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A B S T R A C T   

Background: More than 80% of multiple sclerosis (MS) patients experience symptoms of fatigue. MS-related fa
tigue is only partly explained by structural (lesions and atrophy) and functional (brain activation and conven
tional static functional connectivity) brain properties. 
Objectives: To investigate the relationship of dynamic functional connectivity (dFC) with fatigue in MS patients 
and to compare dFC with commonly used clinical and MRI parameters. 
Methods: In 35 relapsing-remitting MS patients (age: 42.83 years, female/male: 20/15, disease duration: 11 
years) and 19 healthy controls (HCs) (age: 41.38 years, female/male: 11/8), fatigue was measured using the CIS- 
20r questionnaire at baseline and at 6-month follow-up. All subjects underwent structural and resting-state 
functional MRI at baseline. Global static functional connectivity (sFC) and dynamic functional connectivity 
(dFC) were calculated. dFC was assessed using a sliding-window approach by calculating the summed difference 
(diff) and coefficient of variation (cv) across windows. Moreover, regional connectivity between regions previ
ously associated with fatigue in MS was estimated (i.e. basal ganglia and regions of the Default Mode Network 
(DMN): medial prefrontal, posterior cingulate and precuneal cortices). Hierarchical regression analyses were 
performed with forward selection to identify the most important correlates of fatigue at baseline. Results were 
not corrected for multiple testing due to the exploratory nature of the study. 
Results: Patients were more fatigued than HCs at baseline (p = 0.001) and follow-up (p = 0.002) and fatigue in 
patients was stable over time (p = 0.213). Patients had significantly higher baseline global dFC than HCs, but no 
difference in basal ganglia-DMN dFC. In the regression model for baseline fatigue in patients, basal ganglia-DMN 
dFC-cv (standardized β = -0.353) explained 12.5% additional variance on top of EDSS (p = 0.032). Post-hoc 
analysis revealed higher basal ganglia-DMN dFC-cv in non-fatigued patients compared to healthy controls (p 
= 0.013), whereas fatigued patients and healthy controls showed similar basal ganglia-DMN dFC. 
Conclusions: Less dynamic connectivity between the basal ganglia and the cortex is associated with greater fa
tigue in MS patients, independent of disability status. Within patients, lower dynamics of these connections could 
relate to lower efficiency and increased fatigue. Increased dynamics in non-fatigued patients compared to healthy 
controls might represent a network organization that protects against fatigue or signal early network 
dysfunction.   

1. Introduction 

Fatigue is one of the most common symptoms in multiple sclerosis 

(MS), with up to 83% of patients reporting symptoms of transient or 
chronic fatigue during the disease course (Manjaly et al., 2019). Fatigue 
does not have a clear treatment target and is related to a reduced quality 
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of life both through direct effects of fatigue and the strong interrelation 
between fatigue and comorbidities like depression and impaired 
cognition (Krupp and Christodoulou, 2001; Comi et al., 2001; Biber
acher et al., 2018; Janardhan and Bakshi, 2002). Consequently, gaining 
an understanding of the neural processes underlying MS-related fatigue 
is imperative. 

MS-related fatigue is thought to have primary causes (i.e. direct ef
fects of MS pathophysiology) and secondary causes (e.g. sleep disorders) 
(Krupp and Christodoulou, 2001). Various primary (neuro)biological 
correlates of fatigue in MS have been described in the literature, though 
the explanatory value is low. Many of these correlates can be fitted into a 
framework involving physiological alterations in the basal ganglia and 
frontoparietal regions on various levels of organization. On a molecular 
level, the release of proinflammatory cytokines is thought to interfere 
with basal ganglia-cortical loops that affect motivated action, possibly 
resulting in fatigue (Manjaly et al., 2019; Chaudhuri and Behan, 2000). 
Studies on the association between MS-related fatigue and structural 
brain damage (e.g. white matter lesions and atrophy) indicate that 
regional damage of specific regions such as the thalamus and frontal or 
parietal cortical regions is a better predictor of for the development of 
fatigue than global atrophy (Tedeschi et al., 2007; Nourbakhsh et al., 
2016; Bakshi et al., 1999; Sepulcre et al., 2009; Pellicano et al., 2010). 
Functionally, task-based fMRI studies suggest that dysfunction of frontal 
cortical regions and basal ganglia relates to fatigue in MS patients (Fil
ippi et al., 2002; Roelcke et al., 1997). More recently, resting-state 
functional connectivity within the Default Mode Network (DMN) and 
Sensorimotor Network (SMN) has been found to relate to fatigue in MS 
(Cruz Gómez et al., 2013; Rocca et al., 2018; Høgestøl et al., 2019; 
Jaeger et al., 2019), though it has been suggested that the DMN may be 
more strongly involved than the SMN (Bisecco et al., 2018). Moreover, 
within-basal ganglia functional connectivity and connectivity of the 
basal ganglia with cortical regions have also been implicated, again 
mainly involving regions of the Default Mode Network (Rocca et al., 
2018; Jaeger et al., 2019; Finke et al., 2015). In addition, reductions in 
fatigue in response to medication correlate with the modification of 
these functional basal ganglia-cortical connections, further linking the 
functional brain network to fatigue in MS patients (Rocca et al., 2018). 

