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Abstract

Recently, a great attention has been given for applying a low-cost and effective

adsorbents instead of expensive and dangerous chemical materials as a promising

approach to treat wastewater. In this work, residue powder of brown macroalga

Padina gymnospora (RPG), after extracting most of its active components by 70%

methanol, was used as an adsorbent material for wastewater treatment. This work

also reduces the costs of residue disposal. The adsorption ability of RPG is studied

for removing Cd2þ and Cr3þfrom wastewater. We investigated metal adsorption

isotherms and kinetics, the effect of initial metal concentration, contact time,

adsorbent dosage, temperature, pH and the RPG reusability on metal ions removal.

The results showed that the removal % generally increases with decreasing

concentration of metal ions. RPG has higher metal removal percentages reaching

96.2% and 78.8% for Cd2þ and Cr3þ, respectively, with a maxiumum adsorption

capacity of 96.46 and 31.52 mg/g for Cd2Dand Cr3þ,respectively at pH 6.2, 50 mg,

25 �C and initial metal concentration of 100 mg/L. The metal ions removal %

increased by increasing the dosage of adsorbent and it decreased after a certain
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limit. Themetal removal % slightly changes with increasing temperature for Cd2þ and

decreased at high-temperature for Cr3þ. The adsorption increased with increasing pH

value from 3 to 5, and decreases at pH value of 6.2 then it increased again at pH 8. The

removal % and adsorption capacity at pH 8 reaches 99.58%, 99.65%, 99.85 mg/g and

39.86 mg/g for Cd2þ and Cr3þ, respectively. The results also showed that RPG can be

reused several times for metal ions removal. In addition, Tempkin isotherms and

pseudo-second-order kinetic fit the adsorption of Cd2þ and Cr3þ well.

Keyword: Environmental science

1. Introduction

In the present, modern technology creates considerable amounts of hazardous heavy

metals in the aquatic environment. These heavy metals include, for example, Cu2þ,

Cr3þ, Cr6þ, Cd2þ, Ni2þ, Zn2þ, Pb2þ, Hg2þ and As2þ. For examples, the industries

of tanneries, metal plating, and mining discharge several contaminated heavy metals

like cadmium and chromium into their aqueous waste streams [1, 2]. Generally,

heavy metals are very toxic, naturally non-degradable, accumulated in body organ-

isms and uptake of a certain quantities of them cause several illnesses and disorders

for living organisms [3]. In this regards, exposure to cadmium causes human cancer,

renal damage, and kidney disorder [4, 5].

Chromium occurs in two forms, hexavalent and trivalent forms. Cr (III) in low doses

is a necessary nutrient metal in the human diet [6]. Deficiency of Cr (III) in the hu-

man body causes cardiovascular disease, hyperglycemia, and other health effects. On

the other hand, high doses of Cr (III) could negatively affect human life. Cr (III) in-

duces skin rash and its high accumulations in cell cause DNA damage [7]. Cr (VI) is

also carcinogenic for stomach and lung and also causes a headache, diarrhea, nausea,

and vomiting [8, 9]. So, the elimination of these heavy metals from aqueous solu-

tions and wastewater is the critical topic of many approaches [10].

Traditional methods, like chemical reduction and precipitation, for removing heavy

metal such as cadmium and chromium from wastewater is an expansive processes

due to reagents consumption and toxic sludge generation, which requires subsequent

disposal [11]. Also, these techniques have low efficiency and inapplicability to a

wide range of pollutants [12]. For this reason, increasing attention has been given

to some alternative and economical techniques for the removal of cadmium and

chromium, including membrane separation, adsorption, ion exchange and biological

reduction [13, 14, 15, 16]. Adsorption has been found to be superior to other tech-

niques for water treatment in terms of initial cost, flexibility and simplicity of design,

ease of operation, insensitivity to toxic pollutants and does not produce harmful sub-

stances like most processes [17, 18]. Therefore, recently removal of heavy metal-
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contaminated aqueous solutions by using different adsorbents such as green sands

[19], iron slag [9, 20], fly ash [21, 22] and waste iron [23], agricultural by-

products like hazelnut shell, orange peel, rice husk, pecan shells, jackfruit, activated

carbon [24, 25, 26] and potato peels charcoal [27] were applied. Interstingly, algal

biomass from Spirogyra species [28], Chlorella Vulgaris [29], Ulva Lactuca [30,

31], Oedogonium and Nostoc specieses [32] showed efficient absorbing capacity.

