
as previously done (Veillette et al., 2014), to eliminate fold differences
due to surface expression levels. These 2G12-normalized fold differ-
ences are shown in Fig. 4B and C.

2.6. Cell-cell fusion assay

The functionality of CT-modified Envs was qualitatively assessed
using a cell-cell fusion assay, as described previously (Bolmstedt et al.,
1991). TZM-bl cells (provided by Dr. John Kappes, Dr. Xiaoyun Wu, and
Tranzyme Inc. through the NIH AIDS Reagent Program) were infected
with crude lysates of recombinant VACV vectors at an MOI of 1.0. After
18 h of infection, cells were fixed in a solution of 95% ethanol and 5%
acetic acid and stained with Giemsa to visualize syncytia.

2.7. gp120 expression and purification

89.6 N7 gp120 and JRFL WT gp120 were expressed in BSC40 cells
by recombinant VACV infection and purified by a three-step procedure
using lectin affinity, diethylaminoethanol (DEAE) anion exchange, and
size exclusion chromatography, as previously described (Guo et al.,
2013).

2.8. Mice

Female C57BL/6 (BL/6) mice were purchased from NCI and housed
in a BSL2 containment facility. All mice were 6 weeks of age at the
initiation of immunization studies.

2.9. Immunizations

Mice were immunized intraperitoneally with 1 × 108 pfu of re-
combinant VACV (v-NY strain) encoding HIV-1 Env variants or SIV Gag-
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Pol at weeks 0 and 4. At weeks 8 and 12, mice were immunized in-
tramuscularly with 5 μg gp120 in PBS in 1% Alhydrogel alum adjuvant
(Invivogen). Serum samples were collected prior to first immunization
and immediately prior to each subsequent prime or boost.
Splenectomies and final serum collection were performed two weeks
after the second gp120 boost (week 14).

2.10. Enzyme-linked immunosorbent assays (ELISAs)

HIV-1 gp120-specific and gp41-specific IgG in mouse serum was
quantified by ELISA. Immulon 4 HBX high-binding plates were coated
with purified HIV-1 89.6 N7 or JRFL WT gp120 protein, or with MN

gp41 protein containing truncations of the fusion peptide, membrane-
spanning domain, and distal portion of CT (provided by ImmunoDx
through NIH AIDS Reagent Program), all at a final concentration of
1 µg/mL in PBS overnight at 4 °C. Subsequent incubation steps were
performed at RT in 100 μL volumes. Plates were washed once with
wash buffer (0.05% Tween-20 in PBS) and blocked with blocking buffer
(2% BSA in PBS) for 1 h, followed by three more washes. Dilutions of
sera and standard were made in blocking buffer and incubated on plates
for 1.5 h. Murine mAbs against gp120 (3B3, obtained from the Duke
Human Vaccine Institute, NIH AIDS Reagent Program) and gp41 (D50,
provided by Dr. Patricia Earl, NIAID, NIH AIDS Reagent Program) were
used as standards to estimate the concentration of specific IgG in µg/
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Fig. 2. CT mutations increase surface expression of Envs in
plasmid-transfected HEK 293T cells. The indicated CT muta-
tions were made in four HIV-1 Envs: (A) R3A, (B) JRFL, (C) 89.6
WT, and (D) 89.6 N7 (N197Q). HEK 293T cells were co-transfected
with plasmids encoding GFP and Env and at 18 h were stained for
Env using mAb 2G12 under non-permeabilizing (surface stain)
and permeabilizing (total stain) conditions. Data represent the
average fold change in Env-specific mean fluorescence intensity
(MFI) of GFP+ cells relative to parental Env in each experiment,
with N = 3 (A, B, D) or N = 4 (C) replicates. Asterisks indicate
Env variants that showed a significant fold difference (p< 0.05)
in surface expression compared to the parent Env (normalized to
1) by one-sample t-test on log-transformed data with Bonferroni
correction.
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mL. After incubation, samples were removed and plates were washed
four times with wash buffer. Goat anti-mouse IgG HRP conjugate
(Sigma-Aldrich A8924) at 1:10,000 in blocking buffer was incubated for
1 h. After four washes, TMB substrate mixture (KPL) was added at
100 µL/well for 20 min. 50 µL per well of 2 N sulfuric acid was used to
stop the reaction, and the optical density (OD) was read at 450 nm on a
Dynex MRX Revelation microplate reader.

