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Abstract: Background: The combination of the unique properties of cancer cells makes it possible to
find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy.
Phage display is one of the most common methods for searching for specific ligands. Bacteriophages
display peptides, and the peptides themselves can be used as targeting molecules for the delivery
of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo.
Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor
marker, for example, CD44 and CD133. Methods: For this work we used several methods, such
as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We
performed phage display using different screening systems (in vitro and in vivo), different phage
libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells.
The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells
was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the
accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney
and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma
was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of
diagnostic and therapeutic agents to glioblastoma.

Keywords: phage display; glioblastoma; tumor-targeting peptides; cancer stem cells (CSCs); CD133;
CD44; immunocytochemistry; fluorescence-activated cell sorting (FACS)

1. Introduction

Glioblastoma (GBM) is the most common and aggressive form of brain tumor, which
is characterized by the least favorable prognosis—the average survival rate for patients
with this diagnosis is 15 months [1]. In modern medical practice, standard methods such as
surgery, radiation therapy and chemotherapy are used to treat glioblastoma, and in most
cases these methods are ineffective. Such a low efficiency of glioblastoma treatment is often
associated with two characteristic features of this tumor: the invasion of tumor cells into
the brain parenchyma, which leads to the emergence of secondary tumor foci, and the high
heterogeneity of tumor. A special contribution to the resistance of GBM cells to therapy
is made by a small population of cells with a highly aggressive phenotype characteristic
of cancer stem cells (CSCs) [2]. Targeted therapy based on the use of drugs specifically
affecting specific types of tumors can be a solution to the problem of the low efficiency of the
applied cancer therapies, which makes it possible to increase the effectiveness of treatment
and minimize toxic effects on healthy tissues. The combination of the unique properties of
cancer cells makes it possible to find specific ligands that interact directly with the tumor
and ensure the implementation of the targeted approach. Currently, short peptides are
considered promising agents for the delivery of therapeutic and diagnostic molecules to
cancer cells, which have high affinity and specificity for the target and a higher efficiency of
penetration into cancer cells as compared to ligands of larger sizes, for example, antibodies.
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One of the promising ways to search for tumor-targeting peptides is the screening of phage
peptide libraries in tumor cell cultures in vitro and in xenograft models in vivo [3]. This
approach can be applied to solve the problem of tumor heterogeneity, since the screening
can reveal tumor-targeting peptides that specifically interact with different populations
of tumor cells, including CSCs. A targeted approach to CSCs is especially relevant, since
such characteristics of these cells as the ability to self-renewal, differentiation into various
cell types, invasion of the brain parenchyma and metastasis, determine their resistance to
chemotherapy and radiotherapy [2].

Earlier, by screening phage peptide libraries Ph.D-7 and Ph.D-12 (New England Bio-
labs, Ipswich, Massachusetts, USA), we selected bacteriophages displayed tumor-targeting
peptides that provide specific binding of phage particles to human glioblastoma cells U-87
MG in vitro and with U-87 MG tumor in the xenograft model in vivo [4]. In this work, a
screening of the Ph.D.-C7C phage peptide library was carried out to obtain tumor-targeting
peptides to U-87 MG tumor cells with the phenotype of tumor stem cells (CD44+/CD133+),
as well as a comparative analysis of the distribution in the body of mice and the specificity of
the interaction with U87 MG tumor of bacteriophages displaying tumor-targeting peptides
selected during biopanning of various peptide libraries in different selection systems.

2. Results
2.1. Biopanning of Linear Phage Libraries Ph.D.-12 and Ph.D.-7 on Cells and Tumors U-87 MG

Earlier, in our laboratory, we screened the phage peptide library Ph.D.-7 in vivo on
U-87MG glioblastoma xenografts in immunodeficient mice. In the course of the work,
102 bacteriophages were selected; the sequences of 27 exposed peptides selected after
the third round were identified and analyzed. When analyzing the sequences of the
selected peptides, the highest frequency of occurrence was in the sequence HPSSGSA
(92)—25.9% [4]. Additionally, the screening of the Ph.D.-12 phage peptide library in vitro
on U-87 MG human glioblastoma cells was performed earlier. In the course of the work,
80 bacteriophages were selected; sequences of 39 exposed peptides selected after the third
round and 37 peptides selected after the fifth round were identified and analyzed. After
the fifth round, it was found that the sequence SWTFGVQFALQH (26) was found in 24.3%
of cases [4].

