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Summary
Insights into the immunopathogenesis of chronic HBV infections are fundamental in the quest for
novel treatment approaches aimed at a functional cure. While much is known about the ineffective
HBV-specific T-cell responses that characterise persistent HBV replication, B cells have been left
largely understudied. However, an important role for humoral immunity during the natural history
of HBV infections, as well as after functional cure, has been inadvertently revealed by the occur-
rence of HBV flares following B cell-depleting treatments. Herein, we review our current under-
standing of the role of the humoral immune response in chronic HBV, both at the level of HBV-
specific antibody production and at the phenotypic and broader functional level of B cells. The
recent development of fluorescently labelled HBV proteins has given us unprecedented insights into
the phenotype and function of HBsAg- and HBcAg-specific B cells. This should fuel novel research
into the mechanisms behind dysfunctional HBsAg-specific and fluctuating, possibly pathogenic,
HBcAg-specific B-cell responses in chronic HBV. Finally, novel immunomodulatory treatments that
partly target B cells are currently in clinical development, but a detailed assessment of their impact
on HBV-specific B-cell responses is lacking. We plead for a rehabilitation of B-cell studies related to
both the natural history of HBV and treatment development programmes.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
Globally 257 million people face a lifetime risk of
decompensated liver disease or hepatocellular
carcinoma due to chronic HBV infection. First-line
treatment with nucleos(t)ide analogues (NAs)
suppresses viral replication and improves clinical
outcomes, but seldom leads to serological clear-
ance of HBsAg.1

Over the last 2 decades, most studies on HBV
pathogenesis have focused on T-cell responses and
the lack of clearance in the chronic phase caused by
virus-specific T-cell exhaustion. B cells have long
been neglected, although several observations
indicate humoral responses to be relevant in
chronic HBV: i) HBsAg-seroconversion is regarded
as a successful treatment endpoint2; ii) HBeAg
seroconversion heralds the transition between
clinical phases and comes with improved immune
control3; and iii) B cell-depleting treatments, such
as rituximab, may lead to HBsAg seroreversion and
fatal HBV flares, even in patients with a resolved
infection.4

Insight into the phenotype and function of B
cells that specifically target HBV antigens is how-
ever limited. Quantification of HBV-specific B cells
has long depended on their in vitro secretion of
HBV-binding antibodies which can be detected by
ELISA or ELISPOT assays.5 However, this technique
does not allow for direct ex vivo enumeration or
phenotypic characterisation, as memory B cells
need to be differentiated in vitro into antibody-
secreting cells. Recently, fluorescently labelled
HBsAg and HBcAg baits have been developed that
specifically bind to their cognate B-cell receptor
(BCR) on memory B cells. For the first time since
the discovery of HBV, this has enabled the quanti-
fication and functional characterisation of HBV-
specific B cells.6-9 In addition, several novel thera-
peutic approaches are being developed for chronic
HBV that partly target B cells, such as programmed
cell death 1 (PD-1) immune checkpoint inhibitors,
and Toll-like receptor (TLR) 7 and TLR9 agonists
(reviewed in10). Herein, we review our current
understanding of the role of the humoral immune
response in chronic HBV, both at the level of HBV-
specific antibody production and at the phenotypic
and broader functional level of B cells. Finally, we
offer a perspective on the future therapeutic im-
plications of these recent insights.

Antibodies against hepatitis B viral
antigens
Studies on serum antibodies specific for different
HBV antigens have been the first to provide insight
into antiviral B-cell responses. Antibody produc-
(T. Vanwolleghem).
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Key points

� Serum HBV-specific antibodies against the HBV surface (HBsAg), e
(HBeAg) and core (HBcAg) protein correlate with immune protection,
with the transition between clinical phases and with nucleos(t)ide
analogue treatment responses.

� Extrafollicular memory B-cell formation may take place in the livers of
patients with chronic HBV.

� Global memory B cells, in chronic hepatitis B (CHB), are activated and
present some level of exhaustion, suggesting a process of over-
stimulation, but not hindering humoral immune responses to other in-
fections or vaccines.

� HBsAg-specific B cells are defective at antibody secretion early after
HBV exposure and remain so until viral clearance.

� HBcAg-specific B cells remain abundant, fully functional and associate
with clinical disease phases.

� Some germline-encoded HBcAg-directed B-cell responses can lead to
fulminant liver failure via antibody-dependent cytotoxicity.

� Novel treatments aimed at functional cure should include a thorough
characterisation of hepatitis B-specific B cell responses.