VACV-, V3-, and V1/V2-specific IgG ELISAs were performed simi-
larly to gp120-specific IgG ELISA, with the following modifications. For
VACV, the coating antigen was Western Reserve VACV lysed in RIPA
buffer, diluted 1:200 in PBS (kindly provided by Dr. Stuart Isaacs). For
V3, the coating antigen was synthetic 89.6 Env V3 peptide (GenScript)
at 5 μg/mL in PBS. For V1/V2, the coating antigen was a scaffold
protein containing HIV-1 92US715 V1/V2 fused to MLV gp70 (kindly
provided by Dr. Shan Lu) at 1 μg/mL in PBS.

2.11. Splenocyte stimulation and intracellular cytokine staining

To perform Env-specific and VACV-specific T cell analyses, spleno-
cytes (2 × 106) were incubated with four separate SHIV 89.6P Env
peptide pools (NIH AIDS Reagent Program) and one immunodominant
VACV peptide pool (NR-4058, BEI Resources) at 37 °C and 5% CO2. All
peptides were used at 1 µg/mL, and DMSO was used as a control for
background. After 1 h, GolgiPlug (brefeldin A), GolgiStop (monensin),
and anti-CD107a-FITC (BD Biosciences) were added and cells were

incubated for an additional 5 h. Cells were washed in PBS and re-
suspended in LIVE/DEAD Aqua Blue stain (Invitrogen) for 10 min at
room temperature (RT). A mixture of CD44-PE/Cy5, CD27-PE (BD
Biosciences), CD8-Pacific Blue, and CXCR5-Brilliant Violet 605
(BioLegend) surface marker antibodies was added and incubated for
30 min at RT. Cells were washed in FACS buffer (PBS, 1% FBS), re-
suspended in FIX & PERM (BD Biosciences), and incubated for 20 min at
RT. Cells were washed with Perm/Wash (BD Biosciences) and then
resuspended in a mixture of TNFα-PE/Cy7, IFNγ-Alexa Fluor 700, IL2-
APC, and CD3-APC/Cy7 antibodies (BD Biosciences) and incubated at
RT for 1 h. Cells were washed, resuspended in 1% paraformaldehyde in
PBS, and analyzed for fluorescence using an LSRII (BD Biosciences).
Analysis was performed using FlowJo software (Tree Star). Events were
gated on live (Aqua Blue-negative) cells. CD4+ cells were identified as
CD3+/CD8- cells. Background-subtracted percentages of cytokine-po-
sitive cells in each of four Env peptide pools were added together to
yield the Env-specific CD4+ T cell response.

2.12. Neutralization assays

Pseudotype virus neutralization assays were performed in TZM-bl
reporter cells, as previously described (Montefiori, 2005) using pre-
immune and post-immune mouse sera. Samples were assayed for neu-
tralization of pseudoviruses expressing multiple HIV-1 Envs or murine
leukemia virus Env to measure nonspecific neutralization and/or
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were visualized by Giemsa stain. (B, C) HEK 293T cells were transduced with recombinant VACV vectors encoding (B) the HIV-1 89.6 or (C) 89.6 N7 (N197Q) Envs with WT or TM1
mutated CTs, and cells were stained (N = 3) under non-permeabilizing conditions with the indicated mAbs or a CD4-IgG fusion protein. Fold changes in MFI (TM1:WT) for each mAb
were normalized to the fold change in 2G12 stain to account for differences in surface expression. No significant fold differences (p> 0.05) relative to parental Env (dashed line) were
noted using one-sample t-test on log-transformed data with Bonferroni correction.
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cytotoxicity. Values were reported as the reciprocal of the serum dilu-
tion at which 50% reduction of luciferase activity is observed (ID50).