Specifically, the subjective experience of fatigue may relate to 
functional brain network alterations in response to inflammation- 
induced reductions in network function at rest or during task perfor
mance. For instance, abnormal connectivity patterns seen in MS patients 
during task performance could indicate compensatory recruitment of 
brain regions not usually involved in execution of this task (Manjaly 
et al., 2019). From a metacognitive viewpoint, this mismatch between 
expected and perceived network function could then lead to the sub
jective experience of fatigue so often seen in MS patients (Leocani et al., 
2008). Taking these results together, the analysis of functional network 
measures could be of importance in better understanding MS-related 
fatigue. 

Traditionally, resting-state functional connectivity is quantified as 
the average temporal correlation between time series of two brain re
gions over an entire scanning session. However, recent studies have 
indicated that functional connectivity in brain networks is far from static 
and changes dynamically within a single resting-state brain scan 
(Hutchison et al., 2013). Dynamic functional connectivity (dFC) is a 
novel functional measure that describes this variability of functional 
connections between brain regions over time and is related to behavioral 
and cognitive state in healthy subjects (Cohen, 2018; Lurie et al., 2020; 
Braun et al., 2015; Douw et al., 2016; Fong et al., 2019). In some con
texts (e.g. cognitive flexibility during a test of cognitive inhibition) 
higher task-state dFC and lower resting-state dFC in specific resting-state 
networks relate to better performance (Douw et al., 2016). In contrast, 
during other tasks (e.g. focused attention) lower dFC overall is associ
ated with better performance (Fong et al., 2019). These opposing results 
highlight the context-specific relevance of dFC, depending on the state 
(e.g. rest, motor task, or cognitive task) and location, i.e. brain regions or 

networks considered. Additionally, perturbations in dFC are found in 
various neurological diseases, suggesting that specific pathophysiolog
ical processes may be reflected in changes in the variability of the brain 
network (Lurie et al., 2020). For MS specifically, dFC has been associ
ated with white matter lesion load and cognitive (dys)function (Huang 
et al., 2019; Eijlers et al., 2019; van Geest et al., 2018a, 2018b; d’Am
brosio et al., 2020). Considering the framework described earlier, in 
which subjective experience of fatigue in MS is thought to be tied to 
network function, (disturbed) dFC may relate to fatigue in these patients 
as well. 

The aim of this exploratory study is to investigate whether the novel 
measures of resting-state dFC can provide additional insight into the 
neural correlates of fatigue in MS. We use measures of global and 
regional dFC to study the relationship with fatigue, in order to assess the 
descriptive value of network dynamics for fatigue. We expected to find 
differences in dFC in MS patients compared to healthy controls, 
reflecting widespread inflammation-moderated network alterations. 
Moreover, we hypothesized that dFC between the basal ganglia and 
cortical regions would correlate with fatigue in MS patients as functional 
loops involving these regions have been found to relate to MS-related 
fatigue previously. 

2. Methods and materials 

2.1. Subjects 

The study sample consisted of MS patients (n = 35) and healthy 
controls (HCs; n = 19) matched for age, sex, and education (using the 
Verhage scale) (van Geest et al., 2018). Inclusion criteria for all subjects 
were: (1) compliance with all safety indications for MRI; (2) age be
tween 18 and 65 years; (3) no history or presence of psychiatric or 
neurological disease (apart from MS for the patient group); (4) no his
tory or presence of alcohol or drug abuse. The patient group met the 
additional inclusion criterion of a diagnosis of relapsing-remitting MS. 
Patients were excluded from the study if they experienced a relapse or 
underwent steroid treatment in the 4 weeks prior to examination. 
Moreover, subjects would be excluded from analysis if they exhibited 
excessive frame-to-frame head motion during resting-state fMRI (head 
displacement of >0.5 mm for 20% of frame-to-frame transitions) in 
order to reduce potential confounding effects on measures of dFC. This 
was not the case for any subject. The patient group consisted of 18 pa
tients that recently switched from first-line treatment to fingolimod 
treatment and 17 patients that continued first-line treatment (glatiramer 
acetate, interferon beta, teriflunomide, or dimethyl fumarate), matched 
for disease duration. The cohort used for analysis here is part of a lon
gitudinal study into the clinical effects of fingolimod on MS patients, 
which was approved by the local institutional ethics review board. There 
has been one prior publication on this dataset with a focus on correlates 
of cognition (van Geest et al., 2018). All subjects provided written 
informed consent. 