2.2. Biopanning of the Circular Phage Peptide Library Ph.D.-C7C In Vivo and In Vitro

We carried out in vitro biopanning on cells of an immortalized human glioblastoma
cell line U-87 MG using Ph.D.-C7C at the same protocol as for linear libraries. Three rounds
of selection were carried out; the sequences of the exposed peptides providing the specific
interaction of phage particles with U-87 MG cells were determined by sequencing. After
the third round of biopanning, bacteriophages displayed the peptides PVPGSFQ (18C),
PTQLHGT (23C), MHTQTPW (19C), TTKSSHS (2C), and ISYLYGR (36C) were selected.
The frequency of occurrence of the peptides PVPGSFQ (18C) and PTQLHGT (23C) was
35% and 15%, respectively. Peptides MHTQTPW (19C), TTKSSHS (2C) and ISYLYGR (36C)
accounted for 10% of the selected pool of bacteriophages (Figure 1).

2.3. Obtaining a Population of CD44+/CD133+ U-87 MG Cells for Selection of Bacteriophages
Displaying Peptides Specific to CSCs

To obtain tumor-targeting peptides specific to U-87 MG cancer stem cells (CD44+/
CD133+ cells), we screened the cyclic phage peptide library Ph.D.-C7C in vivo. The first two
rounds of selection were performed on U-87 MG tumor transplanted subcutaneously into
SCID mice. The third round of biopanning was performed on orthotopically implanted
U-87 MG tumor into SCID mice. In this case, mice with a tumor were intravenously
injected with an enriched phage peptide library after the first two rounds, after 24 h
of circulation of the library in the body, the animals were euthanized and the tumor
was removed. Tumor tissue was homogenized to single cells; tumor cells were stained
for markers CD44, CD133 and sorted using Fluorescence-activated cell sorting (FACS).
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According to the results of sorting, the number of cells positive for CD44 (CD44+) was 8.9%
(Figure 2A), positive for both markers (CD44+/CD133+)—5.53% (Figure 2B), positive for
CD133 (CD44−/CD133+)—0.65% (Figure 2C).
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Figure 2. Evaluation of CSCs markers CD44 and CD133 using FACS-analysis. (A)—population of cells, positive for
CD44 (orange); (B)—population of CD44-positive cells with a population of CD133-positive cells detected in it (pink);
(C)—population of cells positive for the marker CD133 (red).

Next, cells positive for both markers CD44/CD133 were lysed, the lysate was amplified
in Escherichia coli and the sequence of the insert was determined by Sanger sequencing.
According to the sequencing results, only one clone displaying the MHTQTPW peptide
(No.19C) binds to cancer cells that were positive for both markers tested. It should be noted
that the MHTQTPW peptide was previously selected in the biopanning on U-87 MG cells
in vitro (data not shown).

2.4. Analysis of the Binding Specificity of Bacteriophages, Displaying Selected Peptides, to Human
Glioblastoma Cells U-87 MG