2.13. Statistical analysis

Statistical tests were performed using GraphPad Prism software. IgG
concentrations and data expressed as fold changes were log-trans-
formed before analysis. Normally distributed data were analyzed by
one-way ANOVA with Tukey test or one-sample t-test with Bonferroni
correction. Non-parametric data were analyzed by the Mann-Whitney
test or Kruskal-Wallis test with Dunn's correction for multiple com-
parisons.

3. Results

3.1. Cytoplasmic tail (CT) mutations can increase HIV-1 Env surface
expression in transfected HEK 293T cells

We introduced several mutations into the CT of the clade B HIV-1
R3A Env (Meissner et al., 2004) that were designed to alter cell surface
expression. Fig. 1A shows the organization of the HIV-1 CT and Fig. 1B
shows mutations that were introduced, including combinations of: (1) a
premature stop codon that removed the distal 147 of 151 predicted
amino acids in the CT, removing all known trafficking motifs (denoted
as Δ147) (Yue et al., 2009); (2) a premature stop codon that removed
139 amino acids, leaving intact the membrane-proximal endocytosis
signal, 711GYSPL715 (denoted as Δ139); and (3) a point mutation, Y712I,
that ablated this motif. Interestingly, we noted that the SIVmac Env CT
contains six amino acids (SSPPSY) prior to the start of the second exons
of tat and rev that have no homology in HIV-1 (Fig. 1A) (Santos da Silva
et al., 2013). SIV Env mutants with high surface expression, such as CP-
MAC (LaBranche et al., 1995), often have premature stop codons be-
tween these six residues and the tat and rev overlapping reading frames
(Kodama et al., 1989; Hirsch et al., 1989). Considering that these re-
sidues could contribute to a trafficking motif regulating Env surface
expression, we introduced a 13-amino acid segment spanning this re-
gion of the SIV Env CT into HIV-1 (denoted as +SIV). On this chimeric
background, we then introduced Y712I, Δ139, or both changes together.
For simplicity, the latter construct is referred to as TM1 (tail mod-
ification 1). A similar set of mutations was also made in the Envs from
clade B HIV-1 strains 89.6 and JRFL.

The effects of CT mutations on surface expression were first eval-
uated in the context of HIV-1 R3A Env. Plasmids encoding R3A Env CT
variants were transfected into HEK 293T cells, and surface and total
expression were measured by flow cytometry (Fig. 2A). Three Env
mutants exhibited ≥ 2-fold increases in surface expression relative to
WT: Y712I Δ139 (2-fold, p = 0.09), Δ147 (3-fold, p = 0.02), and TM1
(4-fold, p = 0.04). All Envs exhibited similar total cellular expression
levels when assays were performed on permeabilized cells.

We next extended this evaluation to assess the effects of analogous
mutations on 89.6 and JRFL Envs (Fig. 2B–D). In 89.6 Env, the CT
mutations producing the highest surface expression were similarly Y712I
Δ139, Δ147, and TM1 6–7-fold, p< 0.01). CT mutations were also
studied in the context of the 89.6 N7 Env variant, which contains a
deletion of a single glycosylation site (N197Q) (Townsley et al., 2015;
Liang et al., 2016) near the CD4 binding site and second variable loop
(V2). Previously, it was found that the N197Q mutation in 89.6 Env
markedly increased NAb responses against autologous and heterologous
viruses in a vaccinia prime/gp120 protein boost immunization of pig-
tail macaques (Li et al., 2008; Townsley et al., 2016). In 89.6 N7 Env,
the Δ147 and TM1 mutations generated 3–4-fold (p<0.01) increases
in Env surface expression. A similar increase in surface Env was also
observed for the JRFL Env TM1 mutant (3-fold, p = 0.04). Thus, across
several HIV-1 Envs, CT mutations conferred an increase in surface ex-
pression, particularly constructs with the TM1 mutations (i.e. the +SIV
segment, Y712I, and Δ139), and this variant was selected for further

study as an immunogen using a vaccinia expression protocol.