Review
tion against some HBV antigens correlates with immune control
by neutralising (sub)viral particles but may also result in
antibody-dependent cellular cytotoxicity (ADCC) by binding to
surface expressed viral epitopes.11,12

The HBV genome (Fig. 1) is organised into 4 partially over-
lapping open reading frames (ORFs): the S ORF, encoding HBsAg;
the X ORF, encoding the HBx protein; the P ORF, encoding HBV
polymerase; and the C ORF, encoding HBeAg, HBcAg and a pre-
core protein (p22cr). Together, the latter 3 can be detected by a
single hepatitis B core-related antigen (HBcrAg) assay.13 As a
decoy antigen, HBsAg is secreted at much higher concentrations
– up to 105 times higher – than infectious HBV virions. The
HBeAg is secreted as a dimer, early in the course of wild-type
HBV infections. The kinetics, intracellular trafficking and
possible secretion of HBcAg as a naked capsid remain a matter of
debate.14 The HBx protein is suggested to play a role in hep-
atocarcinogenesis in patients with chronic hepatitis B (CHB).15,16

Antibodies against HBcAg, HBeAg and HBsAg bear diagnostic
importance in the clinical characterisation of CHB infections and
are therefore a focus of this review. Antibodies to the HBx protein
and HBV polymerase,16,17 can be detected as well, but little is
known about their clinical relevance. Antibodies against the HBV
polymerase may reflect ongoing viral replication, whereas anti-
bodies against the HBx protein are mostly found in patients with
hepatocellular carcinoma. Eventually the latter may also serve as
a surrogate marker for cirrhosis development.18 An overview of
the different HBV-specific antibodies is provided in Fig. 1.

Antibodies against HBsAg
Located on HBV’s envelope, the HBsAg consists of a mixture of 3
proteins encoded by a single ORF. Three in frame standing start
codons define the pre-S1, pre-S2 and S region. The latter region is
translated into the small surface protein (S-protein). The middle
surface protein contains the S domain and an additional pre-S2
domain, while the large surface protein encompasses the pre-
S1, pre-S2 and S domains (Fig. 1).19 Epitopes not present on the
middle or small S proteins can be recognised by specific mono-
clonal antibodies, but their clinical significance needs to be
established.20 Therefore current routine clinical assays do not
discriminate between antibodies specific for any of the 3 surface
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proteins and are reported as anti-hepatitis B surface antibodies
(HBsAb).21

HBsAb have been a focus of intense research ever since the
early discovery of HBV, given their association with a protective
immune response. Antibodies against the so-called “a” deter-
minant, which is part of the major hydrophilic loop of the S-
protein, inhibit binding to heparan sulfate proteoglycans on the
surface of hepatocytes and thereby have virus neutralising ca-
pacity.22 Antibodies against a highly conserved motif in the pre-
S1 domain have additional strong neutralising activity by
inhibiting the interaction with the sodium taurochlorate
cotransporting polypeptide (NTCP) hepatocyte entry receptor23

(Fig. 1). In addition, in vitro and mouse model studies suggest
that intracellular expressed or internalised HBsAb may also block
the release of HBV particles from infected hepatocytes.24,25

In HBsAg vaccinees, HBsAb levels >10 mIU/ml are considered a
correlate of clinical protection.26 Importantly, vaccine-induced
HBsAb alone do not provide sterilising immunity, as the current
recombinant HBV vaccine is exclusively composed of the S-pro-
tein, thereby eliciting antibodies that may inhibit the binding of
the “a” determinant, but not the interaction with the NTCP-
receptor (Fig. 1).22,27 In a study of 90 vaccinated healthcare
workers, occupational exposure to HBV 10-28 years after vacci-
nation was associated with HBV core- and polymerase-specific T-
cell responses despite protective HBsAb levels, suggestive of self-
limiting HBV breakthrough infections.28 Furthermore, HBsAb may
not protect against infection with HBsAg mutants.29 Engineered
viruses with a HBV polymerase mutation, resulting in changes in
the overlapping HBsAg protein, were able to infect previously
vaccinated chimpanzees. Although these HBV S gene mutants can
be selected by first generation NAs, no significant spread among
the HBV-vaccinated population has been observed thus far.30

Following seroclearance of HBsAg, free HBsAb mostly appear
in plasma as a hallmark of resolved CHB infection. While routine
assays are not capable of detecting HBsAb-HBsAg immune
complexes, PEG precipitation enabled the quantification of
circulating immune complexes in a cohort of 25 patients with
CHB, the kinetics of which seemed to correlate with ALT peaks
and ultimate HBsAg loss.31,32 In addition, a proportion of chronic
HBsAg carriers have concurrent free HBsAb in their plasma.33,34