We carried out a comparative analysis of the efficiency of binding of the bacterio-
phages displayed tumor-targeting peptides to human glioblastoma cells U-87 MG by
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fluorescence microscopy (Figure 3). We have previously shown that the peptide displayed
by bacteriophage No. 26 ensures the binding and internalization of the phage particle
into AS2 astrocytoma cells, but not into human MG1 glioblastoma cells [4]. In Figure 3
shows fluorescence microscopy of cells incubated with bacteriophages 19C, 36C, 92, 26,
selected on different phage libraries, in different screening systems. Phage M13, displayed
the peptide YTYDPWLIFPAN previously selected for MDA-MB 231 cells, was taken as
a negative control [5]. No significant differences were found in the efficiency of binding
to cells of bacteriophages displayed the studied peptides. Thus, the obtained tumor-
targeting peptides are able to provide efficient specific binding of phage particles to U-87
MG glioblastoma cells.
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Figure 3. Fluorescence microscopy of U-87 MG cells incubated with bacteriophages No. 26, 19C, 92, 36C, displayed the
peptides SWTFGVQFALQH, MHTQTPW, HPSSGSA, ISYLYGR, respectively. Microscopy was performed using anti-M13
g8p monoclonal antibody and anti-Mouse IgG (H + L) Alexa Fluor 647. DAPI was used to visualize cell nuclei. DAPI—DAPI
stained U-87 MG cells not incubated with phage.
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2.5. Analysis of Biodistribution and Specificity of Accumulation of Bacteriophages, Displaying
Selected Tumor-Targeting Peptides, in U87 MG Tumor Tissue

Comparative analysis of the distribution in the body of experimental animals and the
specificity of accumulation in U-87 MG xenograft tumors of bacteriophages, displaying
tumor-targeting peptides, was carried out by titration of tumor homogenates and tissues
of control organs (kidney, liver, lungs, brain) after 4.5 h of circulation of phage particles
in the body of the animal. For comparative analysis, bacteriophages No. 26 (Ph.D.-C12),
No. 19c, No. 36c (Ph.D.-C7C) and No. 92 (Ph.D.-7) were selected. A random bacteriophage
displayed peptide YTYDPWLIFPAN was used as a negative control. The titration data
showed that bacteriophage No. 92, obtained by screening the phage peptide library Ph.D.-7
in vivo, accumulated to the greatest extent in the tumor tissue as compared to the control
organs: the titer of the bacteriophage in the tumor exceeded its titer by more than 5.5 times
in the kidneys, and more than 11 times in the brain, liver and lungs (Figure 4).
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Figure 4. Comparative analysis of the distribution and specificity of accumulation in the U-87 MG
xenograft Table 92, 26, 19C and 36C displayed peptides HPSSGSA, SWTFGVQFALQH, MHTQTPW,
ISYLYGR, respectively, and the control bacteriophage displaying the peptide YTYDPWLIFPAN
(control). The average titer of bacteriophages (pfu/1 g of tissue) obtained from the tumor and control
organs (liver, brain, kidney and lungs). Data are presented as mean ± standard deviation. Multiple
comparison was performed using two-way ANOVA. * p ≤ 0.05; *** p ≤ 0.001; **** p ≤ 0.0001.

Two-way analysis of variance (ANOVA) showed a statistically significant difference
(p ≤ 0.0001) in the accumulation of this bacteriophage in the tumor as compared to the
control phage and phages No. 26, No. 19C, No.36C. Bacteriophage No. 26 also specifically
accumulated in the tumor tissue, but to a lesser extent compared to bacteriophage No. 92,
its accumulation was statistically significantly different only from that for the control phage
(p ≤ 0.001). Bacteriophages, selected from the cyclic library Ph.D.-C7C—No. 19C and No.
36C, showed the least accumulation in tumor tissue and other organs.