In this work residue of residue of Padina gymnospora (RPG), after the extraction of

its photochemicals, was used as an adsorbent material for wastewater treatment.

RPG is selected for many reasons such as, its low-cost, natural and abundant adsor-

bent. Also, the cost of regeneration and reuse of RPG is inexpensive that may play an

important economical role in making this a practical process. In addition, the reuse of

RPG as a low-cost adsorbent has a vital role in minimizing the cost of residue

disposal. The adsorption ability of RPG is studied for removing Cd2þ and Cr3þ

from wastewater. In more details, metal adsorption isotherms and kinetics, the effect

of initial metal concentration, contact time, adsorbent dosage, temperature, pH and

the RPG reusability on metal ions removal were studied by batch experiments.
2. Experimental

2.1. Adsorbent preparation

Padina gymnospora (brown alga) was collected from the Egyptian red sea shores,

Washed with tap water several times and then washed several times with distilled

water to get rid of salt and granular materials from the surface. After drying the algal

material at room temperature, was ground into fine powder by an electrical mill. P.

gymnospora powder was soaked in 70% methanol for three days with continuous

shaking at room temperature to extract its active component. After evaporation of

the solvent on a rotatory evaporator, the residue powder of P. gymnospora was dried

at room temperature and saved in airtight plastic bags to be used as a natural adsor-

bent in wastewater treatment.
2.2. Biosorbent characterization

The residue algal biomass is characterized before and after metal ions adsorption

process using fourier-transform infrared spectroscopy (FTIR) (Tensor e 27. Bruker

FTIR mode), in a wave number range of 400e4000 cm�1 under normal conditions,

and Scanning electron microscopy (SEM)(a JEOL, JSM-52500 LV SEM, Japan).
2.3. Adsorption experiments

Cd2þ and Cr3þ metal ions were chosen for the adsorption process. The solutions of

the tested metal ions were prepared by the desired concentrations by dissolving the
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analytical salts of CdCl2.H2O and CrCl3.H2O in distilled water and then mixed with

RPG. The metal adsorption isotherms and kinetics, the effect of initial metal concen-

tration, contact time, adsorbent dosage, temperature, pH and the RPG reusability on

metal ions removal were studied by batch experiments.

All the experiments were conducted in the batch mode in various conditions in terms

of metal ions initial concentrations of (10e100 mg/l), adsorbent dose (0.1e0.7 g/l),

pH (3e8), contacted time (180 min), and temperature (25e80 �C).

To study the effect of the initial metal concentration the Adsorption assays were done

at various metal ions concentrations (10, 25, 50 and 100 mg/L) by mixing 50 mg of

RPG adsorbent with100 mL of the solutions at pH 6.2 and 25 �C with continuous

shaking.

Biomass weight effect was done at 25 �C and pH 6.2 for 180 min where different

amounts of adsorbent (10, 30, 50 and 70 mg) are added and shaken with 100 mL

solution of 100 mg/L concentration. The influence of temperature on adsorption

assay is tested at 25, 40, 60 and 80 �C and at pH 6.2, 50 mg of adsorbent and

100 mL of 100 mg/L solution for 180 min.

To study the effect of pH, a solution of different pH values (pH 3, 5, 6.2 and 8) were

prepared and examined at a constant temperature of 25 �C and 50 mg of adsorbent

was mixed with 100 mL of a solution of 100 mg metal/L for 180 min.

The reusability of RPG was examined by repeating the adsorption cycle four times

with the same adsorbent using 50 mg of the catalyst at pH 6.2 and constant temper-

ature (25 �C) for 180 min. After each run, the solid was collected by filtration and

washed several times by distilled water to be used in the next run.
2.4. Calculations of metal ions removal percentages and
adsorption capacity

After specific interval time, during the study of each parameter, the slurry samples

were filtered to remove adsorbent and then concentration of the residual metal

ions in aqueous solutions was analyzed by atomic absorption spectrometer (Perkin

Elmer A Analyst 100, USA). The quantity of metal uptake at equilibrium in mg/

g, Adsorption capacity (qe), can be calculated using Eq. (1):

qe ¼
VðCo �CeÞ

m
ð1Þ

Also, Adsorption capacity after time t (qt), given by Eq. (2):

qt ¼
VðCo �CtÞ

m
ð2Þ
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In addition, the metal ions removal percentages were calculated from Eq. (3):

metal ions removal%¼ 100ðCo �CtÞ
Co

ð3Þ

Where, Co and Ce are the initial and equilibrium metal concentrations in the solu-

tion (mg/L), respectively. Also, Ct is the metal concentration after time t in the so-

lution (mg/L), V is the solution volume (in mL) and m is the adsorbent mass (in

mg) [33, 34].
2.5. Adsorption isotherm

The adsorption isotherm models explain mathematically the attitude of adsorbent

species between solid and liquid phases. Langmuir, Freundlich and Tempkin

isotherm models are used for the elucidation of adsorption of Cd2þ and Cr3þmetals

by RPG.

