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The consolidation of memories for places and events is
thought to rely, at the network level, on the replay of
spatially tuned neuronal firing patterns representing
discrete places and spatial trajectories. This occurs in
the hippocampal-entorhinal circuit during sharp wave
ripple events (SWRs) that occur during sleep or rest.
Here, we review theoretical models of lingering place
cell excitability and behaviorally induced synaptic plas-
ticity within cell assemblies to explain which sequences
or places are replayed. We further provide new insights
into how fluctuations in cholinergic tone during different
behavioral states might shape the direction of replay and
how dopaminergic release in response to novelty or
reward can modulate which cell assemblies are
replayed.

What is memory trace replay?

What determines which memories are retained and which
are lost is an absorbing topic for scientists and nonscien-
tists alike, yet the mechanisms underlying the persistence
of some pieces of information and the forgetting of others
remain to be identified. Well-established theories propose
that memories are encoded during wake behavior, with
information being represented in the coordinated activity
of subsets of neurons forming cell assemblies [1-4]. How-
ever newly encoded memories are typically fragile and,
because they may decay, require additional maintenance
processes. At the network level, one such process is the off-
line reactivation of assembly firing patterns observed dur-
ing active behavior. This process is best illustrated by the
location-specific firing of principal cells [5-8] in the hippo-
campus. These place cells (see Glossary) are activated
sequentially as an animal runs through an arena. Subse-
quently, co-active place cells representing a discrete place
or sequential place cell activation representing a trajectory
are reactivated or replayed during SWRs (Boxes 1 and 2),
which intermittently occur in slow wave sleep (SWS)
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(sSWRs), long periods of awake immobility iISWRs), or
brief pauses in exploration (eSWRs) (reviewed in [9,10]).

Sequential replay can occur in both a forward [11-15]
and backward [11,13-16] direction, with the directional
balance proposed to be dependent on the ongoing behav-
ioral state of the animal [17]. Similar to theta-phase pre-
cession [18], these replayed sequences are temporally
compressed compared with those observed during wake

Glossary

Acetylcholine: a neuromodulator and neurotransmitter with numerous func-
tions, including attention, learning, arousal, and synaptic plasticity, which
mainly exerts its actions via nicotinic and muscarinic receptors.

Current sinks and sources: subdomains along the neuronal membrane where
net positive charge flows into (sinks) or out of (sources) neurons. The location
of sinks and sources is inverted for a net negative charge.

Dopamine: a neuromodulator classically implicated in reward or reward-
prediction error; it exerts its actions via G-protein-coupled receptors.
Hippocampus: a structure within the medial temporal lobe that is important for
episodic memory, spatial learning, and associational recollection. It comprises
CA1-3 and the DG. Input to the hippocampus comes primarily from the
entorhinal cortex via axons of the perforant pathway and temporoammonic
pathway, which connect the entorhinal cortex with the DG and CA3, or CA1
respectively. Hippocampal mossy fibers are axons connecting the DG to CA3,
while axons of the Schaffer collateral pathway connect CA3 to CA1. CA1 axons
then project out of the hippocampus to the subiculum.

Medial septum/basal forebrain: primary source of cholinergic fibers innervat-
ing the neocortex and hippocampus.

Place cells: hippocampal principal cells increasing their discharge of action
potentials in a specific location (place field) of the environment.
Reactivation/replay: the reoccurrence during off-line states of the firing
patterns of hippocampal principal cells previously observed during active
waking behavior. These waking activity patterns can either represent discrete
places or extended sequences of place cell activity.

Sharp wave ripples (SWRs): hippocampal transient network events manifest as
negative potentials (sharp waves) in the CA1 stratum radiatum superimposed
with short-lived, fast (140-250 Hz) frequency oscillations (ripples) in the CA1
stratum pyramidale. SWRs mainly occur during long periods of behavioral
awake immobility and SWS.

Synaptic plasticity: an activity-dependent change in the efficiency of synapses.
If occurring for an extended period of time, an increase in synaptic strength is
referred to as long-term potentiation (LTP), while a decrease is referred to as
long-term depression (LTD).

Theta phase precession: the phenomenon whereby a place cell spikes at
progressively earlier phases of a theta cycle during movement through the
place field of that cell.