3. Discussion

The goal of this study was to develop a strategy for searching for tumor-targeting
peptides for the delivery of therapeutic and diagnostic molecules to glioblastoma, which
is characterized by some degree of heterogeneity. Tumor heterogeneity is due to small
population of cells with a highly aggressive phenotype characteristic of CSCc. To identify
CSCs, the level of CD24, CD29, CD44, CD133 and ALDH1 is most often examined. CD44
and CD133 are considered one of the most specific CSCs markers. CD44, a transmembrane
glycoprotein, is considered one of the most important markers of CSCs [6]. As a result
of alternative splicing, post-translational modifications, and partial cleavage by matrix
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metalloproteinases, multiple CD44 isoforms can exist in the cell [7]. CD44 acts as a co-
receptor for several cell surface receptors (EGFR, Her2, Met6, TGFβRI, TGFβRII, VEGFR-2),
thus participating in various signaling pathways (Rho, PI3K/Akt and Ras-Raf-MAPK),
including those stimulating growth and cell motility. Another characteristic marker of
CSCs, CD133 or prominin-1, is a transmembrane glycoprotein with a structure consisting
of five transmembrane domains [8]. It is known that CD133 is required to maintain the
properties of CSCs, and a low level of this marker in glioblastoma cells negatively effects
on the ability of cells to self-renewal and neurosphere-forming [9]. The expression level of
CD133 on cells is usually low, but can vary widely. Thus, in endometrial cancer, CD133
was immunohistochemically detected in 1.3–62.6% of cells, in colorectal cancer, CD133 was
expressed in 0.3–82.0% of cells [10]. Despite the fact that CD133 is considered as a marker
of CSCs, its studies as a marker of glioblastoma CSCs remain controversial [11]. Despite
the unclear physiological function of CD133 in the pathogenesis of gliomas, mechanisms
in which this receptor is involved have been discovered. It has been shown that under
hypoxia an increase in the expression of this receptor is observed, as a result of which cells
with a negative CD133 phenotype acquire a CD133+ phenotype [12]. Thus, at present,
CSCs are considered the most promising targets for the search for specific therapeutic and
diagnostic molecules. The use of combination therapy, including standard cytotoxic drugs
capable of destroying the main tumor mass, and drugs targeting CSCs, can significantly
increase the effectiveness of anticancer therapy and improve patient survival [13].

In this work, in order to develop a strategy for obtaining tumor-targeting peptides to
glioblastoma, a comparative analysis of the binding efficiency of the selected peptides in the
screening of linear and cyclic phage peptide libraries, Ph.D.-7, Ph.D.-12, and Ph.D.- C7C, in
different selection systems (in vitro and in vivo) was conducted. We also used cyclic phage
library, characterized by the fact that the peptides exposed on the surface protein p3 have
a circular structure due to the formation of disulfide bridges between cysteines flanking
the insert. It is believed that cyclic peptides are much less susceptible to proteolysis and
often exhibit increased biological activity due to their conformational rigidity [14]. As a
result of the studies carried out, it was found that all selected tumor-targeting peptides
obtained from various peptide libraries, both in vitro and in vivo, are able to provide
efficient specific binding of phage particles to not enriched U-87 MG glioblastoma cells.
Indeed, the immunocytochemistry (Figure 3) showed that almost all cells in the population
of not enriched U-87 MG cells are stained. On the image related to 19C phage, which
was found after lysis the enriched cells (CD44+/CD133+) and their further amplification,
not all cells were stained. One possible explanation of this fact could be that this peptide
(19C) binds with some receptors of the stem cells surface which could not exist on all the
cells in the general population, and likely with CD44 only, because according to cytometry
data (Figure 2C), the population of CD44+/CD133+ cells is 5.53% only. Additionally,
the phages No. 26, 92, 36C were found in the screening on unenriched U-87 MG cells.
Another possibility is that after receiving the CD44+/CD133+ cells by sorting the CSCs
could generate differentiated progeny, losing the markers of stemness.