These findings indicate that the HBsAg-directed humoral
response persists throughout a CHB infection but is of inade-
quate quality and/or magnitude to neutralise the overwhelming
amount of subviral HBsAg particles. Similarly, attempts to clear a
CHB infection using exogenous HBsAb have been disappointing,
only resulting in temporary reductions in HBsAg levels.35 How-
ever, in a preventive clinical setting, passive immunisation with
HBsAb-enriched plasma preparations is the cornerstone to
circumvent HBV (re)infections in children born to CHB-infected
mothers or in patients with CHB who receive a liver trans-
plant.36,37 Exogenous HBsAb may therefore represent an attrac-
tive addendum to novel therapies that already substantially
reduce the production or secretion of HBsAg.
Antibodies against HBeAg
HBeAg is a small polypeptide not needed for viral replication or
infection. Secreted HBeAg acts as a tolerogen capable of down-
regulating HBcAg-specific T-cell responses in transgenic
mice.3,38,39 Similarly, in a large cohort of patients with CHB,
weaker HBcAg-specific T-cell responses were observed in
HBeAg+ compared to HBeAg- patients.40
2vol. 4 j 100398
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Fig. 1. Hepatitis B virus. (A) Overview of the structure of the HBV genome, (B) the structure of HBsAg and (C) characteristics of antibodies against HBV’s viral
antigens (C). ds, double stranded; HBcAb, antibodies against HBcAg; HBeAg, antibodies against HBeAg; HBsAb, antibodies against HBsAg; NTCP, sodium taur-
ochlorate cotransporting peptide; ORF, open reading frame.
HBeAg seroconversion, defined as the seroclearance of HBeAg
and the appearance of antibodies against HBeAg (HBeAb) occurs
gradually in the natural history of CHB infection, and is aided by
the selection of precore stop codon mutant viruses that lose the
ability to secrete HBeAg. This process coincides with an
increasing diversity in HBV quasispecies, as was shown in a
longitudinal follow-up study of 15 HBeAg-positive patients with
CHB, 8 of whom went on to develop HBeAg seroconversion.41

HBeAb cannot neutralise HBV virions. Instead, passive immuni-
sation with HBeAb in chimpanzees was shown to induce pro-
longed hepatitis, hinting towards a detrimental effect.42

Nonetheless, HBeAg seroconversion and the transition to the
HBeAg-negative CHB infection phase coincides with a substan-
tially improved immune control, resulting in a strong tran-
scriptional suppression of covalently closed circular DNA
(cccDNA).43 However, HBeAg-seroconverted patients may
develop chronic HBeAg-negative hepatitis (ENEG), characterised
JHEP Reports 2022
by increased cccDNA transcriptional activity, viral replication,
liver inflammation and alanine aminotransferase (ALT) levels.
The risk hereto varies with HBV genotype and inherently also
with geographical region, due to the differential distribution of
HBV genotypes globally.43,44

Antibodies against HBcAg
The inner nucleocapsid of HBV virions is composed of 240 copies
of the viral capsid, termed the HBcAg, which is not actively
secreted in blood.45 HBcAg was found to be a superantigen
capable of eliciting both T cell-dependent and -independent
immune responses,46 suggesting a direct interaction between
the protein and B cells.

Antibodies against the HBcAg (HBcAb) are the first to appear
upon infection and persist for decades even after cure. Like
HBeAb, HBcAb do not neutralise viral particles and passive
immunisation may even prolong episodes of hepatitis.42 Levels of
3vol. 4 j 100398
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core-specific IgM and IgG antibodies bear clinical relevance, as
they can differentiate between acute HBV infection and flares of
CHB,47 and may be associated with NA treatment responses.48,49

Furthermore, HBcAb levels tend to be higher in disease phases
with high levels of viral replication, inflammation and signs of
liver damage, the so-called immune active and ENEG clinical
phases.9 Unlike HBsAb, high levels of HBcAb persist throughout
and after a CHB infection and can circulate as HBV RNA-
containing capsid-antibody complexes.9,50
Phenotype and function of B cells in CHB
Until recently, our knowledge on the role of B cells during CHB
was limited to the study of global B cells and HBV-specific
antibody production. As only a minority of B cells are HBV-
specific, changes in the phenotype and function of global B
cells in CHB are ascribed to indirect effects of secreted viral
proteins and the accompanying inflammatory state. With the
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introduction of novel bait-based approaches, it is now possible to
directly examine memory B cells that bind to HBsAg or HBcAg.6-9

In the next section, we give a high-level overview of the het-
erogeneity of B cells and their function, after which we focus on
B cells during CHB, both on a global level as well as at the HBV-
specific level. A broad overview of the phenotype and function of
the different B-cell subsets and HBV-specific B cells is depicted in
Fig. 2.
Heterogeneity of memory B cells and other B cell subsets
After binding of a cognate antigen, naïve B cells differentiate into
memory B cells (MBCs), resulting in a novel BCR of mostly
switched isotype, a higher affinity and a faster recall response
upon antigen re-encounter.51 The diversity of affinity-matured
BCRs allows MBCs to respond to a virtually infinite number of
different antigens. Once differentiated into plasma cells, the
antibody secretory rate is astonishingly high at an estimated
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5x107 molecules per hour.52 Both this antibody secretory speed
and the BCR diversity underscore the tremendous power of hu-
moral immunity.