2.2. Clinical measures and fatigue 

Clinical measures were assessed at baseline (T0) and at follow-up 6 
months later (T1). The patient group underwent physical examination, 
yielding scores on the Expanded Disability Status Scale (EDSS) (Kurtzke, 
1983). Additionally, we administered several questionnaires in both 
groups. Self-reported fatigue was assessed using the revised Checklist of 
Individual Strength (CIS-20r), which has been validated for use in MS 
patients (Vercoulen et al., 1994; Elbers et al., 2012). In the CIS-20r 
questionnaire, subjects were asked to rate their agreement with 20 
statements on self-experienced fatigue in the past two weeks on a scale 
from 1 to 7. This questionnaire resulted in fatigue scores on the 
following four subdomains: subjective complaints (8 questions), moti
vation (4 questions), physical activity (3 questions), and concentration 
(5 questions). A total fatigue score was obtained by summing the 
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subdomain scores. The Hospital Anxiety and Depression Scale (HADS) 
was used to measure self-reported anxiety and depression (Zigmond and 
Snaith, 1983). 

2.3. Structural and functional MRI 

At baseline, MRI data of each subject were acquired using a 3T 
magnet whole-body MRI system (GE Signa-HDxt, Milwaukee, WI, USA) 
with a 32-channel phased-array head coil. The protocol contained a 
three-dimensional T1-weighted (3DT1) sequence for brain volume 
measurements (TR: 8.22 ms; TE: 3.22 ms; TI: 450 ms; flip angle 12◦; 1.0 
mm sagittal slices; 0.94 mm in-plane resolution) and a fluid-attenuated 
inversion recovery (FLAIR) sequence for detection of white matter le
sions and their quantification (TR: 8000 ms; TE: 128 ms; TI: 2343 ms; 
1.2 mm sagittal slices; 0.98 mm in-plane resolution). In addition, an 
eyes-closed resting-state fMRI was performed, yielding 202 volumes of 
echo planar images (TR: 2200 ms; TE: 35 ms; flip angle 80◦; 3.0 mm 
axial slices; 3.3 mm in-plane resolution). All structural and functional 
MRI data were processed with the FMRIB Software Library v6.0 (FSL, 
fmrib.ox.ac.uk/fsl). For MS patients, white matter lesions on FLAIR 
images were segmented and LEAP was used to fill them on T1-weighted 
images automatically (Chard et al., 2010). Subsequently, total gray 
matter and white matter volumes were measured with SIENAX (Smith 
et al., 2002). FIRST segmentation was used to calculate subcortical gray 
matter volumes (Patenaude et al., 2011). Then, cortical gray matter 
volume was estimated by subtracting the FIRST subcortical segmenta
tion from the total gray matter volume obtained by the SIENAX seg
mentation. The SIENAX v-scaling factor was used to normalize all 
volumetric measurements for head size. 

Functional MRI data were preprocessed with FSL MELODIC during 
which: (1) the first five volumes were discarded; (2) MCFLIRT motion 
correction was applied; (3) spatial smoothing with a Gaussian filter (full- 
width-at-half-maximum: 6.0 mm) was applied. Prior studies have 
described the large effects that motion artifacts can have on the detec
tion of dFC (Cohen, 2018). Therefore, additional motion artifacts were 
removed from functional data using ICA-AROMA, a tool that uses in
dependent component analysis to remove motion-induced noise from 

fMRI data (Pruim et al., 2015). Afterwards, residual signal from white 
matter and CSF was regressed out and high-pass filtering was applied 
with a cutoff frequency of 0.01 Hz. To define nodes, the Brainnetome 
atlas was used for cortical regions and FIRST regions for the deep gray 
matter (Fan et al., 2016). The cortical Brainnetome atlas was inversely 
registered to structural subject space and multiplied with the SIENAX 
gray matter mask, providing 210 cortical gray matter regions for each 
individual subject. After this, the FIRST-based parcellation of subcortical 
gray matter structures was added to the atlas, together providing a total 
of 224 regions. Subsequently, this structural atlas was co-registered to 
functional space for each subject, using inverted boundary-based 
registration parameters. Here, the atlas was multiplied with an fMRI 
mask based on the field of view, together with the exclusion of voxels 
that had a signal intensity in the lowest 25% of the intensity distribution 
robust range (e.g. regions too severely distorted by artifacts). After 
multiplying with this mask, individual regions were assessed whether 
sufficient coverage remained. Finally, the average signal intensity was 
calculated for each volume, forming the time series for each anatomical 
region of the final atlas. 