The Langmuir isotherm considers monolayer adsorption at active sites of the adsor-

bent with no interaction between molecules of adsorbed metals. The Langmuir

isotherm is described by Eq. (4) [35]:

Ce

qe
¼ 1

KLQo
þ Ce

Qo
ð4Þ

Where qe is the equilibrium adsorption capacity (mg/g), Qo is the maximum quan-

tity of metal adsorbed on residue algal biomass (RPG) (mg/g), Ce is the concentra-

tion of the tested metal ions in solution at equilibrium (mg/L) and KL is the

Langmuir constant (L/mg).

Freundlich isotherm model assumes multilayer adsorption on heterogeneous sur-

faces with the association between metal ion molecules. This model equation is writ-

ten as the following(Eq. (5)) [36]:

logqe ¼ logKF þ 1
n
logCe ð5Þ

Where KF is the adsorbent capacity and n is Freundlich adsorption intensity

constant.

The third model is Tempkin isotherm, it characterized by decreasing adsorption heat

linearly with coverage and distribution of binding energies regularly [37, 38]. Eq. (6)

of Tempkin isotherm can be written as follows:

qe ¼ B lnKT þB lnCe ð6Þ

Where KT (L/mol) is Tempkin binding constant at equilibrium relating to the

maximum binding energy; B (RT/b) is constant regarding the adsorption heat and

R (8.314 J/mol K) is the gas constant and T (K) is the absolute temperature.
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2.6. Adsorption kinetics

The kinetic models namely pseudo first order, pseudo-second order, intraparticle

diffusion, and simple Elovich models were applied to analyze the behavior of metal

ions adsorption and steps that control its rate.
2.6.1. Pseudo-first-order model

This kinetic model describes the adsorption of metal ion from an aqueous solution.

The pseudo first order equation is represented by Eq. (7) [39, 40, 41]:

ln (qe e qt) ¼ lnqe e k t (7)

where qe is the equilibrium mass of adsorbed metal ions (mg/g), qt is the adsorption
quantity at time t (mg/g), k (min�1) is the constant of first-order rate. In pseudo first or-
der, the rate of filling of adsorption positions is dependent on the number of free active
positions.
2.6.2. Pseudo-second order model

In this model, the adsorption rate was directly proportional to the square of the num-

ber of empty positions. The equation of this model can be described by Eq. (8) [42,

43, 44]:

t
qt

¼ 1
k1q2e

þ t
qe

ð8Þ

where k1 is the second-order rate constant.
2.6.3. Intraparticle diffusion kinetic models

The intraparticle diffusion kinetic model assumes that the solubilized ions transport

from aqueous solutions to the adsorbent materials then intraparticle diffusion assay

takes place [45]. This model equation was given by Eq. (9):

qt ¼ k2t
1
2 þ I ð9Þ

Where, k2 is the constant of intraparticle diffusion rate and I is the intercept which is

corresponding to the boundary layer thickness.
2.6.4. Elovich kinetic model

This kinetic model considers the adsorption of heterogeneous surfaces and it is a spe-

cial type of second-order kinetics. The Elovich model Eq. (10) is represented as

follow [46]:
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qt ¼ 1
b
ln abþ 1

b
ln t ð10Þ

Where a (mg/min) is the rate of initial adsorption at contact time t ¼ 0 min and b

(g/mg) is the extent of surface coverage and activating energy.
2.7. Statistical analysis

The adsorption data was a mean of three independent experiments. The regression

coefficient (R2) values of Langmuir, Freundlich, Tempkin isotherm, pseudo-first-

order, pseudo-second-order, Intraparticle diffusion, and Elovich kinetic models

were determined by using statistical functions of Microsoft Excel, 2007 version.
3. Results and discussion

3.1. Biosorbent characterization

3.1.1. Fourier-transform infrared analysis (FTIR)

The different functional groups on the algal biomass surface that interact with heavy

metal ions were indicated by FTIR analysis in two cases (before and after the adsorp-

tion process). FTIR spectra for free P. gymnospora residue and P. gymnospora res-

idue loaded with Cd2þ and Cr3þ were analyzed (Fig. 1). From these data, a broad

band of (OH) group was detected at 3450 cm�1 before adsorption process, but after

adsorption broad band of (OH) group were detected at 3470 cm�1 and 3465 cm�1

with Cd2þ and Cr3þ metals ions, respectively. The interaction between adsorbed

metals ions and the (OH) groups that present in the surface of the alga residue

was responsible for the previous difference in the wave number value [47]. The

(NH) of amide group was detected as a strong band at 3280 cm�1 before adsorption

and at 3289 cm�1 and 3290 cm�1 after adsorption of Cd2þ and Cr3þ, respectively.