The highest specificity of binding to the xenograft U87 MG in vivo as compared
to control organs is provided by linear tumor-targeting peptides obtained by screening
the Ph.D.-12 phage peptide library on the xenograft U87 MG. Despite the great stability
under physiological conditions and conformational rigidity, which often determines the
high biological activity of cyclic peptides [14], the specificity of the interaction with the
xenograft U-87 MG of bacteriophages displayed cyclic peptides selected on the population
of glioblastoma cells expressing CSCs markers turned out to be lower than the specificity of
interaction bacteriophages displaying linear peptides. Certain linear peptides are believed
to have conformation recognized by target receptors without the need for cyclization. In
addition, the linear conformation of the peptide can provide a greater efficiency of its
penetration into the cell as compared to cyclic peptides, since a large free energy is required
for penetration into the cell [15]. Additionally, when studying the distribution and binding
of phage particles to a tumor xenograft, we must take into account the fact that the number
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of CD44+/CD133+ cells inside xenograft is small. In addition to U-87 MG cells, there are
the endothelial cell and stroma’s cells in the tumor. So, CSCs will be in small quantities in
the tumor tissue, which explains the absence of significant differences between the binding
of the control phage and bacteriophage No. 19C to the U87 MG xenograft. So, using the
strategy of searching for peptides on population of enriched cells using specific markers
(CD44+/CD133+), we met some obstacles in further experiments. Thus, according to the
totality of the obtained data, the most effective strategy for obtaining tumor-targeting
peptides that provide targeted delivery of diagnostic agents and therapeutic drugs to
human glioblastoma tumors is to screen linear phage peptide libraries for glioblastoma
tumors in vivo.

4. Materials and Methods
4.1. Cell Cultures

Cancer cell line U-87 MG was obtained from the Russian cell culture collection (Russian
Branch of the ETCS, St. Petersburg, Russia). U-87 MG cells were cultivated in alpha-MEM
(Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% of fetal bovine
serum (FBS) (Sigma, St. Louis, MO, USA), 1 mM L-glutamine, 250 mg/mL amphotericin
B and 100 U/mL penicillin/streptomycin. Cells were grown in a humidified 5% CO2–air
atmosphere at 37 ◦C and were passaged with TripLE Express Enzyme (Thermo Fisher
Scientific, USA) every 3–4 days.

4.2. Animals

Female SCID hairless outbred (SHO-PrkdcscidHrhr) mice aged 6–8 weeks were ob-
tained from «SPF-vivarium» ICG SB RAS (Novosibirsk, Russia). Mice were housed in
individually ventilated cages (Animal Care Systems, Centennial, Colorado, USA) in groups
of one to four animals per cage with ad libitum food (ssniff Spezialdiäten GmbH, Soest,
Germany) and water. Mice were kept in the same room within a specific pathogen-free
animal facility with a regular 14/10 h light/dark cycle (lights on at 02:00 h) at a constant
room temperature of 22 ± 2 ◦C and relative humidity of approximately 45 ± 15%.

4.3. In Vivo and In Vitro Biopanning

Biopanning of the phage peptide library (Ph.D.-C7C, New England Biolabs, Ipswich,
MA, USA) on U-87 MG glioblastoma cells in vitro was performed as described previously
with some modifications [16,17], namely. The cells that reached 100% confluence were
washed with 4 mL of PBS, then 400 µL of 10 mM EDTA was added to detach the cells
from the surface and incubated for 4 min at 37 ◦C. Then 1 mL of complete growth medium
was added and cell suspension was transferred into a falcon with a volume 15 mL. The
cells were centrifuged for 3 min at 1000 rpm, the supernatant was removed, the cells
were resuspended in 4 mL of PBS, and the centrifugation was repeated. The cells were
resuspended in 4 mL of blocking buffer (5% BSA/PBS), incubated for 10 min at 37 ◦C
and centrifuged for 3 min at 1000 rpm. The supernatant was removed, the cells were
washed with 4 mL PBS and pelleted by centrifugation (3 min, 1000 rpm). The supernatant
was removed, the cells were incubated with 3 mL of a negative selection-depleted phage
peptide library for 1 h at 4 ◦C and centrifuged for 3 min at 1000 rpm. The supernatant
was removed, the cell pellet was washed three times with 4 mL of PBS and centrifuged for
3 min at 1000 rpm. The cells were resuspended in 4 mL of growth medium heated to 37 ◦C
to provide conditions for the internalization of bacteriophages into cells, incubated for
15 min at 37 ◦C and centrifuged for 3 min at 1000 rpm. The cells were then washed three
times with 4 mL of PBS. 400 µL of Triple Express was added to the cell pellet to remove
non-internalized bacteriophages, incubated for 2 min at 37 ◦C, 1 mL of complete growth
medium was added, and centrifuged for 3 min at 1000 rpm. The supernatant was removed,
the cells were washed with 4 mL PBS, and the centrifugation was repeated. Then, the
cells were lysed with 1 mL of mQ water for 20 min at room temperature. The cell lysate
was centrifuged for 5 min at 14,000 rpm, the supernatant was removed, and the phage
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suspension (1 mL) was amplified. The amplified population of phage particles was used
for subsequent rounds of selection.