2.4. Connectivity measures 

Connectivity measures were calculated in Matlab 2018a (Natick, 
MA, USA). Static functional connectivity was assessed by calculating the 
average absolute Pearson correlation coefficient during the entire time 
series for each pair of regions, resulting in a 224 × 224 undirected 
connectivity matrix for each subject (Fig. 1A). Dynamic functional 
connectivity was calculated by using a sliding-window approach 
(Fig. 1B): the entire time series of the functional data was divided into 
overlapping windows with a pre-specified length (27 volumes; 59.4 s) 
and shift from one window to the next with a gap of 5 volumes (11 s) 
between windows. It has been established prior that this approximate 
window length is appropriate for measuring fluctuations in resting-state 
functional connectivity (Preti et al., 2017). In order to reduce the effects 
of high-frequency noise on dFC estimates, this square window was 
convolved using a Gaussian kernel (standard deviation: 9 TR), creating a 
tapered window (Huang et al., 2019). Subsequently, we calculated the 

Fig. 1. Calculations of functional connectivity. For each subject, static functional connectivity during the entire time series was calculated. Moreover, the time series 
was divided into overlapping windows (length of 27 volumes, 59.4 s; shift of 5 volumes, 11 s). From these windows, global dynamic functional connectivity was 
calculated using the summed difference method and the coefficient of variation. *: absolutized connectivity matrices were used. 
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weighted Pearson correlation coefficient between all pairs of brain re
gions using the weights of the tapered window. Subsequently, we esti
mated dFC using two different methods to scrutinize two distinct aspects 
of variability in functional connectivity: (1) the summed difference (diff) 
and (2) the coefficient of variation (cv). In order to calculate the summed 
difference, the absolute difference in connectivity from one window to 
the next was calculated and summed for each individual cell in the 
matrix. The coefficient of variation over all windows (using absolutized 
connectivity matrices) was calculated for each individual connection 
with the following formula, where i indicates the connection between 
two distinct brain regions: cv(i) = σi

μi
, in which µ indicates the average 

connection strength between the regions and σ the standard deviation of 
the connection strength over all windows. Whereas the summed differ
ence focuses solely on connectivity changes from one window to the 
next, the coefficient of variation describes changes in connectivity in the 
context of all windows and overall static connectivity. 

Both approaches yielded symmetrical 224 × 224 matrices for each 
subject, in which each value indicated how much connectivity between 
a single pair of brain regions changed over time. Within each of the three 
final connectivity matrices, all cells were averaged to obtain a value for 
global sFC, global summed difference dFC, and global coefficient of 
variation dFC for each subject. 

2.5. Regional functional connectivity measures 

To study regional connectivity patterns, functional connectivity be
tween anatomical regions that have been consistently found to be 
associated with fatigue was calculated as well (i.e. the basal ganglia and 
cortical regions in the DMN). Regions that we selected were the bilateral 
basal ganglia (caudate nucleus, putamen, globus pallidus) and the 
bilateral medial prefrontal cortex, posterior cingulate cortex, and pre
cuneus (Fig. 2) (Høgestøl et al., 2019; Bisecco et al., 2018; Finke et al., 
2015). Interregional functional connectivity between all these selected 
regions was extracted from the final 224 × 224 connectivity matrices 
and averaged for each of the connectivity measures calculated (sFC, dFC 
summed difference, dFC coefficient of variation), yielding one value for 
basal ganglia-DMN connectivity. In order to correct for differences in the 
strength of these connections due to intersubject global connectivity 
differences, basal ganglia-DMN connectivity values were divided by the 
global connectivity value for each subject. 

2.6. Null model for dFC 

Methodologically, the sliding-window approach might lead to a 
classification of spurious fluctuations in functional connectivity as true 
dynamic connectivity due to increased sampling variability that arises 
from decreasing window size (Lurie et al., 2020; Hindriks et al., 2016). 
Hence, the need for appropriate statistical testing for a sliding-window 
approach has been emphasized. In order to test for the presence of 
nonspurious dFC, we created 100 randomized time-series using phase 
randomization on the discrete Fourier transform of the time series, in 
which sFC and autocorrelation remain preserved (described in detail 
elsewhere: Hindriks et al., 2016; Prichard and Theiler, 1994). Taking the 
discrete inverse Fourier transform afterwards yielded the randomized 
copy of the time series. This procedure yielded 100 randomized sets of 
time series per subject. After obtaining the randomized surrogate time 
series, average global and basal ganglia-DMN dFC (without normaliza
tion) were calculated over all randomizations for each subject, calcu
lating both the summed difference and the coefficient of variation. Using 
paired sample t-tests, differences between mean dFC in real and surro
gate data were calculated for each measure of dFC. For each of the dy
namic measures calculated, dFC obtained from real data was 
significantly higher than the dFC obtained from surrogate data, indi
cating the presence of nonspurious dFC in our data (Table S1). 

2.7. Statistical analyses 

For statistical analyses, IBM SPSS version 22 was used (Armonk, NY, 
USA). Histogram inspection and Kolmogorov-Smirnov tests were used to 
assess normality of variables, and nonparametric tests were used in cases 
of non-normality. Independent two-sample t-tests and Mann-Whitney U- 
tests were carried out accordingly to investigate cross-sectional differ
ences between HCs and MS patients for demographics, anxiety, 
depression, and fatigue. Furthermore, cross-sectional tests were per
formed in order to assess differences in structural volumetric measure
ments, dFC, and sFC between HC and MS patients at baseline. For both 
groups, longitudinal tests (paired sample t-test or Wilcoxon signed-rank 
test) were performed to investigate progression on fatigue and clinical 
measures from baseline to 6-month follow-up. 