3.2. CT mutations increase Env surface expression in a vaccinia virus
expression system

89.6, 89.6 N7, and JRFL Envs with unmutated or TM1-modified CTs
were inserted into vaccinia virus (VACV) vectors derived from the re-
plication-competent v-NY strain (Zarling et al., 1986; Cooney et al.,
1993). HEK 293T cells were infected with parental VACV or re-
combinant VACV vectors expressing Envs with or without the TM1
mutations. Surface and total Env expression were assessed by flow cy-
tometry using antibodies 2G12 and 2F5, which bind to gp120 and gp41,
respectively (Fig. 3 and Supp. Fig. 1). TM1-modified 89.6, 89.6 N7, and
JRFL Envs exhibited a roughly 2-fold increase in gp120 and a 3-fold
increase in gp41 surface expression (all p< 0.05), with no differences
in total cellular Env (Fig. 3). To control for transduction efficiency,
VACV A33 protein expression was also assessed, and no significant
differences were detected. Thus, similar to their expression from
plasmid in HEK 293T cells, HIV-1 Envs containing the TM1 mutations
also exhibited increased cell surface expression using a VACV expres-
sion system, making them amenable to a comparative immunogenicity
study using a VACV prime/protein boost vaccine regimen.

3.3. Envs containing CT mutations for high surface expression mediate
fusion and maintain epitopes for broadly neutralizing antibodies

We sought to determine whether the TM1 CT mutations altered Env
function or the exposure of epitopes to which broadly neutralizing
antibodies are directed. CT truncations in HIV-1 Env have previously
been shown to affect fusion efficiency and antigenicity of the ectodo-
main (Yue et al., 2009; Edwards et al., 2002; Chen et al., 2015; Wyss
et al., 2005). In a cell-cell fusion assay, VACV-expressed TM1 Envs in-
duced syncytium formation similarly to parental 89.6, 89.6 N7, and
JRFL Envs, indicating that TM1-modified Envs maintain fusogenic
function (Fig. 4A). Next, Envs with or without the TM1 mutations were
expressed in HEK 293T cells and analyzed by flow cytometry for the
relative expression of antibody epitopes including the CD4 binding site
(VRC01, b12, CD4-IgG), co-receptor binding site (17b), V3 loop crown
(447-52D), and the membrane-proximal external region (MPER) in
gp41 (2F5, 4E10, 10E8) (Fig. 4B and C). No significant differences in
antibody/ligand binding were observed between WT and TM1 Envs,
indicating that TM1 modification did not result in major antigenic
changes within the epitopes for several groups of broadly neutralizing
antibodies.

3.4. Immunization with CT-modified Envs in a vaccinia prime/protein boost
protocol generates higher levels of gp120-specific IgG

The immunogenicity of Envs containing the TM1 mutations was
evaluated using a poxvirus prime/protein boost strategy, analogous to
the RV144 regimen that showed partial protective efficacy in humans
(Rerks-Ngarm et al., 2009). Our regimen used Env-expressing re-
combinant VACV vectors for the primes followed by purified gp120
protein for the boosts. We hypothesized that the level of Env surface
expression driven by the priming vectors would correlate with the
magnitude and quality of Env-specific antibody responses after the
primes and/or the boosts.