Ventral tegmental Area (VTA): midbrain structure containing the dopaminergic
cell bodies of the mesocorticolimbic dopamine system. The VTA targets a large
number of structures, including not only the accumbens, olfactory tubercle,
orbitofrontal cortex, motor cortex, striatum, lateral septum, ventral pallidum,
extended amygdala, subventricular zone, and lateral habenula, but also the
entorhinal cortex and hippocampus.
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Box 1. Sharp wave ripples in the hippocampus
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Sharp wave ripples (Figure 1) are transient hippocampal network
events observed in a variety of species, including humans [43,113-
115]. They comprise negative potentials (sharp waves) in the CA1
stratum radiatum superimposed with short-lived, fast frequency os-
cillations (ripples) in the CA1 stratum pyramidale. Sharp waves have a
current sink in the stratum radiatum of CA1 and CA3 and a current
source in the pyramidal cell layer [55,72,116,117], whereas ripples have
sink-source pairs at the level of the stratum pyramidale [43,117]. The
frequency of the ripple oscillations in CA1 spans a large frequency
range [118] that is positively correlated to the amplitude of the sharp
wave, with frequencies ranging from 140 to 250 Hz for large sharp
waves down to the fast gamma range of 90-140 Hz for smaller sharp
waves [55,119], a frequency that is more akin to those of ripples in CA3
[43,117]. Given the absence of CA3-CA1 ripple coherence [117], CA3
units firing in an uncorrelated manner to CA1 ripples [118], incoherent
interhemispheric CA1 ripples [43,120], and decreasing ripple coher-
ence with distance along the septotemporal hippocampal axis [119],
ripples are likely to be generated locally within CA1. Indeed, recent
work suggests that SWRs occur when a build-up of excitation drives a
population of parvalbumin-positive basket cells to fire. Reciprocal
inhibition synchronizes this firing at ripple frequency and creates
critical windows for alternate basket cell and pyramidal cell firing
[121,122]. Approximately 10-20% of hippocampal pyramidal cells fire
in any given SWR, but notably usually only with a single action
potential each [43,117].

Despite the lack of widespread ripple coherence, SWRs nevertheless
occur simultaneously throughout the hippocampus, subiculum, pre-
and parasubiculum cortices, and entorhinal cortex, creating temporal
windows of heightened neuronal firing [120,123] and widespread
changes in activity throughout the cortical network [124]. As such,
they have been proposed as an ideal candidate to transfer labile
hippocampal memories to more stable neocortical sites during offline

behavior [12,13,19,20]. Consequently they have been
posited to provide the appropriate temporal neural activity
for the Hebbian synaptic modification occurring down-
stream in neocortical networks during memory consolida-
tion [1,12,21,22]. Although direct support for this
hypothesis is currently lacking, intact NMDA receptor
(NMDAR) activity during learning and intrahippocampal
synaptic transmission during consolidation are at least
necessary for unimpaired memory consolidation and place
cell reactivation during SWRs [23,24]. Moreover, evidence
suggests the hippocampus and neocortex are actively en-
gaged during SWRs and SWS. Cortical and hippocampal
sequences, reflecting the same experiences, replay togeth-
er during SWS [20] and, during SWRs, prefrontal neurons
consistently fire within tight temporal windows <100 ms
after hippocampal pyramidal cells, which could plausibly
drive plasticity at the level of single cell pairs [25].
Concordantly, a growing body of literature has linked
SWRs to learning and memory. SWR incidence during
SWS is increased following training on a place-reward
association task [26]. Conversely, electrically interrupting
SWRs during post-training sleep impaired spatial learning
[27,28], while interrupting SWRs during training on a
spatial alternation task selectively impaired spatial work-
ing memory, but not spatial reference memory [29]. Criti-
cally, it remains to be determined whether the ongoing
hippocampal network activity during SWRs (i.e., global
transient changes in interneuron and pyramidal cell activ-
ities) or specifically the reactivation or replay of place cell
activity during SWRs is the more important for spatial

states [72,90] and also to downstream structures, including the ventral
striatum [125,126].
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Figure I. Hippocampal network activity during sleep epochs. (A) Mean sharp
wave ripple (SWR)-triggered local field potential from four separate tetrodes
located just above and within the stratum pyramidale (first three waveforms) and
below in the stratum radiatum (bottom waveform). (B) SWR firing responses of
CA1 pyramidal cells during sleep. Top trace, wide-band (1 H-5 kHz) local field
potential recorded in the pyramidal cell layer. Bottom trace, 140-250 Hz band
pass-filtered local field potential highlighting ripple frequency events. Raster
plots, spike times (vertical tics) of simultaneously recorded CA1 pyramidal cells
(one cell per row). Note the firing synchrony during ripple events. Data from [69].

learning and memory. Indeed, SWR activity content can be
biased towards newly learnt firing patterns and predict
memory performance [24]. Moreover, recent work also
showed the induction of an artificial place-preference be-
havior following intracranial stimulation, triggered by
single-place cell activity during sleep. This further sug-
gests that replay of place cell activity serves an important
role in spatial memory [30], although how this applies to
the coordinated neuronal ensemble activity during SWRs
remains to be investigated.