Next, we used a hierarchical forward regression model in order to 
determine the predictive value of dFC for total fatigue score of MS 

Fig. 2. Brain regions used for analysis of 
basal ganglia-DMN connectivity. The top 
panel presents a lateral view of the left (L) 
and right (R) hemisphere and the bottom 
panel a medial view. Regions included for 
analysis were the medial prefrontal cortex 
(red), posterior cingulate cortex (blue), pre
cuneus (green), and basal ganglia (yellow). 
Areas were visualized using BrainNet Viewer 
(Xia et al., 2013). (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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patients and HCs at baseline in combination with several other pre
dictors. The first block in this regression model included the following 
predictors: age, sex, educational level, medication used (only in MS), 
disease duration (only in MS), and EDSS at baseline (only in MS). The 
second block consisted of baseline normalized gray matter volume, 
white matter volume, and log-normalized lesion volume (only in MS). 
The third and final block included global and basal ganglia-DMN dFC 
measured with the summed difference and coefficient of variation at 
baseline. None of these predictors showed issues of collinearity prior to 
performing regression analysis. 

Based on the outcome of the regression model, we performed several 
post-hoc tests. Firstly, we calculated pairwise correlations between 
predictors that ended up as significant predictors in the regression model 
and fatigue scores (total score and subscales) for MS patients using 
Spearman’s rank correlation. Furthermore, we tested for the clinical 
relevance of the predictors of the regression model. To do so, the MS 
sample was divided into a non-fatigued and a fatigued group at both 
time points based on the CIS-20r cutoff value of 76 for severe fatigue, 
after which we tested group differences in the predictor values between 
healthy controls, non-fatigued patients, and fatigued patients (Bültmann 
et al., 2000). P-values lower than 0.05 were considered statistically 
significant. Due to the exploratory nature of the study and the strong 
interrelations between variables explored, results were not corrected for 
multiple testing. 

3. Results 

3.1. Demographics and sample description 

At baseline, the sample consisted of 35 MS patients and 19 healthy 
controls. At 6-month follow-up, one patient dropped-out as a result of 
discontinued interest in the study and another due to excessive fatigue. 
Both drop-outs were using first-line medication. No differences were 
found between MS patients and HCs for age, sex, and educational level 
(Table 1). The two medication groups (fingolimod and first-line disease- 
modifying treatment) showed no differences in mean disease duration, 
baseline and follow-up EDSS, and baseline and follow-up fatigue 
(Table S2). 

At baseline, no differences were found for anxiety and depression 
between MS patients and HCs (Table 2). At follow-up, no differences in 
anxiety were observed between patients and HCs, but depression levels 
were higher at follow-up in the MS patients compared to HCs (p =
0.006). No longitudinal changes in EDSS and HADS were observed 
within each group. 

3.2. Fatigue 

Fatigue scores are shown in Tables 2 and 3. At baseline, MS patients 
reported higher overall fatigue, measured with the CIS-20r total score (p 
= 0.001), compared to HCs. Significantly higher scores were seen on all 
fatigue subscales: subjective complaints (p = 0.002), motivation (p =

0.010), physical activity (p = 0.001), and concentration (p = 0.012). At 
baseline, 54.5% of MS patients had a total fatigue score of 76 or higher, 
the clinical cutoff value for severe fatigue (Bültmann et al., 2000). At 6- 
month follow-up, MS patients still exhibited greater total fatigue than 
HCs (p = 0.002). At follow-up, the percentage of MS patients with a 
fatigue score higher than the cutoff value for severe fatigue was 50.0%. 
No changes in fatigue scores between baseline and 6-month follow-up 
were observed for MS patients and HCs. 

3.3. MRI measures 

No differences in white matter volume were observed between 

Table 1 
Demographics at baseline.   

MS (n = 35) HC (n = 19) Test statistic p 

Age 42.83 (10.39) 41.38 (13.27) t(30.2) =
− 0.414  

0.682 

Sex (female/ 
male) 

20/15 11/8 χ2(1) = 0.003   0.957 

Educational 
levela 

6.00 
(5.00–7.00) 

6.00 
(5.00–7.00) 

χ2(2) = 4.586   0.101 

Disease duration 10.97 (7.00) – –  – 

Data shown here are mean (standard deviation). HC = healthy controls; MS =
multiple sclerosis. 

a Data are median (range) and were measured using the Verhage education 
scale. 

Table 2 
Clinical measures and questionnaires at baseline and 6-month follow-up.    