The peak at 3137 cm�1 before adsorption process was referred to the presence of C-

H bond stretching of methyl and methoxy groups and they were detected at 3150

cm�1 and 3147 cm�1 after adsorption of Cd2þ and Cr3þ, respectively [48]. The

absorbance at 2683 cm�1 before adsorption was related to (SH) group and this

band appears at 2697 cm�1 and 2692 cm�1 with Cd2þ and Cr3þ, respectively.

The C¼C stretching vibration bond exhibited the peak at 1660 cm�1 before adsorp-

tion and at 1649 cm�1 and 1640 cm�1 after adsorption of Cd2þ and Cr3þ, respec-

tively and that probably was because of the aromatic bond [49]. The peak at 1404

cm�1 before adsorption showed the presence of (C-O) bond that shifts to 1426

cm�1 and 1413 cm�1 after adsorption of Cd2þ and Cr3þ, respectively [30]. The

absorbance at 1593 cm�1 before and after adsorption assay corresponded to the

bending band of amid group [47].
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3.1.2. Scanning electron microscopy (SEM) characterization

The SEM images of RPG before and after metal adsorption at 2000 � magnification

were illustrated (Fig. 2). By SEM examination, the morphology of the biosorbents

surface before and after metal uptake is visualized. It was found that considerable

changes to the morphology of the biosorbents surface were observed. Before

Cd2þ and Cr3þ uptake, the cells are smooth and have certain dimensions and the sur-

face was characterized by a number of micro and macro pores (Fig 2a and b). The

destruction and swelling of the cells, their surface is developed into puckers and

the pores were covered with the adsorbed metal particles after metal adsorption

(Fig 2c and d). These resulted in changes perhaps because of the deposition of metal

ions around the cell surface and associate with their functional groups. These

changes may be produced during the exposure of the samples to heavy metal solu-

tions; where it takes place the replacement of the metal ions for some of the cations

that was initially found in the cell wall matrix and make stronger cross-linking.

Because of the ion-exchange mechanism, the heavy metals fill the ready unoccupied

binding sites [50].
on.2019.e01287
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3.2. Optimization of initial metal concentration and contact time

The effect of initial metal concentration and contact time on the removal % and the

amounts of adsorbed metal ions using RPG as a green adsorbent was monitored

(Figs. 3 and 4). It was deduced that at the initial stage, the adsorption rate was

very high during the first 30 min then it decreased till it reached the equilibrium state

(Fig. 3). The rapid adsorption rate at the initial level of the adsorption assay probably

refered to a great number of unoccupied adsorption positions existing on the surface

of the adsorbent. Afterward a certain time, the empty positions were covered by the

adsorbed metal ions and this induced a repulsive force between the adsorbed mole-

cules on the surface of adsorbent and in bulk phase and consequently the adsorption

rate decreases [51] (Fig 3a and b). For Cd2þsolution, the RPG catalyst represents 94,

97, 97 and 96.2% removal percentage after approximately 180 min with concentra-

tions 10, 25, 50 and 100 ppm, respectively. In addition, the RPG catalyst removed up

to 62.6, 88.7, 85.8 and 84.2% after approximately 180 min of treatment after mixing

Cr3þsolution at concentrations of 10, 25, 50 and 100 ppm, respectively. This activity

may be attributed to the synergetic effect of the active ingredients of RPG. The two

metal ions Cd2þand Cr3þ represented the same behavior where the metal removal %

increases with decreasing initial metal concentration. Except for Cr3þ metal ions

with initial concentration 10 ppm, which showed a lower removal % and this can
on.2019.e01287
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be imputed to the very low driving force of the concentration gradient with the lower

initial metal concentration. Thus it was unable to overcome the intraparticle diffusion

strength to mass transfer between the solid and liquid phases [52].