By contrast, replay, particularly during awake SWRs,
has also been proposed to have functional roles other than
for spatial memory consolidation; for example, in temporal
credit assignment to reward locations (particularly back-
ward replay) [16,31]; formation of goal-relevant or novel
environment place-related assemblies [24,32—-34]; evalua-
tion of trajectory choices for decision making on spatial
working memory tasks for prospection and planning (par-
ticularly forward replay) [29,35-38]; and representation of
unexplored trajectories [15,39]. Preplay of trajectories yet
to be experienced has been proposed to facilitate, at least in
part, the selection of subsequent place cell representations
in a novel environment [40].

Despite over a decade’s worth of literature describing
hippocampal replay during SWRs, several questions re-
main. How is neuronal coordination during SWRs con-
trolled? What selects which trajectories will be replayed
within a given SWR? Do these mechanisms differ for
SWRs in different behavioral states, or under different
neuromodulators? In this review, we provide a critique of
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Box 2. Replay of place cell activity
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As arodent follows a spatial trajectory, place cells are sequentially activated. In subsequent SWRs, this sequence of place cells may be reactivated in
atime-compressed manner in either a forward or a backward direction. The directional bias is dependent on the behavioral state of the animal, with
more backward replay in eSWRs, a similar occurrence probability of forward and backward replay in iSWRs, and more forward replay in sSWRs

[11,17] (Figure ).
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Figure I. Replay of place cell activity in sharp wave ripples (SWRs).

the evidence surrounding two current theories on how
replay occurs, namely by lingering place-related excit-
ability or as a result of synaptic plasticity. Given the
limitations of both models, we then outline how neuro-
modulatory factors are likely to influence the mecha-
nisms underlying replay and impart selection onto
which trajectories are replayed. Finally, we propose an
integrated model for replay in SWRs that takes into
account the behavioral state of the animal and the
underlying neuromodulatory tone.

Replay by lingering place-related excitability

Replay in a forward or backward direction during awake
iSWRs at the ends of linear tracks and in a reverse direc-
tion during eSWRs in an open-field environment has been
proposed to occur via a residual, place-selective, spatial
tuning drive [11,14,16]. In this model, place cells receive
subthreshold inputs as a function of the distance of the
animal from the place field center of each cell [41,42]. Dur-
ing SWRs, pyramidal cells have a higher firing probability
and their waking patterns are reactivated [43—45]. Howev-
er, the replay firing content per se is lingered in an order
dictated by the subthreshold spatial inputs onto place cells
at the current position of the animal (Figure 1). This
effectively represents a nonassociative bias that can influ-
ence the spontaneous SWR response of hippocampal cell
assemblies [46]. Concordantly, on a linear track, there is a
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preference for reverse replay at the end of the track follow-
ing even the first lap [16], while there is a preference for
forward replay at the start of the track in anticipation of
the run [14].

In support of this model, the firing probability of place
cells in eSWRs increased the closer the animal was to the
place field center, suggesting that the momentary, place-
related, excitatory drive directly contributes to reverse
reactivation in an open-field environment [11]. This is
consistent with a large proportion of awake replays start-
ing from the current location in a maze, where the spatial
inputs would be stronger [13,37,47]. Therefore, the model
predicts that sequential activation of place cells in awake
SWRs should not only reflect the actual path taken or
future path from the current position, but also the cas-
cades of spatially tuned activities dictated by the hippo-
campal map representation of the entire environment. In
line with this suggestion, forward reactivation during
eSWRs in a 2D open-field environment was not anticipa-
tory to future path taken [11]; reactivation in SWRs on a
spatial alternation task were equally representative of
actual and alternative past—future paths [35]; and replay
initiated from current location on a long linear track was
not biased towards future and past trajectories [13]. How-
ever, when the task is goal driven, trajectory sequences in
awake SWRs strongly represent the path to the future goal
location [37].
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Figure 1. Lingering excitability model. The firing rate of a place cell (colored distributions) can be considered as a symmetrical distribution centered on the middle of the
place field of the cell [41,83]. Normal spike thresholds along the track mean that the firing of each cell is turned on and then off as an animal traverses the place field of the
cell. However, at the end of the track, where sharp wave ripples (SWRs) may occur as the animal slows down, the hippocampal network moves into a state where inhibitory
inputs impinging onto pyramidal cells are temporally redistributed; inhibition at the axon initial segment is removed, effectively reducing the spike threshold of pyramidal
cells compared with waking periods outside of SWRs [127]. This then reveals the tails of the firing distributions of the spatially tuned cells so that, during SWRs, the cells fire
in an order dictated by these distributions (i.e., forward if the animal was at the start of the trajectory sequence but in reverse if the animal was at the end of the trajectory

sequence).