According to the classical view, the process of BCR somatic
hypermutation during which MBCs mature, exclusively takes
place in the germinal centres of the secondary lymphoid organs,
such as the spleen and lymph nodes. However, it is now accepted
that adaptive immune responses can also occur outside the
spleen or lymph nodes, driven by constant antigen exposure.
This extrafollicular maturation of naïve B cells into MBCs is
increasingly recognised in infections where germinal centre
formation is delayed or inhibited. In fact, most of the early
antibody formation upon pathogen encounter will be extra-
follicular in origin, before genuine germinal centres are
formed.53 If the infection persists (as in CHB) or is pervasive (as
in influenza or COVID-19 pneumonia), aggregates of lymphoid
cells in the infected parenchyma might organise into structures
resembling the T- and B-cell zones of lymph nodes.54 In the liver,
such periportal lymphoid follicles are characteristic of chronic
HCV infections, but are also present in up to a quarter of CHB
infections.55

Affinity-matured MBCs recirculate and patrol the body, and
therefore can be studied in peripheral blood. Importantly, while
extrafollicular B-cell responses might be especially relevant in
chronic viral infections, there remains a lot to be learned about
their phenotype and function, given the paucity of human tissue
sampling studies. In animal models, extrafollicular MBC re-
sponses were found to yield generally lower affinity BCRs
compared to germinal centre MBCs.56 These observations call for
further studies on intrahepatic B cells in CHB and caution against
the generalisation of peripheral blood studies.

Apart from their ontogeny and BCR affinity, subtypes of MBCs
have been identified based on their BCR isotype, the surface
marker expression of CD27 and the complement receptor type 2
(CD21), whose reduced expression is a marker of activation.
CD27 is regarded as the classical MBC marker, but in certain
inflammatory diseases, such as chronic infections and auto-
immune pathology, CD27-negative MBCs have been identi-
fied.51 Non-isotype switched MBCs express IgM and/or IgD,
while IgG, IgA or IgE expression defines a fully mature, isotype
switched BCR. Additional surface markers, such as CD24 and
CD38, are required for a complete subtyping of circulating B cells,
although consistent classification remains challenging.57

Next to their indispensable antibody-producing role, B cells
are also capable of presenting antigens to T cells,58 are required
for the development of lymphoid tissues, and can secrete cyto-
kines that may incite or downregulate secondary immune re-
sponses.59,60 One specific subtype of cytokine-producing B cells,
so-called regulatory B cells, suppress cytotoxic T cells and induce
regulatory T cells, via the production of interleukin (IL)-10 and
transforming growth factor-b.61-63 Elevated levels of IL-10 have
been observed in patients with HIV or HCV and in mouse studies
of chronic lymphocytic choriomeningitis virus infections. These
were found to correlate with diminished T-cell activity and the
failure to control viral replication.64,65

Global B cells in CHB: activated vs. exhausted?
Early studies found circulating B cells to be hyperactivated in
patients with CHB compared to healthy controls (HCs), with
higher expression levels of the early activation marker CD69, the
transferrin receptor CD71 and the liver-homing marker CXCR3
(CD183); higher in vitro-induced antibody production, but
JHEP Reports 2022
marginally lower proliferation capacities.66,67 Importantly, these
phenotyping studies did not apply the different surface markers
that would enable a full subtyping of MBCs, such as CD21 or IgD.
Since the discovery, in patients with HIV, of a population of
exhausted circulating human MBCs that proliferate poorly, are
deficient at antibody production and lack CD21 and CD27, more
attention has been given to these so-called atypical MBCs
(AtMBCs) in chronic infections.68,69

Chronic immune activation and inflammation are suggested
to drive the expansion of these AtMBCs, which upregulate an
array of inhibitory genes including Fc receptor-like 5 (FcRL5),
FcRL3 and Siglec6 and contribute to deficient virus-specific im-
mune responses.68 Recent multiparameter FACS studies applying
this subtyping found the fraction of AtMBCs to reach 5-6% of
global B cells in patients with acute or chronic HBV infection,
compared to 2-4% in healthy vaccinees.6,7,70 The AtMBC fraction
of global B cells tended to decline with progressing clinical
phases and showed a slight positive correlation with HBV DNA
levels.6,7,70 Phenotypically, AtMBCs in CHB fairly closely resem-
bled those initially described in HIV, with the expression of T-bet
(T-box 21 transcription factor), CD11c, and other members of the
FcRL-family.7 Compared to conventional MBCs, these AtMBCs
differentiated less well into plasma cells, had a lower calcium
flux upon BCR engagement and produced less antiviral cytokines
(IL-6 and tumour-necrosis factor-a); all pointing towards an
exhausted phenotype.6,7

However, the overall functional consequence of global AtMBC
enrichment might be subtle, as the in vitro IgG production ca-
pacity of peripheral blood mononuclear cells (PBMCs) is pre-
served in patients with CHB,9,66,67 and vaccine-induced hepatitis
A seroconversion rates in patients with CHB are comparable to
HCs.71 Furthermore, COVID-19 mortality is not higher in patients
with past or current HBV infection, despite recent evidence on
the importance of neutralising antibody responses.72,73 Never-
theless, effects might be found in other B-cell functions, such as
antigen presentation or cytokine production.