Group (n(Baseline), n(Follow-up)) Test 
statistic 

p   

MS (n = 35, n 
= 33) 

HC (n = 19, n 
= 19)   

EDSS Baseline 3.00 
(1.00–6.00) 

– – –  

Follow- 
up 

3.00 
(1.50–7.00)a 

– – –  

Test 
statistic 

Z = -0.804 –    

p 0.422 –    

HADS-A Baseline 5.50 
(0.00–12.00)b 

4.00 
(1.00–13.00) 

U = 247 0.156  

Follow- 
up 

6.00 
(0.00–17.00)a 

4.00 
(1.00–13.00) 

U = 252 0.306  

Test 
statistic 

Z = -0.138 Z = -0.884    

p 0.890 0.376    

HADS-D Baseline 3.00 
(0.00–14.00)b 

1.00 
(0.00–6.00) 

U = 230 0.080  

Follow- 
up 

3.00 
(0.00–9.00)a 

1.00 
(0.00–12.00) 

U =
165.5 

0.006*  

Test 
statistic 

Z = -0.420 Z = -0.354    

p 0.674 0.723    

CIS-20r 
Total 

Baseline 74.36 (29.33)c 46.72 (17.06)d U =
134.5 

0.001*  

Follow- 
up 

69.91 (27.01)a 45.11 (19.84) U = 147 0.002*  

Test 
statistic 

Z = -1.245 Z = -0.104    

p 0.213 0.918   

Data shown here are median (range). HC = healthy controls; MS = multiple 
sclerosis. EDSS = Expanded Disability Status Scale; HADS = Hospital Anxiety 
and Depression Scale; A = Anxiety; D = Depression. CIS-20r = Revised Checklist 
of Individual Strength. 

a n = 32. 
b n = 34. 
c n = 33. 
d n = 18. 

Table 3 
Cross-sectional fatigue measures of CIS-20r subscales at baseline.   

MS (n = 35) HC (n = 19) Test statistic p 

CIS-20r/S 34.12 (15.28)a 20.79 (8.87) U = 151.5  0.002* 
CIS-20r/M 12.58 (6.55)a 7.89 (3.60) U = 178  0.010* 
CIS-20r/P 10.00 (5.22)a 5.26 (2.40) U = 137  0.001* 
CIS-20r/C 17.69 (7.37)a 12.39 (6.96)b U = 170.5  0.012* 

Data shown here are mean (standard deviation). HC = healthy controls; MS =
multiple sclerosis. CIS-20r = Revised Checklist of Individual Strength; S =
subjective complaints; M = motivation; P = physical activity; C = concentration. 

a n = 33. 
b n = 18. 
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patients and HCs (Table 4). However, MS patients had lower cortical 
gray matter volume (p = 0.002), as well as lower subcortical gray matter 
volume (p < 0.001). HCs and MS patients showed no difference in global 
sFC at baseline. Global dFC in MS patients was higher using both the 
summed difference method (p = 0.025) and coefficient of variation (p =
0.012). None of the basal ganglia-DMN connectivity measures were 
different between MS patients and HCs. 

3.4. (Neural) correlates of fatigue 

Table 5 shows the results of the forward regression analysis for HCs 
and MS patients for total fatigue at baseline and at 6-month follow-up. 
For baseline fatigue in MS patients, the final regression model 
explained 26.0% of variance (F(2,30) = 5.269, p = 0.011) with EDSS 
(standardized β = 0.380, p = 0.022) and basal ganglia-DMN dFC coef
ficient of variation (standardized β = − 0.353, p = 0.032) selected as 
predictors. Adding basal ganglia-DMN dFC assessed with the coefficient 
of variation to the model on top of EDSS increased the variance 
explained by the model with 12.5% (F(1,30) = 5.053, p = 0.032). For 
baseline total fatigue in HCs, the final model explained 22.4% of the 
variance in fatigue (F(2,15) = 4.625, p = 0.047), with the only predictor 
for higher fatigue being male sex (standardized β = 0.474, p = 0.047). 

Fig. S1 shows the post-hoc correlation analysis of fatigue predictors 
(EDSS and basal ganglia-DMN dFC-cv) with fatigue subscales and total 
scores for MS patients. Basal ganglia-DMN dFC-cv showed a negative 
correlation with three out of five fatigue scores at baseline and did not 
correlate with disability. 

3.5. Post-hoc: predictor values in fatigued and non-fatigued patients 

In Table 6, the significant predictors of the regression model are 
compared between non-fatigued and fatigued MS patients based on the 
clinical cutoff value (CIS-20r ≥ 76), with healthy controls included as a 
reference point. There was a significant difference in basal ganglia-DMN 
dFC-cv between the three groups (p = 0.038). Post-hoc pairwise com
parisons showed a significant difference between healthy controls and 
non-fatigued patients (p = 0.013), but not between healthy controls and 
fatigued patients (p = 0.57) or between non-fatigued patients and 
fatigued patients (p = 0.056). EDSS was not different between non- 
fatigued and fatigued MS patients. 

4. Discussion 

In this study, dFC was measured in MS patients and HCs in order to 
explore its relationship with fatigue. Global dFC was higher in MS pa
tients than in HCs, though this measure did not relate to fatigue. Yet, 
basal ganglia-DMN dFC had additional explanatory value for total fa
tigue at baseline. In patients, lower basal ganglia-DMN dFC correlated 
with higher fatigue scores at baseline and did not correlate with 
disability. Lastly, non-fatigued MS patients showed higher basal ganglia- 
DMN dFC than healthy controls, whereas fatigued MS patients did not 
differ from either group. 

