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ABSTRACT
Flow cytometry is a classical approach used to define cell types in peripheral blood. While DNA 
methylation signatures have been extensively employed in recent years as an alternative to flow 
cytometry to define cell populations in peripheral blood, this approach has not been tested in 
lung-derived samples. Here, we compared bronchoalveolar lavage with a more cost-effective and 
less invasive technique based on sputum induction and developed a DNA methylome-based 
algorithm that can be used to deconvolute the cell types in such samples. We analysed the DNA 
methylome profiles of alveolar macrophages and lymphocytes cells isolated from the pulmonary 
compartment. The cells were isolated using two different methods, sputum induction and 
bronchoalveolar lavage. A strong positive correlation between the DNA methylome profiles of 
cells obtained with the two isolation methods was found. We observed the best correlation of the 
DNA methylomes when both isolation methods captured cells from the lower parts of the lungs. 
We also identified unique patterns of CpG methylation in DNA obtained from the two cell 
populations, which can be used as a signature to discriminate between the alveolar macrophages 
and lymphocytes by means of open-source algorithms. We validated our findings with external 
data and obtained results consistent with the previous findings. Our analysis opens up a new 
possibility to identify different cell populations from lung samples and promotes sputum induc-
tion as a tool to study immune cell populations from the lung.
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Background

Much of our knowledge of the immune system is 
derived from studies on cells isolated from blood, 
although extrapolation of the performance of those 
lymphocytes and myeloid cells gives very limited 
information on immunological events in periph-
eral tissues. It is becoming increasingly evident 
that in order to understand tissue-specific immu-
nity, samples from relevant tissues have to be 
collected and studied. To understand how differ-
ent environmental factors contribute to airway 
inflammation, sputum induction (SI) has been 
employed as replacement for the invasive bronch-
oalveolar lavage (BAL) in several studies [1–4].

Epigenetic research has its roots in plant 
science, which emerged in the early 20th century. 
In human medicine, cancer biology has driven the

field forwards during the last two decades and in 
combination with modern, array-based techniques 
and next-generation sequencing now provides the 
scientific community with an easily accessible tool 
to study epigenetics at a whole-epigenome level. 
Presently, numerous clinical studies outside the 
cancer field are emerging, contributing an expand-
ing portfolio of DNAm signatures for a variety of 
conditions, including psychiatric conditions 
(PTSD [5], ADHD [6]), exposure to cigarette 
smoke [7], ageing [8] and metabolic syndrome 
[9]. The DNAm signature analysis tools, the 
GrimAge algorithm [10] deserves a special men-
tion since it has proven to be a more powerful age- 
classifier than those based on telomere length and 
importantly, it can provide information on both
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chronological and biological age from DNA 
methylation data. Several diseases have now been 
shown to involve age acceleration (higher biologi-
cal age compared to chronological age), including 
severe Covid-19 [11], cardiovascular disease, can-
cer and diabetes [12]. A study based on DNA 
methylation data showed that cigarette smoking 
increased the relative age of the lungs as compared 
to the rest of the body [13].

In 2012, Houseman et al presented a cell-sorting 
algorithm based on DNA methylation data to 
identify the fraction of five different cell types in 
peripheral blood mononuclear cells (PBMCs) [14]. 
The classifier has had a fundamental impact on 
deconvolution of blood-derived DNA methylome 
data (nearly 2000 citations as per March 2021, 
including [15–20]) and has also been extrapolated 
to pulmonary cell DNA methylomes [21].

In this report, we isolated both macrophages 
(HLA-DR+, CD3- cells) and lymphocytes (CD3 
+ cells) from samples obtained through SI and 
BAL from the same donors in order to compare 
the cell populations obtained through the two pro-
tocols. Instead of using the marker-biased flow 
cytometry approach for cell characterization, we 
employed whole-genome DNA methylome ana-
lyses for the characterization. Our data demon-
strate that the DNA methylation profile of the 
cell populations display strong overlap and con-
clude that the SI approach represents a valuable 
tool for non-invasive collection of samples repre-
senting the mucosal immunity of the airways. In 
addition, we provide a classifier algorithm that, 
based on DNA methylome data, can distinguish 
macrophages in samples derived from the pul-
monary compartment.