The 89.6 N7 and JRFL Envs were selected for evaluation in im-
munization studies based on previous work demonstrating the potential
of 89.6 N7 to generate potent and broad NAb responses (Li et al., 2008)
and due to the abundance of structural and immunologic information
available for JRFL (Crooks et al., 2015; Sharma et al., 2015; Feng et al.,
2016; Guenaga et al., 2016; Munro et al., 2014). C57BL/6 mice (N =
8–10/group) were injected intraperitoneally (i.p.) at weeks 0 and 4
with 108 pfu of VACV encoding 89.6 N7 or JRFL Envs with WT or TM1-
modified CTs (Fig. 5A and B). A VACV vector encoding SIV Gag-Pol and
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lacking Env was used as a control. All groups of mice, including VACV
Gag-Pol, were boosted at weeks 8 and 12 with intramuscular (i.m.)
injections of 5 μg of 89.6 N7 or JRFL WT gp120 protein in 1% alum.

To determine if mice received comparable effective doses of vector,
VACV-specific antibody responses were measured by ELISA. In both
immunization series, there were no significant differences between
groups in VACV lysate-specific IgG measured 4 weeks after the second
VACV prime (Fig. 5C and D). Consistent with this result, we also ob-
served statistically equivalent VACV-specific CD8+ T cell (Supp.
Fig. 2A) and Env-specific CD4+ T cell responses (Supp. Fig. 2B) elicited
by vectors expressing 89.6 N7 Env with or without the TM1 mutations
at the time of euthanasia, two weeks after the second boost. The VACV-
specific CD4+ T cell and Env-specific CD8+ T cell responses were
negligible with the peptide pools used (data not shown).

Gp120-specific IgG responses were measured by ELISA after each
immunization as outlined in Fig. 5B. Mice that were primed with 89.6
N7 TM1 Env generated significantly higher gp120-binding IgG than
those primed with 89.6 N7 (Fig. 5E and Supp. Fig. 3A), with a 3-fold
increase after the first prime and a 7-fold increase after the second
prime. A similar effect was noted in the JRFL immunization, although
to a lesser extent: mice primed with JRFL TM1 Env developed 2-fold
higher gp120-specific IgG after one or two primes compared to JRFL
WT (Fig. 5F and Supp. Fig. 3B). In both immunization series, the gp120
protein boosts increased the levels of gp120-specific IgG while reducing
the fold difference between the parental and TM1 Env groups. Inter-
estingly, in mice primed with the Gag-Pol VACV vector, boosting with
89.6 N7 gp120 appeared more effective than JRFL gp120. The me-
chanism of this effect is unclear but appears to be intrinsic to the Env
strain, since the gp120 proteins were similarly prepared and had
comparable purity.

Surprisingly, the gp41-specific IgG response did not follow the same
trends as the gp120-specific IgG. Mice primed with 89.6 N7 TM1 gen-
erated equivalent gp41-specific IgG compared to mice primed with
parental 89.6 N7 (Fig. 5G and Supp. Fig. 3C). In contrast, mice primed
with JRFL TM1 mounted a 5-fold lower gp41-specific response than
mice receiving JRFL WT (Fig. 5H and Supp. Fig. 3D). In both im-
munizations, the gp41-specific IgG waned slightly when sampled after
the gp120 boosts, as expected. The effect of TM1 modification on gp41-
specific IgG was thus variable depending on the Env isolate.

3.5. Prime/boost immunization with CT-modified Envs generates higher
HIV-1 NAb titers

We next determined whether increased surface expression of Env
could impact the development of anti-HIV-1 NAbs. Using a TZM-bl
pseudovirus reporter assay, we found that mice primed with 89.6 N7
Env containing the TM1 mutations generated markedly higher NAb
titers compared to mice primed with parental 89.6 N7 (Fig. 6A and
Supp. Fig. 4A). Neutralization of the Tier-1A (highly neutralization-
sensitive) strain MN.3 was increased 11-fold after the second prime (p
= 0.02), 10-fold after the first boost (p = 0.02), and 16-fold after
second boost (p = 0.0007) (Fig. 6A). These findings were striking,
given that there was no significant difference in gp120-specific or gp41-
specific IgG between 89.6 N7 and 89.6 N7 TM1 vaccinations after
protein boosts (Fig. 5E and F). The breadth of the Tier-1 NAb activity in
mice immunized with 89.6 N7 TM1 is not known, as serum was not
available to measure neutralization of other Tier-1 strains.