Phenotypically, global B cells do not differ between clinical
phases of a CHB infection.6,7,9,74 However, in bulk transcriptome
studies, we identified an immune gene signature in the blood
and liver of patients with CHB consisting of many B cell-related
genes that correlated with distinct clinical phases.74,75 Specif-
ically, the transition from the immune tolerant to the immune
active phase was characterised by a more pronounced activity of
the B-cell compartment, compared to the T-cell compartment.
Whereas this role is not entirely unexpected during HBeAg
seroconversion, subsequent clinical phases showed significant B-
cell activities as well.74,75 We recently corroborated this by per-
forming RNA sequencing on sorted intrahepatic and peripheral
global CD19+ B cells. The global B-cell transcriptome of CHB
showed an activated status in the immune active and inactive
carrier phase, with upregulated CD83, CD300c, CXCR4, CD69
levels and various innate stimulating genes.76 An activating
signature was also found by Salimzadeh et al. in sorted MBC
subsets from patients with CHB, e.g. upregulated CD83 levels.6 In
addition, we found gene expression profiles of intrahepatic B
cells from patients with CHB to be very different from their
paired peripheral counterparts. The former upregulated the BCR
and several immune signalling pathways compared to peripheral
blood B lymphocytes, suggesting a process of extrafollicular MBC
formation.53,76 Conversely, Burton et al. found intrahepatic B cells
to be enriched in AtMBCs.7
5vol. 4 j 100398
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Overall, the combination of activated global B cells and AtMBC
enrichment suggests a process of overstimulation resulting in
some level of phenotypic and functional exhaustion. A similar
mechanism has been described for viral-specific T cells during
chronic antigen exposure.77 However, this inhibition can be
overcome via strong non-BCR signals and PD-1 blockade in vi-
tro.6,7 Furthermore, global B-cell function remains intact based
on overall in vitro antibody production levels and humoral im-
mune responses to other infections or vaccines.

In addition, the observed phenotypic and transcriptome dif-
ferences between liver and blood samples suggest that B-cell
reprogramming during CHB is tissue specific and caution against
the overinterpretation of peripheral blood studies.

HBsAg-specific B cells: defective and partially rescuable
Early after the discovery and clinical application of the neutral-
ising capacity of HBsAb, isolated PBMCs from patients with CHB
were found to be defective at producing these antibodies in
patients affected by CHB.5,37 Since then, numerous studies have
confirmed these findings, and showed that in vitro HBsAb pro-
duction was significantly higher in vaccinated HCs, restored
following HBsAg-seroconversion and correlated with serum
HBsAb titres.6,7,9,67,78 As these assays depend on in vitro secretion
of HBsAb after polyclonal stimulation of total PBMCs, until very
recently, it was not clear whether the circulating MBC pool
specific for HBsAg was depleted or dysfunctional during CHB.
The advent of fluorescently labelled HBsAg baits that bind to
their cognate HBsAg BCR on MBCs illustrated for the first time
that the number of circulating HBsAg-specific MBCs is aston-
ishingly similar between acute, chronic and resolved HBV in-
fections and even in successfully vaccinated HCs.6,7 Furthermore,
the frequency of these HBsAg-specific MBCs did not differ across
a range of different clinical parameters, such as HBsAg, HBV DNA
or ALT levels.6,7 On average these cells accounted for 0.1% to 0.3%
of total CD19 B cells in CHB.6-9 Importantly, 2 different HBsAg
bait stainings have been applied, accounting for the wide range
of circulating HBsAg-specific B cells between reports. A dual
staining strategy with DyLight550- and DyLight650-labelled
HBsAg baits resulted in negligeable background staining (up to
0.01% of total B cells), with a median 0.1% of circulating B cells
found to be dual HBsAg bait-positive in patients with CHB.6,8,9

The use of a single AF488-HBsAg bait was associated with un-
specific staining of up to 0.2% of B cells in unexposed individuals.
Still a clearly higher fraction of single bait HBsAg-positive B cells
could be discerned above background in both vaccinated HCs
and patients with CHB.7 Furthermore, the specificity of the
staining was corroborated after sorted HBsAg bait-positive B
cells, but not sorted HBsAg bait-negative B cells, were shown to
produce HBsAb in vitro.6,7 Importantly, the in vitro HBsAb pro-
duction per sorted HBsAg-binding B cell was significantly lower
in patients with CHB compared to vaccinated HCs, and required
co-culture with at least IL-2, IL-21 and CD40 ligand-expressing
cells to differentiate the anergic HBsAg-specific B cells into
HBsAb-secreting plasma cells.6,7