For in vivo screening, we used the previously described methods [5,18], to wit. SCID
mice with subcutaneously and orthotopic glioblastoma xenograft U-87 MG were in-
jected into the tail vein with 300 µL of a phage peptide library with a concentration
of 2 × 1011 pfu/mL, diluted in saline. The circulation time of the phage library in the
bloodstream for mice with subcutaneously glioblastoma xenograft U-87 MG was 5 min;
for mice with orthotopic glioblastoma xenograft U-87 MG, the circulation time was 24 h.
After the screening time elapsed, the mouse was sacrificed by cervical dislocation, the
chest was opened, and 15 mL of saline was perfused through the heart to remove bacterio-
phages which not binding with the tumor from the bloodstream. The tumor was removed,
washed in saline and homogenized in 1 mL PBS containing 1 mM PMSF. The tumor tissue
homogenate was centrifuged for 10 min at 10,000 rpm. The pellet was resuspended in
1 mL of blocking buffer (1% BSA), after which centrifugation was repeated under the same
conditions. The pellet was resuspended in 1 mL of liquid culture of E. coli ER2738 in the
average log-phase with an optical density 0.3 (OD600) for elution of bacteriophages bound
to the tumor and incubated for 30 min at 37 ◦C at 170 rpm. The eluate of phage particles
was centrifuged for 5 min at 10,000 rpm. The supernatant was transferred to separate tubes
and the enriched phage library was amplified for subsequent rounds of selection.

Manipulations on glioblastoma xenograft U-87 MG and monitoring of tumor growth
were carried out by employees of «SPF-vivarium» ICG SB RAS. After the third round
of selection, phage particles were titrated to obtain individual phage colonies, which
were used for DNA isolation according to the manufacturer’s protocol for the phage
display peptide library. The sequencing reaction products were determined using an ABI
310 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) at the Genomics Core
Facility of SB RAS using sequencing primers (-96III (5′-CCC TCA TAG TTA GCG TAA
CG-3′)).

4.4. Tumor Preparation for Cell Sorting

In mice with orthotopical glioblastoma xenograft U-87 MG, a peptide library enriched
with in vivo biopanning (2 × 1011 PFU/mL of phage particles in 500 µL of saline) was
injected into the tail vein. After 24 h, the mouse was sacrificed by cervical dislocation and
the tumor was removed. The tumor was washed twice with PBS containing 10% penicillin-
streptomycin (Sigma-Aldrich, St. Louis, MO, USA), after which it was crushed with a
scalpel on a Petri dish, transferred into a falcon with 3 mL of trypsin and incubated in a
water bath at 37 ◦C for 10 min to dissociate the cells. To inactivate trypsin, 3 mL of a trypsin
inhibitor from soybeans (Sigma-Aldrich, USA) was added to the cell suspension, after
which the cells were centrifuged for 10 min at 800 rpm. The cell pellet was resuspended in
NSC medium for neural stem cells (Sigma-Aldrich) until a homogeneous cell suspension
was formed. The undissociated pieces of tumor tissue were removed and additionally
homogenized. 10 mL of NSC medium was added to the cell suspension, filtered through
a filter with a pore size of 40 µm, and centrifuged for 10 min at 800 rpm. The cells were
resuspended in 1 mL of NSC medium and incubated for 2 h at 37 ◦C to restore the proteomic
profile of the cells.