Evidence that challenges this model comes from in vitro
studies showing that somatic depolarization does not dra-
matically increase pyramidal cell spiking in SWRs [48,49]
and that there was no difference in resting membrane
potential between the pyramidal cells that spike during
SWRs and those that do not [48]. However, this potentially
did not account for the role of synaptic inhibition, which
can act to hyperpolarize the membrane (at membrane
potentials above the inhibitory reversal potential) or as
a shunt at the inhibitory reversal potential. Pyramidal cell
spiking is dampened during SWRs by strong perisomatic
inhibition [48,50,51], likely from parvalbumin positive
basket cells, which are strongly active in SWRs [45,52].
The prolonged somatic depolarization that was used
[48,49] would have also increased the size of this hyperpo-
larizing inhibition by increasing inhibitory drive, as the
membrane potential was moved further from the inhibito-
ry reversal potential, and this may explain the absence of a
facilitating effect on pyramidal cell spiking. By contrast,
the phasic depolarization induced by a dendritic spatial
drive from excitatory synapses, in the lingering excitability
model, with neurons at resting membrane potential and
perisomatic inhibition acting as a shunt [51], may still be
sufficient to depolarize pyramidal cells beyond action po-
tential threshold.

Nevertheless, this standalone model cannot explain
how goal-directed but not random foraging and/or naviga-
tion biases trajectory sequences in awake SWRs to strongly
represent the path to the future goal location [37]. Neither
does it explain how awake replay occurs in the absence of
local sensory drive to place cells. For example, nonlocal
forward and backward replay has been observed for trajec-
tories that were either not experienced for more than
10 min [15], or which originated some distance away from
the current position of the animal [13]. Moreover, it has
been observed that activity in a previous environment is
remotely replayed during awake SWRs while the animal is

exploring a new environment [53]. Although the first active
cell in these remote replays had a higher local firing rate
outside of SWRs in the new environment than the last
active cell [53], which is consistent with reverse replay
depending on the recent firing history of cells [11], this
model does not explain how the firing of one initiator cell
drives the replay of entire ordered sequences of trajectories
from another environment. Clearly, the model also does
not explain forward and backward replay during sleep
[12,17], where any residual place selective drive has dissi-
pated.

Replay as a result of synaptic plasticity

A different model for the generation of sequential replay
posits that place cells active during a given trajectory are
coupled together by associative synaptic plasticity during
exploration. An autoassociative network is required for
this model, which may either be provided by the Cornu
Ammonis (CA)-3 network alone, or by rapid interactions
between CA3 and the dentate gyrus (DG) [54], considering
the potential involvement of the DG in promoting SWR
activity [55]. Once a given initiator cell in CA3 becomes
active during subsequent SWRs, the entire trajectory se-
quence is reactivated along the path of least resistance,
dictated by the internal connectivity and potentiated syn-
apses between cells [9,12,46,56] (Figure 2). The effect of
this can then be read out downstream in CA1l through
Schaffer collateral connectivity. This can be considered as
being similar to how the internal organization of CA3 has
been proposed to underlie internally generated theta
sequences [57] and preplay activity [40], or indeed how
down to up state transitions during the neocortical slow
oscillation might initiate spontaneous sequential cortical
activity [58]. Since the likelihood of synaptic plasticity is
increased following a repeated number of spike pairings,
this model would explain how full replay sequences during
iISWRs were not visible until at least one, but sometimes
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Figure 2. Synaptic plasticity model. In this model, the spatial overlap between the place fields mapping a trajectory in an environment facilitates the strengthening of the
excitatory synaptic connections between the transiently co-active place cells. Subsequently, when pyramidal cells are disinhibited during sharp wave ripples (SWRs), the
firing of an initiator cell (e.g., the red one) leads to replay of the entire sequence of cells (e.g., the blue, yellow, green, and pink ones) that were previously paired together.

several, laps on a track were completed [16,47]. This model
is also supported by computational work showing that CA1
pyramidal cell spiking in SWRs is dependent on the
strength of their Schaffer collateral connections [59,60].