The amounts of adsorbed metals ions increased with the increase in the initial metal

concentration (Fig. 3). This phenomenon may be because of the excess in the driving

force of the concentration gradient with the higher initial metal concentration which

has the capability to overcome the strength of mass transfer between the solid and

liquid phases [52]. The maximum amounts of metals ions adsorbed were found to

be 96.46 and 31.52 mg/g for Cd2þ and Cr3þrespectively at 100 ppm concentration

and temperature of 25 �C and pH value of 6.2.
3.3. RPG weight effect

The adsorbent quantity utilized in adsorption was essentially significant as indicated

by the sorbentesorbate equilibrium in the system and the treatment cost of adsorbent

per unit of metal solution. The catalyst weight action on the removal % of Cd2þ and

Cr3þwas studied (Fig. 5). The removal % of Cd2þ and Cr3þincrease with an increase

in catalyst weight from 10 to 50 mg, but then it decreased (Fig. 5). This behavior may

be owed to the increase in the surface area of the catalyst with increasing the catalyst

weight of catalyst [53]. On the other hand, by increasing the catalyst weight from 50
Fig. 5. Effect of catalyst weight on the removal % of Cd2þ and Cr3þ at 25 �C and pH 6.2.

on.2019.e01287

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01287
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 https://doi.org/10.1016/j.heliy

2405-8440/� 2019 The Auth

(http://creativecommons.org/li

Article Nowe01287
to 70 mg, the removal % decreased because of huge bio-sorbent quantities those

causes cell agglomeration and then consequent decrease in intercellular distance.

It also induced ‘screen effect’ among a dense layer of cells, causing the ‘protection’

of binding positions from metal ions [54]. The obtained data are in agreement with

those of researchers who revealed that the sorbed metal removal % decreases at high

concentrations of adsorbent [55,56].
3.4. Optimization of pH

The initial pH of the aqueous solution commands the metal adsorption capacity

because it affected the adsorbent surface and ionization/dissociation of the sorbent

molecules [57].

The effect of the initial pH of the aqueous solution on the removal % of Cd2þ and

Cr3þutilizing RPG was studied (Fig. 6). The lower adsorption capacity for Cd2þ

and Cr3þat acidic medium was attributed to the protonation assay of the adsorbent

surface and the high portability of H3O
þ ions which compete with the metal ions

during the adsorption process [58]. With more and more increase in pH, the concen-

tration of hydrogen ions as competitors was reduced and therefore these resulted in

an increase in the adsorption of metal ions by the adsorbents [59]. By increasing the

pH of the solution, the number of þve charged free positions was reduced and the

number of -ve charged available positions was increase. Thus, the -ve charged
Fig. 6. Effect of pH on the removal of Cd2þ and Cr3þ by 50 mg of RPG at 25 �C.
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adsorbent surface increasedþ ve charged metal ions adsorption through electrostatic

forces of attraction and ion exchange [60]. The metal removal % increased by pH

increases up to pH 5. However, increasing pH to 6.2 led to a decrease in metal

ions removal % not only due to the formation of soluble metal hydroxyl complexes

(Cadmium ions in form of Cd(OH)2, and Chromium ions in the form of Cr(OH)2
þ)

but also to the ionized nature of the cell wall surface of RPG powder under the stud-

ied pH. Generally, the decrease in adsorption of M(II) ions after pH 5 was perhaps as

a result of the formation of M(OH)2 and soluble hydroxyl complexes such as

MOHþ, aqueous M(OH)y2, and M(OH)3
-. Moreover, the adsorbent perhaps deteri-

orated with accumulation of M(II) ions making binding to adsorption sites impos-

sible [61]. The metal removal % increased again at pH 8 where, the removal %

and adsorption capacity reaches 99.58%, 99.65%, 99.85 mg/g and 39.86 mg/g for

Cd2þ and Cr3þ, respectively. At pH ¼ 8, an increase in the metal removal %

occurred because of probably occurring various impacts resulted from other tech-

niques like the dominant existence of hydrated species of heavy metals, alterations

on the adsorbent surface, deposition of the appropriate salts [62] and the precipita-

tion of metal ions as hydroxides. Cr(III) ions were removed due to the precipitation

of Cr(OH)3 at pH above 7 [2], while Cd(II) due to the formation of Cd(OH)þ which

was the dominating species of Cd(II) in the pH range 8e10 [63].