In contrast to the findings for 89.6 N7 Envs, mice vaccinated with
JRFL Envs with or without the TM1 mutations generated low NAb titers
to Tier-1A MN.3 and SF162.LS strains after two VACV primes. After two
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protein boosts, mice immunized with JRFL TM1 Env exhibited a 2-fold
higher mean NAb titer against these strains, although responses were
highly variable, and the difference was not statistically significant
(Fig. 6B and Supp. Fig. 4B). No consistent NAb activity was elicited by
JRFL WT or TM1 against the moderately neutralization-sensitive Tier-
1B strain BaL.26 (data not shown). In both JRFL and 89.6 N7 im-
munizations, no significant NAb activity could be determined against
more neutralization-resistant (Tier-2) viruses, including X2278 and
autologous JRFL or 89.6, when measured at the terminal time point
(data not shown).

Thus, we observed similar overall trends for 89.6 N7 and JRFL Env
immunizations, in which Envs modified for increased surface expres-
sion generated enhanced levels of gp120-specific IgG and Tier-1 NAbs.
These effects were greatest with the 89.6 N7 TM1 Env, where pro-
nounced increases in anti-gp120 IgG and NAb were observed after
VACV primes and even greater increases in NAbs were noted after
gp120 boosts.

3.6. CT modification does not change the immunogenicity of variable loops
1/2 and 3

NAb responses to Tier-1 HIV-1 isolates have previously been at-
tributed to antibodies binding to hypervariable loops on gp120, parti-
cularly the V3 loop (Zolla-Pazner et al., 2016; Hioe et al., 2010). We
investigated this possibility by evaluating sera from mice immunized
with 89.6 N7 and 89.6 N7 TM1 Envs for binding to a V3 peptide from
89.6 Env. As shown in Supp. Fig. 5A, no difference in this response was
observed. In addition, epitopes within the V1/V2 loops have been
shown to be highly immunogenic and a target for neutralizing and non-
neutralizing antibodies in various vaccine regimens (Haynes et al.,
2012; Rolland et al., 2012; Liao et al., 2013). However, when sera from
mice immunized with 89.6 N7 Envs were assessed for IgG to V1/V2
presented on a murine leukemia virus gp70 scaffold (Haynes et al.,
2012; Zolla-Pazner et al., 2014), only ~ 50% of mice made detectable
V1/V2-specific IgG responses, and there was no difference between
mice receiving parental or TM1-modified 89.6 N7 Envs (Supp. Fig. 5B).
Thus, although immunodominant in several vaccine protocols, antibody
responses to V3 and V1/V2 loops were unaffected by differences in Env
cell surface expression in this VACV prime/gp120 boost protocol.

4. Discussion

HIV and SIV Env CTs contain a membrane-proximal Tyr-dependent
endocytosis signal that serves to reduce the steady-state expression of
Env on infected cells (Boge et al., 1998; Rowell et al., 1995; Bowers

et al., 2000; Egan et al., 1996). The finding that this motif is absolutely
conserved among the majority of primate and non-primate lentiviruses
(Santos da Silva et al., 2013) and that there are additional but less well
characterized endocytic motifs in more distal regions of these tails
(Rowell et al., 1995; Bowers et al., 2000; Byland et al., 2007) has
suggested that endocytic trafficking of Env could play an important role
in pathogenesis, possibly by protecting virus-producing cells from hu-
moral immune responses such as ADCC (von Bredow et al., 2015). In-
deed, for the pathogenic SIV molecular clone, SIVmac239, ablation of
the membrane-proximal endocytosis signal (GYRPV) by deletion of
GY721–722 results in a virus that is highly replication-competent in vivo
but is susceptible to host immune control in pigtail macaques (Fultz
et al., 2001; Breed et al., 2013, 2015). The aim of the current study was
to determine if mutations in the HIV-1 Env CT that ablated endocytosis
motifs and, as a result, increased cell surface expression could impact
Env immunogenicity in a VACV prime/protein boost vaccine regimen.
Given recent findings in the RV144 vaccine trial that a poxvirus prime/
protein boost protocol could confer partial protection from HIV infec-
tion and that this effect correlated with antibody responses to gp120
(Haynes et al., 2012; Chung et al., 2014), we reasoned that modifica-
tions to Env that increased its expression on the cell surface could be a
useful adjunct to improve the efficacy of this approach, particularly
with regard to the poxvirus prime in which Env can be expressed as a
membrane-associated trimer on antigen-presenting cells.