If synaptic plasticity is a necessary prerequisite
of replay, manipulations that induce plasticity should
facilitate SWR replay, while manipulations that prevent
plasticity within the hippocampus should not. This predic-
tion has received relatively little support so far, possibly
due to methodological considerations, although it has been
shown that sSWR-associated unit firing increases follow-
ing a plasticity-inducing protocol [61]. One approach to
blocking plasticity has been to manipulate NMDARs,
which are critical for the induction of long-term potentia-
tion at Schaffer collateral and CA3 autoassociational syn-
apses [62,63]. In one study, the NMDAR antagonist CPP
was injected before the learning of new goal locations
within an already familiar environment [24]. While any
synaptic plasticity engaged in encoding the environment
would have likely already occurred, the specific reconfigu-
ration of CA1l place cell representations caused by the
learning phase [24] would still be liable to perturbation
[64]. Consistently, while the mean firing response within
eSWRs was not impaired under CPP, the learning-en-
hanced sleep reactivation of co-activity patterns observed
at goal locations was prevented [24]. It would be interest-
ing to know whether the specific blockade of hippocampal
NMDARs, rather than systemic CPP injections, has the
same effect.

In another study that seemingly challenges the synaptic
plasticity model, mice with NMDAR1 knockout (KO) spe-
cifically in CA3 pyramidal cells and, therefore, with an
absence of NMDAR-dependent long-term potentiation
(LTP) at CA3 autoassociational synapses, were found to
show stronger, less variable replay of CA1 place cell activi-
ty compared with control mice [65]. In this experiment, the
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mice did not have prior exposure to the environment.
During familiarization, lap-by-lap correlations in spiking
activity between place cells increased [65], which is a
measure of cell assembly formation [66]. This increase
and subsequent plateauing was still observed in the KO
mice, but at a reduced rate compared with controls [65], not
only indicating a role for CA3 synaptic plasticity, but
also suggesting that an alternative, potentially plastic,
compensatory mechanism, possibly via an alternative
autoassociative network, such as DG-CA3, was engaged
in binding place cells into coordinated assemblies in these
mice. The alternative mechanisms engaged by the
NMDAR1 KO mice may have led to the stronger cascading
replay activity observed. Therefore, while CA3 NMDAR-
dependent synaptic plasticity may not be necessary for the
expression of replay per se, these studies suggest that
NMDAR activity and, as a by product, hippocampal syn-
aptic plasticity, are critically involved in dynamically con-
figuring the hippocampal network into a state that can
subsequently bias the SWR activity content. In line with
this, while the blockade of NMDARSs during learning of new
goal locations impaired the sleep reactivation of new place
cell representations, it unexpectedly promoted that of old
representations [24].

This model is supported by evidence suggesting that
reactivation in SWRs is expressed as a function of poten-
tially plasticity-inducing experience. For example, co-acti-
vation during awake and sleep SWRs is stronger for cell
pairs with overlapping place fields [22,32], which is a re-
quirement that is critical for the induction of long-term
potentiation at Schaffer collateral synapses [67]. Indeed,
reactivation in iISWRs improves with experience during
exploration [32], in a manner dependent on the repetitive-
ness of the task and, therefore, the likelihood of place cells to
be co-active [68]. Consistently, reactivation during sleep was
found to be dependent on the number of times place cells



fired together in short windows (<50 ms) during explora-
tion, that is, windows compatible with spike timing-depen-
dent plasticity [56]. Although, since asymmetrical cross-
correlations during exploration between cell pairs were
not required for reactivation in SWRs, it is debatable wheth-
er spike timing-dependent plasticity per se is the plasticity
mechanism utilized by such a model [32]. By contrast,
another carefully designed study found no relation between
awake replay and experience. Poorly and extensively expe-
rienced trajectories were replayed in similar proportions,
never-experienced shortcut sequences were observed during
SWRs, and replay was more representative of a scenario
independent of experience [15].

This latter observation casts doubt on whether this
model alone can sufficiently explain all observable replay
phenomena. It is difficult to reconcile a plasticity mecha-
nism that could bind ensembles of cells together in a
manner that would enable backward replay preferentially
during exploratory behaviors but forward replay during
sleep [11,17,32]. Moreover, the preferential reactivation in
SWRs of novel locations or environments over familiar
ones [33,56,69] (although see [11]), the stronger reactiva-
tion on rewarded trials over unrewarded trials [31], and
the enhanced reactivation of firing patterns surrounding
reward sites [24,31] are incompatible with the above model
when considered in the absence of neuromodulatory drive.