In patients with CHB a mean 15-30% of HBsAg-specific B cells
presented a CD27- CD21- AtMBC phenotype and expressed high
levels of PD-1 and other inhibitory markers. In contrast, a con-
ventional MBC phenotype (CD27+/CD21+) was the principal
component of HBsAg-specific B cells in vaccinated HCs. Impor-
tantly however, the HBsAb secretory function of HBsAg-specific B
cells could be partially restored in vitro by co-culture with PD-1
blocking antibodies.6,7
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Overall, these studies demonstrated that the HBsAg-directed
humoral immune response early after HBV exposure is defec-
tive at producing HBsAb and remains so, irrespective of the
outcome of the infection. This defect can be restored partially in
vitro by B cell-maturing cytokines and PD-1 blockade and
completely after HBsAg clearance in vivo. The onset and mech-
anisms driving this exhaustion are currently unclear and further
studies into the kinetics and determinants of this process are
warranted.

HBcAg-specific B cells: abundant and associated with disease
phase
Using a similar dual DyLight550 and DyLight650 bait staining
strategy, we and others recently demonstrated that HBcAg-
specific B cells circulate at a roughly 10-fold higher frequency
than HBsAg-specific B cells in the peripheral blood of patients
with CHB and, unlike HBsAg-specific B cells, mature efficiently
into antibody-secreting cells.8,9 These dual HBcAg bait-positive
cells present a CD27+ classical memory, IgG+ class-switched,
MBC profile and have slightly higher CD69 expression levels
compared to global memory B cells. HBcAg-specific MBCs are
phenotypically more activated compared to HBsAg-specific B
cells, with a higher expression of CD95 and a lower expression of
IL-10Ra. Furthermore, the fraction of HBcAg-specific B cells with
a CD27- CD21- AtMBC profile was significantly lower compared
to HBsAg-specific B cells.8,9

Interestingly, the frequency of circulating HBcAg-specific
MBCs increased during hepatitis disease flares and was drasti-
cally reduced upon ALT normalisation and HBV DNA suppression
during antiviral treatment.8,9 In untreated CHB infections, HBcAb
levels (both IgM and IgG) have been found to correlate with ALT
kinetics.79-81 With the application of HBcAg bait stainings, it
became clear that the number of circulating HBcAg-specific
MBCs follow the fluctuating serum HBcAb patterns. Indeed, us-
ing ELISPOT assays, it was shown that in vitro HBcAb production
by total PBMCs correlated with ALT levels on the one hand and
the number of circulating HBcAg MBCs on the other hand.9

Furthermore, in clinical disease phases with higher ALT levels,
HBcAg-specific MBCs showed a higher activated memory
phenotype, compared to patients with low ALT. Overall, this
corroborates an association between HBcAg-specific humoral
immunity and the natural history of CHB and opens avenues for
the use of these B-cell responses as biomarkers of immune
activity.

Nevertheless, these associations do not allow us to draw a
conclusion on the causal relationship between HBcAg-specific
humoral immune responses and disease activity. As HBcAg is
predominantly expressed intracellularly, HBcAg-specific B cells
might encounter their cognate antigen less frequently, until
HBcAg is released from lysed hepatocytes during cytotoxic T-cell
responses.82 This would imply that HBcAg-specific B-cell re-
sponses are bystanders and do not incite the initial round of cell
lysis. The contrary has however been observed in HBV-induced
acute liver failure (HBV-ALF). In an elegant study of 4 cases
with HBV-ALF, an intrahepatic dominant B-cell gene signature
was found, together with an extensive infiltration of CD27+ B
cells, producing germline IgM and IgG antibodies specific for
HBcAg, accompanied by complement deposition. Liver T-cell
infiltration was low, supporting the notion of a T-cell indepen-
dent germline-encoded B-cell response towards HBcAg in HBV-
ALF which leads to ADCC and massive necrosis.83,84 Recently
this phenomenon was also found to occur in experimental
6vol. 4 j 100398



fulminant HBV infections with precore HBV mutants in chim-
panzees.85 It is unclear whether a similar mechanism may be
involved – albeit partly – in ALT flares during CHB infections,
which have been ascribed to CD8 T-cell and innate immune re-
sponses but are still not fully understood.86 Earlier studies have
documented HBcAg-HBcAb-complement colocalisation in the
livers of patients with CHB, suggesting that complement-
mediated cytotoxicity may also occur in this setting.87 Using
newly available HBV bait techniques and longitudinal samples
from patients with CHB should help to unravel the contribution
of humoral immunity to CHB flares.