Results

DNA methylomes from cells isolated through SI 
and BAL are highly correlated

To investigate whether the pulmonary cells col-
lected using SI are similar to those obtained 
through BAL, we collected both specimens from 
the same subjects and isolated lymphocytes (CD3 
+) and macrophages (HLA-DR+/ CD3-). DNA 
methylomes were captured from the isolated 
DNA using the Illumina 450 K protocol (Figure 

1). The variation (β values after the data
filtration) in the DNA methylome datasets derived 
from cells from SI and BAL were calculated and a 
Spearman’s rank correlation test from each cell 
populations and each subject were performed. 
The analysis revealed a strong and highly signifi-
cant positive correlation (rISjBAL�x ¼ 0:95, p value < 
2.2e-16) in each pair of data obtained through the 
two isolation protocols (Figure 2a, Supplementary 
Figure S1), suggesting that the cell identities and 
phenotypes were very similar. To analyse any pos-
sible common differences between sputum cells 
and BAL cells, we compared the mean global β 
values for the respective cell type and found that in 
both cell populations, the values differed slightly 
and significantly between the two protocols 
(SImean = 0.4504, BALmean = 0.4669 in HLA-DR 
+/CD3- cells and SImean = 0.4727, BALmean 
= 0.4666 in CD3+ cells, Figure 3(a,b)), suggesting 
that there is a relevant difference between the two 
protocols. Of note, a previous study demonstrated 
that the DNA methylomes of macrophages recov-
ered from lower parts or apical parts of the lung 
display differences in the DNA methylomes, prob-
ably reflecting differences in the phenotypes [22]. 
Therefore, to investigate whether our HLA-DR 
data could be used to predict from which part of 
the lung the SI-derived cell populations came 
from, we used previously published data from 
Armstrong et al (GSE132547) that consists of 
Illumina EPIC array 850 K data obtained from 
12 healthy subjects and grouped them separately 
as upper and lower lung for each subject. The 
linear regression was calculated and residuals 
were estimated (Δy ¼ byi � yi � 0:3, the distance 
of the β value of each CpG from the linear regres-
sion line, Figure 2(b,c)) to obtain the CpGs which 
are at the farthest distance from the regression 
line and strongly correlated to either SI or BAL 
samples. The percentage of cells derived from the 
upper and/or lower lungs was identified by using 
extracted CpGs from the HLA-DR datasets as 
test data with the Armstrong et al data [22] 
as training dataset in the EpiDISH package 
(Figure 4). The EpiDISH package provides tools 
to infer the fractions of a priori known cell sub-
types present in a sample representing a mixture of
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such cell-types. For the subjects P4 and P5, the 
analysis predicted that BAL-recovered cells were 
from the lower lung and SI cells were from the 
upper lung, whereas for P2 and P3, SI and BAL 
cells were identified as cells from the lower lung. 
In P1, a fraction of the BAL cells (21%) were 
identified from the upper lung, while the rest of 
the BAL cells and the SI cells came from the lower 
lung.

A DNA methylome-based cell-sorting algorithm 
for pulmonary samples

The datasets compiled in our present study con-
stitute a relevant source of data to create a classi-
fier similar to the Houseman algorithm but instead 
tailored for the pulmonary compartment.

Based on our demonstration that the DNA 
methylomes from both isolation procedures (SI 
and BAL) were highly similar, we averaged the SI 
and BAL data for each cell population (HLA-DR
and CD3) as a first step. To identify cell type- 

specific CpGs, we employed three different refer-
ence-free EWAS algorithms, RefFreeEWAS [23], 
SVA [24] and RefFreeCellMix [23]. To estimate 
the variation only from the strongly correlated 
CpGs, we again set the residuals, 
Δy ¼ byi � yi � 0:001, and identify those CpGs 
close to the regression line to avoid SI or BAL- 
specific CpGs (Supplementary Figure S1b). Using 
the above-mentioned algorithms (with pBH-value < 
0.05), we determined the CpGs specific for HLA- 
DR+ and CD3+ cells and (Table 1) identified a 
total of 594 CpGs and 2,292 CpGs for HLA-DR 
cells and CD3 cells, respectively (Figure 5(a,b)).

Figure 1. Flow diagram of the study.

Table 1. Cell specific CpGs to determine cell proportion estima-
tion using different algorithms.

Algorithms HLA-DR specific CpGs CD3 specific CpGs

RefFreeEWAS 42,958 39,742
SVA 2,946 6,507
RefFreeCellMix 38,030 55,491

RefFreeEWAS: Epigenome-Wide Association Study (EWAS) using 
Reference-Free DNA Methylation Mixture Deconvolution. SVA: 
Surrogate Variable Analysis and RefFreeCellMix: Reference-Free Cell 
Mixture Projection 
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Finally, after applying an additional cut-off (≤ 0.1) 
to remove CpG with only minor differences in β 
values, we compiled a total of 2,763 CpGs as the 
reference dataset for the alveolar cell sorting 
(Supplementary Table S1).