We evaluated several HIV-1 Env CT modifications that were in-
formed by our prior studies of CP-MAC, an in vitro derived variant of
SIVmac251 that exhibited a marked increase in Env surface expression
on infected cells (LaBranche et al., 1994, 1995). We showed previously
that this phenotype resulted from the combined effects of a premature
stop codon in the CT and loss of the membrane-proximal, Tyr-depen-
dent endocytosis motif. In the current study, we evaluated similar
mutations (Y712I and Δ139) in the HIV-1 Env CT and, based on differ-
ences in the organization of the SIV and HIV-1 CTs, created a set of
novel HIV-1 Env chimeras containing a segment (+SIV) of the SIVmac
CT spanning from the Tyr motif to the site of the stop codon in CP-MAC
(Fig. 1). The chimera containing all of these changes, termed TM1,
exhibited a marked increase in surface expression compared to Envs
with unmutated CT, ranging from 3 to 8-fold when expressed by
plasmid. For R3A and JRFL Envs, surface expression was greater for
TM1 Envs than for mutants lacking the +SIV segment or for the CT
deletion mutant, Δ147. When 89.6 Envs containing the TM1 mutations,
with or without the N197Q glycan deletion (N7) (Li et al., 2008), were
expressed from a VACV vector previously used in poxvirus prime/
protein boost vaccination protocols (Zarling et al., 1986; Cooney et al.,
1993), an increase was also seen to levels 2–3 fold greater than WT Env
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(Fig. 3). In addition, 89.6 and 89.6 N7 Envs with TM1 mutations ex-
hibited no change in reactivity with anti-Env mAbs, including several
broadly neutralizing antibodies, indicating that Envs altered to enhance
surface expression maintained epitopes in the Env ectodomain that are
of interest to the vaccine field.

When the immunogenicity of 89.6 N7 Envs with WT or TM1-mod-
ified CT was compared using a VACV prime/gp120 boost protocol, the
TM1 Env elicited significantly higher gp120-specific binding IgG and
NAb to a Tier-1 HIV-1 isolate after two primes. Following the gp120
boosts, the difference in binding IgG was diminished, but the difference
in NAb titers was markedly enhanced, up to about 16-fold. Strikingly,
although mice primed with parental 89.6 N7 Env generated high levels
of binding IgG, these mice exhibited poor NAb titers even after the
second boost, indicating that significant qualitative differences in the
antibody response resulted from CT modification. The lack of correla-
tion between gp120-specific IgG and NAbs has been previously reported
in multiple HIV-1 vaccine studies (Rerks-Ngarm et al., 2017;
Buchbinder et al., 2017; Khattar et al., 2013), suggesting that
monomer-specific antibodies are not necessarily neutralizing. The
strain-dependent effects of TM1 modification on NAb activity and gp41-
specific IgG are mechanistically unclear. It is possible that the Tier-1
NAb response elicited by JRFL TM1 was limited by the deficit in gp41-
specific IgG in these mice compared to WT Env, or by a deficit in an-
other epitope-specific response that was not measured. Future studies
that focus on the effects of CT modification on the conformation and
antigenicity of gp41 will likely be informative to this question.