In line with previous literature describing functional connectivity 
alterations in MS patients overall, patients in this study showed greater 
global dFC compared to HCs. Previous research in MS patients has 
shown both locally and globally altered patterns of resting-state sFC 
compared to healthy controls (Bassi et al., 2007). Moreover, local dif
ferences in dFC have been found in MS patients compared to HCs, 
correlating with white matter lesion load (Huang et al., 2019). These 
alterations in sFC and dFC indicate widespread network changes in the 
brains of MS patients that co-occur with the development of pathology 
and structural damage. The exact nature of these network modifications 
are poorly understood and may represent a combination of 
inflammation-induced network disturbances and active functional 
network adaptations in response to these disturbances (Bassi et al., 
2007). Though global dFC was higher in MS patients than in healthy 
controls, no relationship between global dFC and fatigue was found. An 
explanation for this could be the high context-specificity of dFC that has 
been established earlier. The utility of dFC and its relationship to 
symptoms has been found to be highly dependent on regions and 
functional networks considered (Eijlers et al., 2019; van Geest et al., 
2018a, 2018b; d’Ambrosio et al., 2020). Moreover, fatigue in MS pa
tients may be a symptom that is better explained by disturbances in 
specific structural and functional networks (Manjaly et al., 2019). It is 
possible that global dFC (a rather general measure), though increased, 
does not have a specific relationship to fatigue in MS patients. 

Interestingly, region-specific dFC (i.e. basal ganglia, posterior 
cingulate cortex, medial prefrontal cortex, and precuneus) turned out to 
be a significant predictor for total fatigue independently of physical 
disability. More specifically, within the patient group, patients with 
lower basal ganglia-DMN dynamic connectivity displayed more severe 
fatigue. These findings can be placed into context by using healthy 
controls as a reference point and by using clinical cutoff scores for MS 
patients. Here, patients without severe fatigue showed higher basal 
ganglia-DMN dFC compared to healthy controls, whereas basal ganglia- 
DMN dFC between healthy controls and severely fatigued patients was 
not different. It is hypothesized that the optimal brain network depends 
on the right balance between stable segregation and dynamic integra
tion (Sporns, 2002). Thus, one may speculate that functional dynamics 
are important for the efficiency of the functional loops that connect the 
basal ganglia and cortical regions of the DMN. For this subset of con
nections, an increase in network dynamics in patients compared to 
controls could correspond to increased network efficiency. This increase 
in efficiency may compensate for brain-wide network impairments due 
to MS pathophysiology, and protect against severe fatigue. However, the 
exact relationship between dFC and fatigue (i.e. the role of network 
dynamics of these connections in relation to network efficiency) may 
differ between patients and controls. Alternatively, this increase could 
signal early network dysfunction which may actually lead to fatigue in 
the long run. These alternative conclusions cannot be ruled out based on 
our data, so interpretation of these results should be done with caution. 

Following the framework described above, the absence of these 
increased dynamics in the patient population could correspond to an 
inability to compensate for widespread network impairments. This 
would then relate to a higher degree of fatigue, as was found in the 
regression analysis. The absence of a difference in basal ganglia-DMN 
dFC between non-fatigued and fatigued MS patients could be the 

Table 4 
MRI measures at baseline.   

MS (n = 35) HC (n = 19) Test statistic p 

NWMV (ml) 679.16 
(44.46) 

697.24 
(39.08) 

t(52) = 1.487  0.143 

NCGMV (ml) 744.57 
(78.30) 

810.51 
(56.32) 

t(52) = 3.238  0.002* 

NSGMV (ml) 56.95 (8.50) 64.95 (4.49) t(52) = 4.524  <0.001* 
NLV (ml) 24.73 (17.28) – –  –  

Global sFC 0.24 (0.06) 0.26 (0.06) U = 232  0.069 
Global dFC-diff 3.38 (0.25) 3.21 (0.28) t(52) = − 2.316  0.025* 
Global dFC-cv 0.60 (0.04) 0.58 (0.04) U = 194  0.012*  

BD sFC 1.32 (0.22) 1.37 (0.24) t(52) = 0.822  0.415 
BD dFC-diff 0.95 (0.06) 0.93 (0.05) t(52) = − 1.325  0.191 
BD dFC-cv 0.91 (0.06) 0.87 (0.08) t(52) = − 1.810  0.076 