How does neuromodulation impact SWR activity?

The hippocampus receives constant inputs related to the
behavioral state of the animal, including those leading to
the release of neuromodulators, which dramatically trans-
form the functional output of neural circuitry [70]. Acetyl-
choline and dopamine are two such factors whose action
within the hippocampus bears particular relevance when
considering hippocampal processing during spatial navi-
gation and memory tasks. Here, we propose that these
neuromodulatory factors during specific behavioral epochs
can explain the observed activity of place cells within
SWRs that may otherwise be considered inconsistent with
the lingering excitability or synaptic plasticity models
when viewed in isolation. Given their different spatiotem-
poral profiles of release, we propose acetylcholine and
dopamine to have different functional roles for the process-
es underlying memory consolidation. However, at times of
simultaneous cholinergic and dopaminergic release, these
roles likely occur concomitantly.

Acetylcholine

Microdialysis measurements of hippocampal acetylcholine
levels show variation throughout the sleep—wake cycle,
with acetylcholine high during rapid eye movement
(REM) sleep and active wakefulness but decreasing levels
during quiet wakefulness and SWS [71]. SWRs are gener-
ally believed to be initiated when subcortical, particularly
cholinergic, drive to the hippocampus is reduced [1,72]. Ac-
cordingly, optogenetic stimulation of cholinergic medial
septal neurons strongly suppressed SWRs in awake and
anaesthetized animals [73], while muscarinic receptor
activation suppressed SWRs in vitro [74,75]. This could
explain why exploratory eSWRs observed during periods of
high cholinergic tone occur at a reduced rate compared
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with awake immobility iSWRs, when the cholinergic tone
is reduced [32]. These findings suggest that firing activity
during eSWRs and i/sSWRs is differentially modulated by
acetylcholine.

Within the hippocampus, acetylcholine exerts wide-
ranging cellular and synaptic effects [76]. At the pyramidal
cell level, acetylcholine causes membrane depolarization,
increased input resistance [77-79], and enhanced NMDAR
currents [80,81] specifically via the inhibition of SK chan-
nels [79,82]. Since somatic depolarization facilitates the
emergence of place cell spiking in previously silent CA1l
pyramidal cells [83], during eSWRs (but to a lesser extent
in iISWRs and not in sSWRs), cholinergic-mediated depo-
larization would be predicted to facilitate the contribution
of subthreshold place-related drive and, thus, the lingering
excitability model, to the reactivation of place cell activity.
Indeed, place cells have reduced firing rates following
pharmacological inactivation of the medial septum
[84,85] or pharmacological blockade of muscarinic recep-
tors [86].

In addition, muscarinic receptor activation by endoge-
nously released acetylcholine in vivo [87,88], or by phar-
macological manipulations in vitro [79,89], lowers the
threshold for long-term potentiation of excitatory synap-
tic transmission in the hippocampus. Notably, overlap-
ping CA1 place cell activity was able to engage LTP in
CA1 only if sufficient cholinergic tone was present in vitro
[67]. Therefore, during exploratory activity, acetylcholine
likely has a permissive role in the coupling of place-
related cell assemblies by synaptic plasticity. It is also
possible that the exploration-related cholinergic tone
during eSWRs promotes the ability of intra-SWR place
cell activity (i.e., replay activity itself) to generate synap-
tic plasticity. Accordingly, an interesting prediction from
this framework is that sSWR activity, while still impor-
tant for memory consolidation [27,28], may have a re-
duced likelihood of inducing plasticity compared with
waking SWRs, because cholinergic tone declines. Surpris-
ingly, however, while SWRs have long been posited to
provide temporal windows for synaptic plasticity within
the hippocampus and in downstream areas [1,90], few
studies have tested whether SWR-driven spiking can
induce synaptic plasticity [61].

Clearly, the impact of acetylcholine on place cell activity
during exploration and SWR activity is complex and
deserves further investigation by experimentation and
computational modeling. Meanwhile, the available litera-
ture, outlined above, points towards a model whereby the
behavioral state of the animal influences how the hippo-
campus engages both the lingering excitability and synap-
tic plasticity mechanisms to initiate replay activity, in a
manner strongly shaped by the cholinergic tone (Figure 3).
This new framework may go some way to explain the
directional bias of replay in different behavioral states
[11,17].