Validation of the classifier against another 
dataset reveals a high accuracy

In order to validate the identified cell-specific 
CpGs, we compared the data with a recently
published BAL sample DNA methylome dataset 

(GSE133062) by Ringh et al [21]. In this study, 
the authors demonstrated by analysing Giemsa- 
stained BAL cytospins that more than 90% of the 
cells were alveolar macrophages. We performed a 
cell proportion analysis using our classifying CpG 
set in combination with the EpiDISH package in R 
with the whole 850 K DNA methylation data of 
Ringh et al [21]. The results revealed a high accu-
racy of the reference data in all samples with a 
high proportion of alveolar macrophages (85– 
100%) and low proportion of alveolar lymphocytes 
(0–15%) (Figure 6) in line with the published data

Figure 2. (a). Spearman’s rank correlation analysis of β values obtained from DNA methylome analyses of cells (as indicated) from 
sputum induction (SI) and bronchoalveolar lavage (BAL). The density plots describe the β value distribution among SI (turqois) and BAL 
(pink) methods. The adjacent tables represent statistical data from each sample. (b) Figure representing the calculation of residual value. 
The tangent distance was calculated using the equation mentioned in methods. The ellipses were drawn to show the CpGs closer to SI 
and BAL samples. The dashed line represents the cut-off applied to extract the CpGs above Δy ¼ 0:3. Each dot reprensts one CpG. (c). 
Histogram representing the distribution of normalized β values of CD3 and HLA-DR cells. The blue vertical line representing the cut-off 
score (Mean±2SD = 0.3) applied to select the CpGs for the analysis.
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[21]. To explain the performance of our identified 
cell-specific CpGs, we calculated the quantile rela-
tion between our cell-specific CpG data with 
Ringh et al data for BAL and SI separately 
(Supplementary Figure S3). The computational 
validation of the result showed that the identified 
CpGs can be a potential signature to deconvolute 
cell proportions in lung samples based on DNA 
methylation data.

Discussion

In this study, we demonstrated a strong correla-
tion between the DNA methylome profiles of two 
cell populations isolated from SI and BAL. Both 
isolation methods are well known and have been 
used for decades for clinical diagnosis of pulmon-
ary conditions. The sensitiveness of both methods 
has been widely compared [25–27] and one 
obvious advantage with BAL is the option to col-
lect samples from defined sites in the lung. 
However, a major disadvantage with BAL is that 
it is an invasive procedure performed by physi-
cians at larger medical centres that requires seda-
tion and monitoring of the patient. It is also 
considerably more expensive than SI. On the 
other hand, SI is a safe, relatively cheap, non-
invasive technique that can be performed by 

nurses or physiotherapists at an outpatient clinic, 
which all contributes to the limitation of BAL 
samples for research [28].

To explore the comparativeness of cells 
obtained through SI and BAL, we collected sam-
ples from five patients using both methods and 
isolated HLA-DR+/CD3- and CD3+ cells. We per-
formed a genome-wide DNA methylation analysis 
to compare the β values from ~400k CpG sites in 
the DNA from these cell types and found a strong 
and significant correlation between these two 
methods in both cell types. Although this analysis 
suggested that the cell populations obtained 
through the two protocols were very similar, com-
parison of the global mean β values significantly 
differed between SI and BAL. Through exploration 
of a previous study’s finding [22] that designated 
unique CpG signatures to macrophages collected 
from the upper or lower parts of the lungs, we 
examined the possibility that this slight discre-
pancy was related to the local pulmonary site of 
sample collection. Indeed, the analysis allowed 
prediction of the site of collection (either upper 
or lower lung or in one case a mixture of both). 
Importantly, like BAL, which allows sample collec-
tion at defined sites, SI samples could result in 
cells obtained from the lower parts, which 
demonstrates that SI is an effective method for

Figure 2.  
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studies of pulmonary immunity. A limitation of 
the present study was the absence of information 
on which part of the lungs was targeted in the BAL 
collection.