Importantly, the quantification of HBcAg-specific MBCs
required the exclusion of CD27-CD21+ naïve B cells, as HBcAg can
bind to a conserved motif of the naïve BCR in a non-canonical
manner.88,89 Indeed, naïve B cells of non-exposed vaccinated
HCs could bind HBcAg baits but were unable to secrete HBcAb
upon in vitro culture.8,9 HBcAg particles are known to behave as a
T-cell independent superantigen, capable of cross-linking the
naïve BCR.46 Elegant mouse studies have demonstrated that
HBcAg activates naïve murine B cells without T-cell help, but is
also efficiently cross presented to T cells, thereby surpassing the
ability of other professional antigen-presenting cells, such as
dendritic cells.46,90,91 In this respect, it is relevant to note that the
transcriptome of sorted HBcAg-specific B cells showed an upre-
gulation of genes involved in antigen presentation.8

The study of the different functions of HBcAg-specific B cells
is still in its infancy. Further co-culturing experiments are ex-
pected to unravel whether HBcAg-specific B cells have a pre-
dominant antibody secretory, antigen presenting or regulatory
effector function.

Heterogeneity in HBcAg- and HBsAg-specific adaptive
immune responses
As is evident from the aforementioned studies, HBsAg- and
HBcAg-specific B-cell responses differ profoundly in magnitude,
phenotype and function. Contrary to this, their transcriptome
was found to be very similar with only 34 differentially
expressed genes (DEGs) out of 348 detected genes. Furthermore,
in comparison to sorted global MBCs, the vast majority of DEGs
were shared between both HBV-specific B-cell populations.
Amongst others, genes linked to innate immune activation, the
IFN-response and antigen cross-presentation were upregulated
in both HBsAg- and HBcAg-specific B cells.8 These findings point
towards important antibody-independent functions of HBV-
specific B cells in CHB. However, these results should be inter-
preted with caution, as the sole binding of the HBV bait to its BCR
might induce changes to the transcriptome of the sorted bait-
binding B cells, which would not be observed in sorted global
MBCs.

In support of the differences between HBsAg- and HBcAg-
specific B cells, a similar heterogeneity in virus-specific CD8 T-
cell phenotype and responsiveness was identified in recent
studies. Compared to HBV-specific T cells targeting the HBV
polymerase, core-specific T cells presented a less pronounced
exhaustion state and were better equipped to proliferate
following antigen stimulation.92-94 Notably, similar to the hu-
moral response against HBsAg, these studies also found a low
HBsAg-specific T-cell responsiveness. The reason for these het-
erogeneous virus-specific adaptive immune responses can pri-
marily be ascribed to different expression levels of viral surface,
core and polymerase antigens in infected hepatocytes, in addi-
tion to distinct secretory routes for subviral particles and
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proteins.14,95 A large excess of HBsAg is known to be secreted by
infected hepatocytes, but the secretion of HBcAg as naked viral
particles is still widely debated and anticipated to be an artifact
of hepatoma cell cultures.13,50 The current view is that capsid-
antibody complexes in the serum of patients with CHB would
result from release of HBcAg from lysed hepatocytes and not
from secretion of bona fide HBcAg particles devoid of a viral
envelope.50,82 Apart from heterogeneity in viral antigen expres-
sion, a differential antigen presentation by professional antigen-
presenting cells, like Kupffer cells, vs. hepatocytes might
contribute to the observed differences in HBcAg- and HBsAg-
specific adaptive immune responses, as shown recently in
mouse studies.96 Finally, the intrinsic properties of HBcAg, as a
superantigen, might explain why pronounced immune responses
are incited even after limited antigen exposure, as is expected
after the lysis of a limited number of infected hepatocytes.46,82

Overall, these findings, support the notion of a humoral im-
mune response in CHB that is predominantly directed towards
the core and not the envelope of the virion.

HBV flares after B-cell depletion
Of all immunosuppressive therapies, the highest HBV reac-
tivation rates (of >−10%) are reported following B cell-depleting
treatments, even in patients with a resolved infection. The
exact mechanism by which waning B-cell responses lead to HBV
flares remains to be elucidated, although most B cell-depleting
treatments are combined with other immunosuppressive med-
ications, thereby also partially inhibiting T-cell and innate re-
sponses.97 The anti-CD20 monoclonal antibody rituximab
induces a depletion of circulating naïve and memory B cells via
FcR-mediated ADCC, which is carried out by the monocyte-
macrophage system, leading to impaired recall antibody re-
sponses.98,99 Importantly, anti-CD20 treatment is fairly well
tolerated, with no apparent increase in infectious complications,
as serum antibody concentrations are maintained by persisting
long-lived plasma cells.99-101 In patients with a resolved HBV
infection, serum HBsAb seem to protect against HBV reactivation,
but do wane following rituximab treatment.102,103 Counterintu-
itively, higher baseline HBcAb levels may increase the risk of an
HBV flare following B-cell depletion, which adds to the described
dichotomy in HBsAg- vs. HBcAg-directed humoral immune re-
sponses.104 Nevertheless, mouse studies revealed the importance
of antibody-independent B cell functions on the outcome of
rituximab treatment.105,106 Indeed, a reduced antigen-specific
CD4 T-cell response was observed following B-cell depletion,
while CD8 T-cell responses remained unaffected. In addition, B-
cell antigen presentation was required for optimal antigen-
specific CD4+ T-cell priming in settings of low antigen burden,
such as late in a disease course.105 A similar mechanism might be
relevant after functional cure, when HBV antigen burden is low.
Therapeutic implications and future perspectives
Several new treatment approaches are in (pre-)clinical devel-
opment that may support B-cell function in CHB. Decreasing the
serum HBsAg load is one of the major goals, given its role in
driving B- and T-cell exhaustion. Both intracellular approaches
(e.g. nucleic acid polymers, S-antigen transport-inhibiting
oligonucleotide polymers [STOPSTM] or short-interfering RNA
targeting the HBV mRNA107-109) and neutralising antibodies are
under study. However, the latter approach will need to target
different HBsAg epitopes to avoid HBsAg escape mutations and
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might result in serum sickness from a high amount of insoluble
immune complexes.35,110