3.5. Optimization of temperature

It is essential to indicate that the biosorption assay is generally not performed at a

high temperature as it will increase the operational cost [64]. So we studied the effect

of temperature on the adsorption process in order to determine the optimum oper-

ating temperature. The metal adsorption was done at various temperatures 25, 40,

60, and 80 �C utilizing RPG as an adsorbent. The thermal effect is different for

both cations (Fig. 7). These results refered to the endothermic behavior, which

can be explained by the fact that the temperature may favor the agglomeration pro-

cess for chromium till 60 �C, above which the temperature would have negative or

no effect on adsorption for Cr3þand Cd2þ respectively.

According to the experimental outcomes, a decrease in the adsorption capacity oc-

curs by an increase in the solution temperature over 60 �C (Fig. 7). This confirms

that the technique of adsorption of chromium metal over 60 �C was an exothermic

assay [65]. Because the reactions of adsorption are usually exothermic, the capacity

of biosorption increased with the reduction of temperature. At high temperature, the

removal % of Cr3þions decreases and this probably because of destroying of active

positions in the RPG. There are several other researchers that have also found the

same results [66,67]. For Cd2þ metal, there was a slight effect of temperature on

the removal % with increasing temperature from 25 to 80 �C, in agreement it was

indicated that if the maximum limit of metal ions or adsorbate removal was attained

by the adsorbent, there will be no effect for increasing the adsorbent dose [68].
on.2019.e01287
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Fig. 7. Effect of temperature on the removal of Cd2þ and Cr3þ by 50 mg of RPG at pH 6.2.

Fig. 8. Reusability of RPG for removal of Cd2þ and Cr3þ by 50 mg of RPG at 25 �C and pH 6.2.
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3.6. Reusability of RPG

For the examination of the RPG reusability, the adsorption cycle was duplicated four

times with the same adsorbent (Fig. 8). The operating conditions were adjusted at 50

mg adsorbent mass, 100 mg/L initial concentrations for the studied metal ions, 100

mL solution volume, 180 min reaction time and pH 6.2. After each run, the solid was
Fig. 9. Langmuir isotherms for the adsorption of Cd2þ and Cr3þ by 50 mg of RPG at 25 �C and pH 6.2.

Fig. 10. Freundlich isotherms for the adsorption of Cd2þ and Cr3þ by 50 mg of RPG at 25 �C and pH 6.2.
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collected after filtration and washed several times by distilled water to be used in the

second run. The material showed high stability for the studied four runs and achieved

high removal percentages for all the studied metal pollutants with a noticeable

decrease in the efficiency from cycle 1 to cycle 4. The estimated removal percentages
Fig. 11. Tempkin isotherms for the adsorption of Cd2þ and Cr3þ by 50 mg of RPG at 25 �C and pH 6.2.

Table 1. Isotherm constants for Cd2þ and Cr3þ by 50 mg of RPG at 25 �C and pH

6.2.

Metal ions Langmuir isotherm

Constants Q o(mg/g) KL (L/mg) R2

Cd2þ -2083 0.025 0.025

Cr3þ 68.9 0.074 0.0506

Freundlich isotherm
1/n KF R2

Cd2þ 1.075 58.61 0.8852

Cr3þ 0.946 7.16 0.6464

Temkin isotherm
B (J/mol) KT(L/mole) R2

Cd2þ 43.78 4.84 0.9984

Cr3þ 12.3 2.26 0.8221
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for Cd2þ ions were 96.2 %, 96.1%, 96.1% and 96 % for cycle 1, cycle 2, cycle 3 and

cycle 4, respectively. The recorded removal percentages for chromium ions were

decreased to 78.8%, 78.2%, 76.8% and 75.6% with repeating the removal cycles

from cycle 1 to cycle 4 in order. This reduction can be attributed to the deposition

of metal ions particles on the surface of RPG, which resulted in blockage of adsor-

bent pores and finally in decrease in adsorption capacity [69]. This results were also

confirmed from SEM analysis (Fig. 2c and d). The results of the present work show

that the generation of RPG can be re-used decreases from cycle 1 to cycle 4 is in

agreement with previous studies [69, 70, 71, 72]. These results also show that

RPG is an excellent reusable and easily regenerated adsorbent for the removal of

both Cd2þ and Cr3þ ions from the aqueous environment.
Fig. 12. Pseudo-first-order sorption kinetics of metal ions by 50 mg of RPG at 25 �C and pH 6.2. a)Cd2þ

b)Cr3þ.
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3.7. Adsorption isotherm

To study the applicability of the Langmuir, Freundlich, and Tempkin isotherms for

the Cd2þ and Cr3þ, metal ions adsorption process at different initial metal ions con-

centrations, linear plots of Ce/qe against Ce, log qe against log Ce, and qe against Ln