An important finding in this study is that the improved NAb re-
sponse after protein boosts in 89.6 N7 TM1-primed mice was attribu-
table solely to differences in the VACV primes, which suggests the
importance of the priming immunogen in determining the overall ef-
ficacy of this prime/boost regimen. This result is consistent with clinical
studies of poxvirus prime/boost vaccines that have observed prime-
dependent effects on antibody specificity, subclass, and neutralizing
and non-neutralizing functions measured after the protein boosts
(Chung et al., 2014; Graham et al., 1994; Yates et al., 2014). Although
differences in immunogenicity were not as striking when JRFL Envs
were used, these data suggest that, in some cases, high surface ex-
pression of Env could modulate the quality and the magnitude of an-
tibody response and possibly improve efficacy of prime/boost vaccine
protocols.

We hypothesize that, in our vaccine regimen, an increase in Env
expression on the surface of professional antigen-presenting cells and
potentially other cell types can enhance the ability of these cells to
crosslink B cell receptors (BCR) and activate cognate B cells, resulting in
increased Env-specific antibody responses. The multivalency of an-
tigen/BCR crosslinking has a well documented effect on the efficiency
of B cell activation, particularly for low affinity interactions (Bachmann
et al., 1993; Ota et al., 2012; Jardine et al., 2013; Ingale et al., 2016).
This strategy may preferentially elicit antibodies directed towards
epitopes expressed on functional Env trimers presented by the prime
that could be further improved by appropriate protein boosts. Indeed, it
has been suggested that high-affinity binding to the functional Env
trimer is both necessary and sufficient for an antibody to neutralize
HIV-1 (Fouts et al., 1997; Tong et al., 2012; Parren et al., 1998).
However, it is possible that the CT mutations we introduced could have
contributed to immunogenicity through mechanisms other than surface
expression. The SIV sequence in TM1 contains part of a motif that has
been shown to activate NF-κB (Postler and Desrosiers, 2012), which can
potently modulate host immune responses (Oeckinghaus and Ghosh,
2009; Yoshimura et al., 2001; Cancro, 2009). However, in preliminary
experiments, we did not observe any difference in NF-κB signaling
mediated by TM1 modification in the context of full-length Env or a
CD8-Env CT fusion protein (data not shown) (Postler and Desrosiers,
2012). It is also well recognized that truncations in the HIV-1 Env CT
can affect epitope exposure in the Env ectodomain, neutralization
sensitivity, and fusion kinetics (Edwards et al., 2002; Chen et al., 2015;

Wyma et al., 2004; Jiang and Aiken, 2007; Murakami et al., 2004;
Joyner et al., 2011). Here, quaternary epitopes in the V1/V2 domain
could not be probed using available broadly neutralizing antibodies
(e.g. PG16, PGT145), as these do not bind to WT 89.6 or JRFL.
Therefore, it is possible that antigenic differences beyond those tested
here could have affected the immunogenicity of TM1 mutants.

Our findings build on previous studies that showed the ability of CT
mutations to alter Env immunogenicity (Ye et al., 2004; Wyatt et al.,
2008) and demonstrate that CT mutations designed to increase Env
expression on the cell surface can enhance antibody responses in the
context of a poxvirus prime/protein boost vaccine in mice. Although
these findings will require validation in larger animal models, this re-
sult supports the idea that low surface expression of Env is an immune
evasion strategy for HIV-1 and that the immunogenicity of Env-ex-
pressing vectors can be improved when Env is modified for high surface
expression. An important aspect of these findings is that CT mutations
can be combined with changes in the Env ectodomain that alter the
quality or specificity of the antibody response (Li et al., 2008; Liang
et al., 2016; Alam et al., 2013) and with improved boosting immuno-
gens, such as stabilized SOSIP trimers (McCoy et al., 2016; Sanders
et al., 2013, 2015; Pugach et al., 2015), which have been shown to elicit
NAbs to Tier-2 HIV-1 isolates (McCoy et al., 2016; Sanders et al., 2015).
Further studies will determine whether CT modifications that increase
Env surface expression have the same effect on immunogenicity in
nonhuman primates and when delivered by alternative viral vectors or
nucleic acid-based vaccines.
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