Using DNA methylation-based signatures to 
classify cell types is gaining increasing interest. 
For example, a recent study showed that tissue- 
specific DNA methylation signatures of free circu-
lating DNA in plasma of patients with severe 
Covid-19 can reveal specific organ injury [29]. 
The most widely used cell-type deconvolution 
algorithm was described by Houseman et al [14], 
which uses cell-type-specific DNA methylation
signatures to determine the frequencies of T cells, 

B cells, monocytes, NK cells and neutrophils in 
PBMCs. Here, we present a comparable algorithm 
to assess the proportion of T cells and macro-
phages in pulmonary samples by combining three 
reference-free algorithms to derive the cell-specific 
CpGs. We used reference-free algorithms since 
there is no available reference data. We observed 
a large variation among these three algorithms and 
therefore intersected the CpG list and used the 
overlapping CpGs as cell type markers. In a vali-
dation step, our algorithm was applied to another 
publicly available dataset and it generated a similar 
prediction of cell proportions as the previously 
published, microscopy-validated data. At present,

Figure 2.
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very few studies on lung-derived cells exist that 
include DNA methylation data along with cytolo-
gical data; however, future studies will be able to 
comprehensively capture DNA methylation signa-
tures for all pulmonary cell types. The results has 
the potential to facilitate interpretation of DNA 
methylation data originating from pulmonary 
samples, which is receiving increasing attention
with a large number of studies defining pulmonary 

CpG signatures for conditions including cystic 
fibrosis, lung cancer, chronic obstructive pulmon-
ary diseases and smoking [21,30–33].

Conclusions

Our analyses demonstrate that SI is an attractive 
method for studies of pulmonary immunity that 
can replace BAL and that DNA methylomes

Figure 3. Distribution of DNA methylation β values in SI and BAL data. a) HLA-DR and b) CD3. The mean value is indicated by the 
black dot and the vertical line represents the interquartile range. Statistics: Mann-Whitney-Wilcoxon test, **** represents a p-value 
<1e-4. NHLA-DR = 382,591, NCD3 = 398,390.

Figure 4. Bar plot displaying the distribution of lower- (blue) and upper (orange) lung-specific CpGs as identified by the EpiDISH 
package for the included individuals’ SI and BAL samples.
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Figure 5. Venn diagrams representing HLA-DR-specific (a) and CD3-specific (b) CpGs based on three different reference-free EWAS 
deconvolution methods (RefFreeEWAS, SVA and RefFreeCellMix).

Figure 6. Boxplot illustrating a validation of the cell sorting algorithm against Ringh et al. data.
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derived from the cells obtained through this pro-
tocol can distinguish between cells collected from 
the upper or lower parts of the lungs as well as 
predict the proportion of macrophages and T cells.

Methods

Study design, ethics and participants

Participants, five female patients scheduled for 
BAL as part of their clinical investigation, were 
recruited from Linköping University Hospital 
between 2017 and 2018 (Table 2). The participants 
donated induced sputum at a time point -/+ 
2 weeks before/after collection of the BAL sample. 
After collection of BAL for diagnostic purposes, 
leftovers were used for the planned research.

Sputum induction and sputum processing

Sputum induction and processing was done as 
described by Sikkeland et al (2012) [34,35] with 
some modifications. Briefly, hypertonic saline at 
3%, 4%, and 5% were inhaled for three 7-minutes 
periods using a nebulizer (eFlow Rapid, PARI, 
Germany) after nebulizer-administered premedi-
cation with an adrenergic β2-agonist, salbutamol 
1 ml (1 mg/ml). After each inhalation period 
expectorates were collected, the subjects per-
formed a three-step cleansing procedure to reduce 
contamination from nasopharynx (blow nose, 
rinse mouth and gargle three times with water), 
before coughing deeply involving the thorax and 
spitting the expectorate into a 50 ml sterile tube, 
(Falcon).

Sputum was processed within two hours after 
induction. From the sputum sample, mucus plugs, 
were manually selected, weighed and treated with 
four times its volume of 0.1% dithiothreitol (DTT, 

Thermo Fisher). The sample was aspirated with a 
Pasteur pipet five times, vortexed 15 sec and 
rocked at 4°C at 40 rev/min for 15 min. The 
sample was then diluted four times with phosphate 
buffered saline (PBS), and rocked for 5 min before 
filtrated through a 50 μm cell strainer (CellTrics® 
by Sysmex) and centrifuged for 5 min. Cell viabi-
lity, total cell counts, and squamous cell counts 
were manually evaluated by counting cells in a 
Bürker chamber with trypan blue staining.

BAL was obtained according to standard clinical 
procedures at the Linköping University Hospital. 
125 ml of sterile, physiological sodium chloride 
(NaCl) solution was instilled and aspirated to col-
lect cells. The BAL fluid was kept on ice until 
processing. PBS was added and the samples were 
centrifuged at 400 g for 5 minutes at 4°C, then 
washed with PBS and followed by recentrifuged at 
300 g for 13 minutes at 4°C before isolation of 
DNA as described below.