Dopamine

The hippocampus is also innervated by dopaminergic mes-
encephalic neurons from the ventral tegmental area (VTA)
and substantia nigra [91], although this innervation is
sparse [69], with hippocampal dopamine concentrations
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Figure 3. Behavioral state model. During exploration, there are sensory inputs to the hippocampus, place cells are active, and the high cholinergic tone depolarizes cells.
These factors all favor predominantly backward replay in exploration sharp wave ripples (€SWRs) [11,32], in accordance with the model of lingering excitability. It is
predicted that this backward replay in eSWRs and the forward activation of place cells during exploration, in the presence of high cholinergic tone, both lead to synaptic
plasticity between the active place cells with overlapping place fields [67]. An important assumption is that plasticity induced from environmental exploration is greater than
that induced by activity in eSWRs and, therefore, there is a bias in subsequent SWRs for forward replay over backward replay. During longer periods of immobility, this
plasticity-dependent forward replay bias is balanced by the lingering excitability of place cells, which, although reduced due to slightly lower levels of acetylcholine [71] and
a longer time spent immobile, is still capable of providing an initiation bias to the current position [13,37,47] that can drive backward replay. Consequently, during
immobility (i))SWRs, there is an equal balance of forward and backward replay [17]. However, since there is a lower level of cholinergic tone, it is predicted that replay during
iSWRs induces less plasticity than the replay in eSWRs. Hence, the plasticity-dependent bias for forward replay is maintained. Thus, when the animal sleeps and the
lingering excitability and sensory drive to place cells are removed, replay now occurs solely through the plasticity-dependent mechanism and there is more forward than

backward replay [12,17].

much lower than in other brain areas, such as the striatum
[92]. Notable recent work also suggests that hippocampal
dopamine can be released from noradrenergic neurons
from the locus coeruleus [93]. VTA neurons exhibit burst-
ing in response to reward or reward-prediction stimuli [94]
(reviewed in [95]) and display increased firing, with a
higher propensity to fire in bursts, during exposure to
novel environments [69]. This is associated with increased
dopamine release in downstream areas, including the
hippocampus [92].

Interestingly, place cell ensembles are more reactivated
in sleep SWRs following the exploration of novel locations
and/or environments [33,56,69] and following reward-driv-
en learning tasks [24,31]. During SWRs at reward loca-
tions, there is also a higher probability of pyramidal cell
firing on rewarded versus unrewarded trials [31], and cells
with place fields surrounding the reward site have an
increased likelihood of firing in both these reward SWRs
and subsequent sSWRs [24,31]. Moreover, sequential re-
play has been shown to be biased towards goal and/or
reward sites, with forward and backward replay preferen-
tially representing sequences approaching or ending at the
reward site, respectively [15,37].
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Therefore, it is tempting to make the conjecture that
dopamine release during exposure to spatial novelty or
rewarded outcomes biases the content of subsequent SWR
activity for the purpose of memory to represent locations
spanning the entire novel environment or the particular
behaviorally salient location, respectively. Concordantly, a
recent study has shown that burst stimulation of VTA
dopaminergic neurons, during exposure to a novel envi-
ronment (to further enhance novelty-increased VTA firing
[69]), subsequently enhanced hippocampal reactivation in
a D1/D5 receptor-dependent manner [69]. Neither the
general activity of CAl pyramidal cells during the awake
and sleep periods (mean firing rate, SWR-firing rate re-
sponse, or preferred theta phase) nor the sSWR incidence
were modified by such an intervention. These findings
suggest that dopamine promotes the consolidation of
new memories by the sleep reactivation of newly formed
firing patterns. Along this line, it has been further shown
that, during the memory retention test of a hippocampal-
dependent goal-directed task on a crossword maze, CAl
place maps formed during learning were only partially
reinstated and behavioral performance was degraded.
However, photostimulation of VI'A dopaminergic fibers
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Figure 4. Novelty and/or reward based model. Dopamine release in response to novelty or reward facilitates the formation of stable place cell assemblies through synaptic
plasticity (note the stronger connection within the network between the yellow, green, and pink fields compared with the orange, red, and blue fields). This increases the
likelihood of replay of cell assemblies active during novel or rewarding environments via the synaptic plasticity model.

in dorsal CA1 during learning enhanced SWR reactivation
of newly established place cell assemblies. This was ac-
companied by improved reinstatement of these firing pat-
terns in the retention test and a stable behavioral
performance [69]. These findings are consistent with other
previous findings showing that midbrain dopaminergic
neurons can promote hippocampal place cell dynamics
related to memory processing (e.g., [96-98]) and numerous
findings providing additional support at the behavioral
level (e.g., [99-101]).