Reversal of immune exhaustion by immune checkpoint in-
hibitors is an established treatment approach with proven clin-
ical benefit in patients with cancer, predominantly via a T-cell
dependent mechanism. In chronic viral infections, such as CHB
and HIV, treatment successes have been less clear and data on its
effect on B cells are scarce. In vitro studies on isolated B cells from
HIV- and HBV-infected patients have demonstrated enhanced
HIV-and HBsAg-specific antibody responses after siRNA-
mediated knockdown of inhibitory receptors, including FcRL4,
Siglec-6 and PD-1, or anti-PD-1 treatment, respectively.6,7,111 PD-
1 inhibition in vivo resulted in a 2-fold increase in neutralising
antibody responses with a concomitant decrease in viral titres
and improved survival in a macaque model for HIV infection,
while viral clearance and seroconversion was observed in a
woodchuck model of HBV infection.112,113 Functional cure was
observed in 1 out of 10 patients in a phase Ib clinical pilot study
combining a therapeutic HBV vaccine with PD-1 inhibitor ther-
apy, which led to an enhanced HBV-specific T-cell response with
a concomitant ALT rise prior to HBsAg loss.114 Thus, the contri-
bution of restored B-cell responses to the observed clinical
benefit requires further exploration.

Immunomodulatory treatment with TLR agonists, is an
interesting avenue to specifically target MBCs, given their se-
lective expression of TLR 6, 7, 9 and 10.115 The combined
engagement of BCR and TLR7 or TLR9 receptors by RNA- or DNA-
containing antigens, results in strong (auto-)antibody responses
and is exploited by a variety of auto-immune diseases.116 B-cell
responses may be elicited in a similar way during genuine HBV
infections, as both HBV pre-genomic RNA and DNA are present in
the capsid of circulating HBV virions. This may further contribute
to the core-directed humoral responses described above. In
preclinical TLR7 agonist studies in HBV-infected chimpanzees,
HBV DNA suppression was associated with the formation of
JHEP Reports 2022
intrahepatic periportal lymphoid aggregates of CD8+ T cells and
B cells, similar to those observed in patients with CHB and
HCV.55,117 Notably, these lymphoid aggregates could not be
regarded as fully differentiated tertiary follicles because of the
absence of follicular dendritic cells, but likely represent extra-
follicular maturation of naïve B cells into MBCs.117 However, in
virally suppressed patients with CHB, 12 weeks of an oral TLR7
agonist did not result in significant serum HBsAg decreases but
did enhance HBV-specific T-cell and natural killer cell responses,
via plasmacytoid dendritic cell-secreted IFNa.118 Contrastingly,
the addition of a TLR9 adjuvant to therapeutic vaccines in animal
models of CHB led to control of viral replication via intrahepatic
proliferation of cytotoxic CD8 T cells in so-called intrahepatic
myeloid-cell aggregates (iMATEs).119,120 Importantly, these
iMATEs did not require the presence of B cells, as they were also
observed in Rag2 knockout mice lacking mature B cells.

Overall, it is clear that despite high expression levels of both
TLR7 and TLR9 on memory B cells121; the antiviral response to
treatment with either agonist in models of CHB infection differed
considerably, pointing towards additional target cells and
downstream signalling cascades. This also emphasises the need
to further elucidate the modulatory effect of novel therapeutic
strategies on antiviral B-cell responses.

In conclusion, the complexity of B-cell ontogeny, B-cell het-
erogeneity and the preferential study of peripheral blood sam-
ples, have hindered efforts to develop an overarching view on
the role of B cells in human disease, and CHB in particular. With
the advent of HBV bait staining techniques, combined with
advanced single cell approaches and fine needle liver sampling,
we can now begin to define the features of humoral immunity to
HBV. This will help to predict the risk of future HBV flares after
the introduction of new immunomodulatory treatments but may
also lead to B cell-targeted immunotherapies that curb the
AtMBC response and functional exhaustion seen during chronic
viral infections.
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