
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12785  | https://doi.org/10.1038/s41598-022-16715-0

www.nature.com/scientificreports

Evaluating the utility of an immune 
checkpoint‑related lncRNA 
signature for identifying 
the prognosis and immunotherapy 
response of lung adenocarcinoma
Hongpan Zhang1,2,5, Meihan Liu2,5, Zhihao Yang2,4,5, Guobo Du1,2, Bin Yu3, Yan Gui1,2, 
Lu Cao1,2, Xianfu Li1,2* & Bangxian Tan1,2*

Lung adenocarcinoma (LUAD) is the most frequent subtype of lung cancer globally. However, the 
survival rate of lung adenocarcinoma patients remains low. Immune checkpoints and long noncoding 
RNAs are emerging as vital tools for predicting the immunotherapeutic response and outcomes 
of patients with lung adenocarcinoma. It is critical to identify lncRNAs associated with immune 
checkpoints in lung adenocarcinoma patients. In this study, immune checkpoint-related lncRNAs 
(IClncRNAs) were analysed and identified by coexpression. Based on the immune checkpoint-related 
lncRNAs, we divided patients with lung adenocarcinoma into two clusters and constructed a risk 
model. Kaplan–Meier analysis, Gene Set Enrichment Analysis, and nomogram analysis of the 2 
clusters and the risk model were performed. Finally, the potential immunotherapeutic prediction 
value of this model was discussed. The risk model consisting of 6 immune checkpoint-related lncRNAs 
was an independent predictor of survival. Through regrouping the patients with this model, we can 
distinguish between them more effectively in terms of their immunotherapeutic response, tumour 
microenvironment, and chemotherapy response. This risk model based on immune checkpoint-based 
lncRNAs may have an excellent clinical value for predicting the immunotherapeutic response and 
outcomes of patients with LUAD.

Lung adenocarcinoma (LUAD) is one of the most common subtypes of lung cancer and it ranks first in cancer-
related death1. Despite the reported efficacy of surgical techniques, radiotherapy, and chemotherapy as treatments 
for LUAD, the survival of patients with LUAD is still unfavourable2,3. In the past decade, immune checkpoints, 
mainly including PD-1, PD-L1, and CTLA-4, have become a promising and effective treatment strategy capable 
of significantly prolonging the survival of LUAD patients4. However, few biomarkers can predict the efficacy of 
anti-PD-1/PD-L1/CTLA-4 immunotherapy and stratify the LUAD population by its benefits. Therefore, iden-
tifying immune checkpoint-related biomarkers is pivotal for improving the therapy and prognosis of LUAD.

Programmed cell death protein 1 (PD-1), which can bind to its ligand, programmed cell death ligand 1 (PD-
L1), is expressed by activated T cells5,6. The interactions of PD-L1 on tumour cells with PD-1 signalling have 
proven to be a potent mechanism to counter the activation of T cells during their escape from host immune 
responses, which elicits a vitally crucial role in an antitumor immune response7–9. Therefore, PD-1/PD-L1 inhibi-
tors (nivolumab and pembrolizumab) were first approved by the US Food and Drug Administration (FDA) for 
treating melanoma10 and renal cell carcinoma11 and have also been confirmed to be a significant clinical advance 
for patients with lung cancer12–14. Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) belongs to the CD28 
receptor family, which was identified to be activated on the exterior of conventional T cells and attenuate tumour 
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cell proliferation by inhibiting T-cell proliferation and IL-2 secretion15. The FDA also approved anti-CTLA-4 
inhibitors (ipilimumab) for melanoma16,17, non-small cell lung cancer18, and other incurable tumours19,20.

Long noncoding RNAs (lncRNAs) that exceed two hundred nucleotides in length regulate diverse biological 
processes and cellular functions21. Accumulating studies have revealed that lncRNAs regulate tumour aggres-
sion, metastasis, treatment sensitivity, and prognosis by affecting immune cell lineages22–25. Although immune 
checkpoint therapies have been developed as effective therapeutic strategies in tumour immune evasion, no 
research has yet been carried out on analysing the application values of lncRNAs that act as immune regulators 
for LUAD clinical immunotherapy.