Data shown here are mean (standard deviation). HC = healthy controls; MS =
multiple sclerosis. NWMV = normalized white matter volume; NCGMV =
normalized cortical gray matter volume; NSGMV = normalized subcortical gray 
matter volume; NLV = normalized lesion volume; sFC = static functional con
nectivity; dFC-diff = dynamic functional connectivity – summed difference 
method; dFC-cv = dynamic functional connectivity – coefficient of variation; BD 
= basal ganglia-DMN. 
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result of decreased power due to the binarization of fatigue using the 
clinical cutoff. Our findings also further corroborate the role of the basal 
ganglia in fatigue, as has been found in prior research into structural and 
functional correlates of fatigue in MS as well as other neurological dis
eases (e.g. Parkinson’s disease) (Chaudhuri and Behan, 2000). The 
reason for this could be that the basal ganglia and their connections to 
cortical regions comprise functional loops important for goal-based 
behavior and motivated action, which might be impaired in fatigued 
patients across diseases (Manjaly et al., 2019). As such, the relationship 
of dFC of these connections with more specialized motivational aspects 
of fatigue is a potentially interesting topic for future studies. 

Besides a relationship between fatigue and dFC in MS patients, the 
present study also established a connection between fatigue and EDSS. 
This association between disability and fatigue in MS patients has been 
found previously and may be stronger with physical fatigue than with 
other types of fatigue (Biberacher et al., 2018). The current study did not 
identify global structural MRI measures such as white matter volume, 
gray matter volume, and white matter lesion volume as predictors for 
fatigue in MS patients. The relationship between fatigue and structural 
MRI measures has been highly debated in prior research. Although some 
studies did find global structural damage (lower gray and white matter 
volume and higher lesion volume) to be higher in fatigued MS patients, 
most studies could not find a similar association (Biberacher et al., 2018; 
Tedeschi et al., 2007; Nourbakhsh et al., 2016; Bakshi et al., 1999). Yet, 
more recent studies have rather consistently found associations between 
fatigue and structural damage to specific parietal and frontal regions 
(Nourbakhsh et al., 2016; Sepulcre et al., 2009; Pellicano et al., 2010). 
These findings may indicate that atrophy and lesion formation in spe
cific locations are better predictors of the development of fatigue com
plaints than global structural damage. This description of fatigue based 
on local disturbances is consistent with the present finding that dFC of 
specific regions is a better predictor of fatigue than global dynamic 
connectivity. An interesting direction for future studies, based on this 
finding, would be the three-way relationship of local structural damage 
(white matter lesions, gray matter lesions, or atrophy) with dynamic 
functional connectivity and fatigue in MS patients. 

This study is not without limitations. First of all, in this study we 
analyzed dFC using a sliding-window technique, which has some 

inherent methodological caveats (Lurie et al., 2020). Measures of dFC 
are sensitive to methodological and physiological noise, which could 
have confounded our analysis. To the best of our abilities, we tried to 
control for these factors by calculating multiple dFC measures, using a 
tapered sliding window, and implementing a null model for testing for 
dFC. Another potential confounder is hemispheric asymmetry due to 
handedness, though this effect may be limited by our bilateral approach 
in the analysis of regional connectivity (Liu et al., 2009). Overall, future 
studies should use longer scans with more data points, advanced mea
sures of dFC, and in-depth analysis of different resting-state functional 
networks. These studies could further clarify the relationship between 
dFC and fatigue in MS patients using an approach based on network 
analysis and graph theory. Secondly, as we did not include sFC in the 
regression model in order to prevent collinearity, we cannot draw any 
conclusions about the additional relevance of sFC in a combination with 
dFC and fatigue. Lastly, the patient group was small and rather het
erogeneous. For instance, we included patients that recently switched to 
second-line medication, who likely experienced a more aggressive dis
ease course prior to the study. The change in medication could have 
influenced dFC or fatigue severity through differences in moderation of 
acute inflammation and lesion formation. Though our study did not 
show changes in any clinical measures for the two medication groups 
from baseline to follow-up, future studies into the relationship between 
dynamic connectivity and fatigue could try to include a larger patient 
group with dFC measurements at multiple time points. This will increase 
statistical power and allow for a more nuanced analysis of the rela
tionship between dynamic connectivity and fatigue in different sub
populations. These studies should also try to address fatigue in the 
context of comorbidities known to accompany fatigue, such as depres
sion and sleep disorders. Finally, future studies could look at the 
translatability of the relationship between dynamic connectivity and 
fatigue to different clinical populations or healthy populations. 

5. Conclusion 

The brain network of MS patients is globally more dynamic than the 
healthy brain, which does not relate to fatigue in either group. However, 
lower dFC of specific connections between the basal ganglia and cortical 
regions within the DMN relates to greater baseline fatigue in MS pa
tients. These findings indicate that dFC may be used as an additional 
neural correlate of fatigue in MS and highlight the regional specificity of 
dFC (in this case, of the basal ganglia and DMN) in explaining this 
symptom. Gaining further understanding of dFC as a neural correlate of 
fatigue could help in elucidating the mechanisms behind fatigue in MS, 
which are still poorly captured by conventional MRI measures. Even
tually, future studies could explore whether dFC may be used as a po
tential target for early management of fatigue in the MS population. 
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