Ce were designed (Figs. 9, 10 and 11). In this regards, we indicated the straight line

plots of Langmuir and Freundlich and Tempkin isotherms of the tested metals,

respectively. The values of Qo, KL, KF, 1/n, KT, B, and R
2 for the models were listed

in Table 1. The values of R2 (Correlation coefficient) are taken into consideration as a

measure of the applicability and goodness of fit of the experimental data to the

isotherm models. The isotherms of Cd2þ and Cr3þmetal ions adsorption onto adsor-

bent did not follow Freundlich or Langmuir isotherm (Table 1). The value of R2 is

the greatest in case of Tempkin isotherm for Cd2þ and Cr3þ indicating that the
Fig. 13. Pseudo-second-order sorption kinetics of metal ions by 50 mg of RPG at 25 �C and pH 6.2. a)

Cd2þ b)Cr3þ.
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adsorption assay approximately follows the Tempkin isotherm model. The observed

correlation coefficients for Tempkin isotherms were 0.9984 and 0.8221 for Cd2þ and

Cr3þions adsorption, respectively at 25 �C.
3.8. Adsorption kinetics

To study the good fitness of the first order, second order, intraparticle diffusion and

Elovich kinetic models for metal ions adsorption onto RPG from metal ion solution

linear plots of ln (qe e qt) against t, t
qt
versus t, qt against t

1
2 and qt versus ln t must be

plotted as shown in Figs. 12, 13, 14 and 15 respectively. The values of k, k1, k2, qe, I,
Fig. 14. Plots for evaluating intraparticle diffusion rate constant for sorption of metal ions by 50 mg of

RPG at 25 �C and pH 6.2. a)Cd2þ b)Cr3þ.

on.2019.e01287

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01287
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 https://doi.org/10.1016/j.heliy

2405-8440/� 2019 The Auth

(http://creativecommons.org/li

Article Nowe01287
a, b and R2 were calculated from the slope and intercept of the plots and are shown

in Table 2.

The linear fit of all kinetic models and the values of R2 for each graph (Table 2) indi-

cated that the adsorption kinetics of the investigated metal ions onto RPG follow

pseudo-second-order model. Also, the values of experimental qe (qe Exp.) values

were in agreement with the calculated ones (qe), resulted from the linear plots of

pseudo-second-order model shown in Fig. 13 and Table 2 at all studied initial metal

ions concentrations showing that the adsorption of Cd2þ and Cr3þmetals on RPG

follows the pseudo-second-order kinetic model.

The pseudo-second-order adsorption mechanism predominated and the adsorption

process seemed to be controlled by a chemical process involving electrons sharing
Fig. 15. Plots for evaluating Elovich kinetic model for sorption of Metal ions by 50 mg of RPG at 25 �C
and pH 6.2. a)Cd2þ b)Cr3þ.
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Table 2. Parameters of the kinetic models for Cd2þ and Cr3þ by 50 mg of RPG at 25 �C and pH 6.2.

First order kinetic model

Metal ions Cd2D Cr3D

concentration
(ppm)

100 50 25 10 100 50 25 10

K 18.47 � 10�3 12.2 � 10�3 11.95 � 10�3 11.96 � 10�3 11.3 � 10�3 10.3 � 10�3 18.7 � 10�3 13.3 � 10�3

Qe 7.17 4.66 3.11 1.83 3.41 2.38 1.62 1.08

R2 0.9821 0.9609 0.883 0.7587 0.855 0.7876 0.8047 0.8695

qeexp 96.46 48.8 24.26 9.484 31.52 15.53 8.83 2.43

Second order kinetic model
K1 0.93 � 10�3 1.7 � 10�3 5.5 � 10�3 23.9 � 10�3 4.1 � 10�3 9.6 � 10�3 84.6 � 10�3 86 � 10�3

qe 102.759 51.87 25.1 9.708 32.6 15.9 8.88 2.49

R2 0.9986 0.9998 0.9996 0.9994 0.9998 0.9992 0.9999 0.9993

qe exp 96.46 48.8 24.26 9.484 31.52 15.53 8.83 2.43

Intraparticle diffusion kinetic model
K2 7.28 3.62 1.76 0.681 2.28 1.11 0.62 0.1

I 17.25 8.83 5.19 2.24 6.7 3.5 2.3 0.57

R2 0.8359 0.8339 0.7772 0.7385 0.7793 0.7542 0.6724 0.743

Elovich kinetic model
b (g/mg) 0.075 0.162 0.526 2.049 0.39 1.09 8.6 7.6

a (mg/min) 132 106 3744 753623 3352 97331 8.8 � 1029 89946

R2 0.8958 0.9742 0.9737 0.9206 0.9742 0.9647 0.8199 0.9932
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or exchange between adsorbed Cd2þ and Cr3þ metal ions and the biosorbent RPG.