It is unclear how dopamine may bias SWR activity
through the lingering excitability model since the effects
of dopamine on hippocampal pyramidal cell excitability are
mixed, with some studies reporting a decrease in excitabil-
ity, for example by hyperpolarizing the membrane poten-
tial and augmenting the spike after hyperpolarization
[102], while others report an increase in excitability
[103]. However, in both novel environments, and during
learning on a goal-driven spatial navigation task, hippo-
campal place cells remap their activity [8,24,104]. The
stability of these new place cell representations, but not
the initial formation, is NMDAR dependent [24,64] and can
be facilitated by D1/D5 receptor activation [98] or optoge-
netic stimulation of VTA dopaminergic terminals in CA1
[69]. Indeed, pharmacological inhibition of VTA neurons
has been shown to impair CA1l place cell stability
[97]. These results support a model where dopamine re-
lease in novel environments or during reward-driven spa-
tial learning facilitates synaptic plasticity, which then
stabilizes place cell activity. Specifically, this may occur
via the permissive role of dopamine in the transition from
early to late long-term potentiation, potentially through
the synaptic tagging and capture hypothesis, as reviewed
elsewhere [105,106]. It should also be noted that increased
CA1 pyramidal cell firing and changes in CA1 interneuron

firing during novel exploration could also contribute to
enhanced synaptic plasticity [8,9,11,104,107]. In agree-
ment, novel environment exposure facilitated the induc-
tion of LTP at Schaffer collateral synapses to a weak
conditioning stimulus in vivo and this facilitatory effect
was abolished by D1/D5R antagonists or mimicked by D1/
D5R agonists [108]. Consequently, via the synaptic plas-
ticity model, dopaminergic modulation likely biases replay
to preferentially reactivate cell assemblies relevant to
novelty or reward (Figure 4).

How the brain informs the dopaminergic systems about
spatial novelty or rewarded outcomes remains to be inves-
tigated. This likely involves a complex network of multiple
brain circuits [38,109,110]. For instance, it has been re-
cently shown that VTA dopaminergic cells receive spatio-
contextual inputs from the hippocampus via the lateral
septum [111]. Moreover, how dopamine release and the
firing activity of dopaminergic neurons also relates to
aspects of motor actions [112], in addition to reward pre-
diction and spatial novelty, remains to be disentangled.

Concluding remarks

In conclusion, we have proposed a new conceptual frame-
work for understanding the ordered sequential activation
of prior waking activity in SWRs. This likely occurs via a
combination of mutually nonexclusive mechanisms, since
none of these can explain the available literature in isola-
tion. While many questions remain (Box 3), our current
understanding leads us to suggest that the lingering excit-
ability model largely dictates local replaying sequences
during awake behavior, while the synaptic plasticity model
contributes to subsequent nonlocal awake replays and
replaying activity during future rest. Within this frame-
work, we have proposed that cholinergic tone is important
for shaping the direction of replay in different behavioral
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Box 3. Outstanding questions
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e The ability of replay activity to drive excitatory synaptic plasticity

within the hippocampus and between the hippocampus and neo-

cortical sites, a central concept to the proposed function of SWRs in
memory consolidation, has received limited experimental attention

[61]. Can in vivo patterns of SWR-related firing drive excitatory

synaptic plasticity in vitro at specific synapses? How does choliner-

gic tone impact how SWR activity induces synaptic plasticity?

Similarly, evidence testing whether synaptic plasticity can drive

pyramidal cell firing in SWRs is limited [61]. By artificially inducing

synaptic plasticity onto specific cells and within cell assemblies, can
the content of SWR activity be biased? What type of synaptic
plasticity is required and at which synapses?

e Given the role of inhibition in limiting pyramidal cell spiking in
SWRs, how might activity-dependent interneuron plasticity influ-
ence SWR pyramidal cell spiking? Could this provide another me-
chanism for selecting which place cell ensembles are replayed?

e We have assumed that the action of acetylcholine on membrane
depolarization and input resistance can facilitate the contribution of
subthreshold place-related drive and, thus, the lingering excitability
model, to the reactivation of place cell activity. This could be tested
similarly to [83] by asking whether optogenetic stimulation of cho-
linergic input to the hippocampus can determine the emergence of

states. Meanwhile, we have identified dopaminergic re-
lease during, for example, novel environments and reward-
driven spatial tasks, as being important for biasing the
content of subsequently replaying trajectories, potentially
to strengthen new place cell assemblies and place-reward
associations. Testing this new framework experimentally
and computationally will be an important step forward for
our understanding of the field.
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