4.5. Cell Sorting

After incubation in NSC medium, cells were incubated in 500 µL blocking buffer
containing 10% FBS for 10 min. The cells were then washed with 500 µL PBS and incubated
for 45 min on ice with primary antibodies against CD44 labeled with FITC (Abcam, Cam-
bridge, UK) and primary antibodies against CD133 labeled with Alexa Fluor 647 (Abcam),
both diluted in 1% FBS in PBS, in 200 µL. The cells were washed twice with 500 µL PBS,
resuspended in 500 µL PBS containing 4 µg/mL gentamicin (Thermo Fisher Scientific,
Waltham, MA, USA) and passed through a strainer (BD Biosciences, Franklin Lakes, NJ,
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USA) into flow cytometry tubes (BD Biosciences). The analysis and sorting of cells was
carried out on a SONY SH800S Cell Sorter (Sony Biotechnology, San Jose, CA, USA).

4.6. Immunocytochemistry

U-87 MG cells were incubated on BD Falcon culture slides to 80–90% confluence,
washed with PBS twice, and 100µL of the selected phage clone (2 × 1010 PFU/mL) in
PBS-BSA Ca/Mg buffer (0.1% BSA, 1mM CaCl2, 10 mM MgCl2 × 6H2O); was added. Cells
were incubated with the bacteriophage clone for 2 h at 37 ◦C with the following treatment
according to the previously described technique with slight modifications [5], namely. After
incubation at 37 ◦C, cells were washed three times with 500 µL buffer (100 mM glycine,
0.5 M NaCl, pH 2.5) at room temperature, fixed with 200 µL cold 4% formaldehyde for
10 min and washed twice with PBS. Then, 200 µL 0.2% Triton X100 was added for 10 min
to permeabilize cells, after which the cells were washed twice with 500 µL PBS. Next, cells
were incubated with 200 µL mouse Anti-M13 Bacteriophage Coat Protein g8p antibodies
(Abcam) diluted in 1% BSA/PBS buffer (1:200) for 45 min at 4 ◦C and washed four times
with cold 500 µL 1% BSA/PBS buffer. Next, cells were incubated with 200 µL secondary
Alexa Fluor 647 (Abcam, UK) diluted in 1% BSA/PBS buffer (1:200) for 45 min at 4 ◦C and
washed four times with 500 µL cold 1% BSA/PBS buffer. Then the cells were stained with
DAPI (Thermo Fisher Scientific) and analyzed by fluorescent microscopy Axio Skope 2
Plus (Zeiss, Oberkochen, Germany) at the Center for Microscopic Analysis of Biological
Objects of SB RAS (Novosibirsk, Russia).

4.7. Analysis of the Specificity of Accumulation of Bacteriophages Displayed Selected Peptides in
Glioblastoma Xenograft U-87 Mg

Mice with a subcutaneously transplanted tumor were injected into the tail vein with
500 µL of bacteriophage (2 × 109 PFU/mL) diluted in physiological solution. After 4.5 h of
circulation of phage particles in the body, the mouse was sacrificed by cervical dislocation
and perfused through the left ventricle of the heart with 15 mL of saline. Then the tumor
and control organs (liver, kidney, lungs, and brain) were removed, washed in PBS, and
homogenized in 1 mL PBS containing 1 mM PMSF (Sigma Aldrich). The homogenates of
tumor tissue and control organs were centrifuged for 20 min at 10,000 g at room tempera-
ture to elute bound bacteriophages and were resuspended. The resulting suspension of
phage particles was titrated on agar LB medium supplemented with 1 mg/mL X-Gal and
1.25 mg/mL IPTG.

4.8. Statistical Analysis

Two-way ANOVA was used for comparisons of more than two sets of data. Differences
were considered to be significant if the p-value was <0.05. Nucleotide sequences of the
inserts encoding peptides were analyzed using MEGA X software.
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