The pseudo-second-order adsorption mechanism occurs in two steps the first one

was the external diffusion step which involves Cd2þ and Cr3þ molecules movement

from the bulk of the solution towards the external surface of RPG. This step was fol-

lowed by the adsorption of the metal ions molecules on the surface of RPG adsorbent

and chemically bonded to its surface. FTIR data show the presence of functional

groups which had the ability to make chemical bonds with heavy metals. That

also can be considered as another prove for adsorption mechanism. Morever, it

was found that the pseudo-second-order rate constant (k) value was decreased

with an increase in the initial concentration of the investigated metal ions. Similar

kinetics was also observed in many literatures [53,73, 74, 75].
3.9. Comparison of adsorption capability of RPG with other
adsorbents

A comparison between the adsorption capacities (qm) values of different adsorbents

reported in the literature and that of RPG for adsorption of Cd2þ and Cr3þ ions

(Table 3). It may be shown that qm values differ widely for different adsorbents
on.2019.e01287
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Table 3. Adsorption capacity of different adsorbents for Cd2þ and Cr3þ adsorption adsorbent.

Cd2D Cr3D

Adsorbent Adsorption
capacity (mg/g)

Reference Adsorbent Adsorption
capacity (mg/g)

Reference

Orange peeleFe2O3 71.43 [76] carrot residues 45.09 [77]

Prunus avium leaves 45.45 [91] spirogyra spp 30.21 [79]

Kiwi cortex 15.9 [88] modified lignin 25 [81]

Unmodified rice straw 13.9 [92] Untreated pinussylvestris bark 8.69 [82]

Coffee grounds 15.65 [83] Treated pinussylvestris bark 9.77 [82]

Activated carbon 10.3 [84] Sphagnum moss peat 29 [85]

Agave bagasse 14 [89] modified and non-modified carbon nanotubes 18 [7]

commercial activated carbon 14.93 [78] Grain-less stalk of corn 7.3 [90]

RPG 99.85 This work RPG 39.86 This work
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[76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. Comparison of qm
values also stated that RPG exhibited a reasonable capacity for adsorption of Cd2þ

and Cr3þ ions from aqueous solutions.
4. Conclusions

According to the experimental results, residue of Padina gymnospora (RPG), after

extraction of most of its components by 70%methanol has been evaluated as a prom-

ising efficient adsorbent for the elimination of Cd2þ and Cr3þ from wastewater.

Various parameters such as initial metal concentration, contact time, adsorbent

dosage, temperature, pH and the RPG reusability were studied to demonstrate the

potential use of RPG. This study shows that the RPG has higher metal uptake per-

centage reaching 96.46% and 84.2% for Cd2þ and Cr3þ, respectively at pH 6.2, 50

mg of RPG, 25 �C and initial metal concentration of 100 mg/L. Different adsorption

isotherms and kinetic models are investigated. The results indicate that metal ion

adsorption on the RPG follows Tempkin isotherm (R2 ¼ 0.9984 and 0.8221 for

Cd2þ and Cr3þmetals, respectively). Also, the pseudo-second-order kinetic model

is fitted for both metal ions. This chemical mechanism of adsorption is confirmed

by FTIR data that show the presence of functional groups which are able to make

chemical bonds with heavy metals. The maximum amounts of metal ions adsorbed

are found to be 96.46 and 31.52 mg/g for Cd2þ and Cr3þ, respectively at 50 mg of

RPG, 100 mg/L initial metal concentration, 25 �C and pH 6.2 which increase to

99.85 mg/g and 39.86 mg/g for Cd2þ and Cr3þ, respectively at pH 8. The metal

ions removal % increase by increasing the dosage of adsorbent and it decreases after

a certain limit. The metal removal % slightly changes with increasing temperature for

Cd2þ and decreases at high-temperature for Cr3þ. The adsorption increases with
on.2019.e01287
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increasing pH value from 3 to 5, and decreases at pH value of 6.2 then it increases

again at pH 8. Finally, residue of Padina gymnospora can be used as a low-cost

green adsorbent for adsorption of Cd2þ and Cr3þ from waste water.
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