DNA extraction and data processing

The pulmonary HLA-DR and CD3-positive cells 
were isolated using superparamagnetic beads 
coupled with anti-human CD3 and Pan Mouse 
IgG antibodies (Invitrogen Dynabeads®, Life 
Technologies AS, Norway) and HLA-DR/human 
MHC class II antibodies (Invitrogen Dynabeads®, 
Life Technologies AS, Norway). An initial positive 
selection was done with CD3 beads followed by a 
positive HLA-DR selection. Bead coating and cell 
isolation was performed according to manufac-
turer’s protocol. The DNA and RNA were 
extracted from the lung immune cells using the 
AllPrep® DNA/RNA Mini Kit (Qiagen, Germany), 
per the manufacturer’s instructions.

The DNA methylome data of HLA-DR+/CD3- 
and CD3+ cells was analysed using the 
HumanMethylation450K (450 K) BeadChip 
(Illumina, USA) array as per the manufacturer’s 
instructions. The raw IDAT files of the DNA 
methylation data was processed using the BMIQ 
normalization function of the ChAMP package 
[36] in R (v3.6.3) after using a robust filtration 
criteria to generate the β values from each CpG 
for each sample. The sex chromosome data was 
removed to get rid of the gender biasness, multi- 
hit probes were taken away from the data and also

Table 2. Demographic characteristics of participants.
Characteristics Value

Age (year)† 55 ± 10
Height (cm) † 166 ± 1
Weight (kg) † 70 ± 10
Body Mass Index (BMI) † 25 ± 3
Sex (male/female) 0/5
BCG* (yes/no) 5/0
Smoking (current/previous/never) 0/4/1

†Values are mean ± standard deviation. *BCG is the abbreviation of 
Bacillus Calmette–Guérin. 
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CpGs with lower p-values (< 0.01) was drawn out 
from the data ([37]; submitted manuscript). The 
filtered data was normalized using the beta- 
mixture quantile normalization (BMIQ) function 
using the ChAMP package [38]. To compare our 
450 K data with other previously published dataset 
from Illumina 850 K array [GSE133062, 
GSE132547 [21,22]], we used merge function in R 
to extract the CpG sites present in the Illumina 
450 K array analysis.

Statistical calculations

All statistical analysis was performed in R v3.6.3 
and bioconductor packages (v3.10). Anderson- 
Darling (AD) normality test [39] was used to cal-
culate the non-parametric distribution of the data-
set using nortest package [40] in R (used for large 
dataset, >380 K, Table 3). As all of the data show 
non-parametric distribution, Spearman’s rank cor-
relation test was performed to calculate the corre-
lation using ggpubr package [41] in R. The linear 
regression line with geom smooth function from 
ggplot2 package was added to the plot to calculate 
the confidence interval (C.I. = 95%). The correla-
tion matrix was calculated using the Spearman’s 
correlation coefficient to evaluate the pairwise 
relationship among all samples. The value was 
considered significant if p-value < 0.05 throughout 
the current study.

Cell-specific CpGs identification and validation

To identify the cell type-specific CpGs, three refer-
ence-free algorithms were used, RefFreeEWAS 
[23], SVA [24] and RefFreeCellMix [23]. First, the 
linear regression model was applied on the β 
values for each sample combining both SI and 
BAL samples. The residual value was then calcu-
lated using the equation, Δy ¼ byi � yi, and 
Δy< 0:001 filter was set to extract the CpGs 
close to the regression line (Figure 2b). Data was 
prepared from the β values and the phenotypes (e. 
g., HLA-DR and CD3) per sample as per algo-
rithm requirement and covariates were calculated 
using Bonferroni-Hochberg corrected p-value < 
0.05. Each algorithm was used separately to pre-
dict the cell-type-specific CpGs. Venn analysis was 
used to intersect the overlap CpGs identified using 
the three algorithms. To validate our results with 
another external dataset, a previously published 
dataset was used as the test data GSE133062 [21] 
only in the HLA-DR cell types using the EpiDISH 
package [42] in R. A Q-Q plot was also calculated 
using the ggplot function in R between the cell- 
specific CpGs identified in our dataset and the test 
data GSE133062 for BAL and SI for HLA-DR cells 
(Supplementary Figure S3). No publicly available 
dataset was identified that could be used to vali-
date the CD3-specific cell population.
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