Our study is the first to develop and validate the IClncRNA-related signature of LUAD by identifying IClncR-
NAs based on Pearson correlation analysis of data from TCGA-LUAD. Then, we revealed the interaction with 
tumour-infiltrating immune cells and tumour microenvironment scores and examined the treatment response 
of LUAD patients to immunotherapy and chemotherapy. Overall, our work developed a new signature that can 
contribute to immunotherapeutic strategies for treating patients with LUAD.

Materials and methods
Data processing.  We downloaded the RNA-seq data (FPKM) and the corresponding clinicopathologi-
cal characteristics from the TCGA-LUAD database (https://​cance​rgeno​me.​nih.​gov/)26. After screening for data 
quality, 54 healthy lung and 464 LUAD tissues were selected from individuals with an OS longer than 1 months 
(Table 1). The whole research process displayed by sup_figure.

Selection of immune checkpoint genes and IClncRNAs.  The "limma" package extracted the expres-
sion data of the lncRNAs and PD1, PD-L1, and CTLA4 from the LUAD expression profile. Next, we identified 
IClncRNAs by Pearson correlation analysis, and a total of 75 IClncRNAs were found. The screening criteria were 
as follows: | Pearson R|> 0.4 and P values less than 0.001.

Identification of LUAD subtypes.  Univariate Cox regression models were used to develop the most rel-
evant IClncRNAs for OS of LUAD patients under the R package "survival." We performed nonnegative matrix 

Table 1.   Clinical variables of LUAD patients from TCGA.

Datasets Training cohort Testing cohort Entire cohort

Age (n)

 < 65 years 108 107 215

 ≥ 65 years 124 125 249

Censor (n)

Dead 91 85 176

Alive 141 147 288

Gender (n)

Male 106 104 210

Female 126 128 254

Stage

I 116 139 255

II 57 50 107

III 43 31 74

IV 12 12 24

T classification

T1 73 85 158

T2 147 121 268

T3 24 15 39

T4 9 9 18

M classification

M0 156 156 312

M1 13 11 24

N classification

N0 146 155 301

N1 46 40 86

N2 35 29 64

N3 1 1 2

Follow-up time

 < 5 years 207 207 414

 ≥ 5 years 25 25 50

https://cancergenome.nih.gov/
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factorization (NMF) clustering to analyse IClncRNAs associated with significant prognostic value27. Using the R 
package "NMF" on the gene expression matrix, unsupervised NMF clustering procedures were executed, and the 
optimal cluster number was calculated based on a coexistence correlation coefficient K = 2.

Construction and verification of the IClncRNA‑related model.  All LUAD patients were randomly 
stratified into a training (n = 232) or testing (n = 232) cohort. The training group was used to identify prognos-
tic IClncRNA-related signatures, while the testing and the entire group were used to validate its prognostic 
value. First, based on the IClncRNAs, we screened IClncRNAs in the training set and further screened lncRNAs 
distinctly related to overall survival (OS) using the R package "glmnet" impinged on a least absolute shrink-
age and selection operator (LASSO)-penalized Cox regression analysis. Eventually, IClncRNAs with OS values 
were incorporated into the established model. The following formula was computed: risk score (RS) = ΣNi = 1 
(lncRNA Exp × coefi), where coefi means the coefficients, and N is the number of lncRNAs. Next, the corre-
sponding risk scores were used to validate the patients in the test set and the entire cohort.

Assessment of the IClncRNA‑related model.  Independent prognostic factor analysis of the contribu-
tions of each clinical variable and the IClncRNA-related signature was conducted through univariate and multi-
variate Cox regression analyses. Statistical significance was defined as a P value < 0.05. The nomograms of three 
clinical features and risk scores were analysed with the “rms” R package to show the predicted survival prob-
abilities for the 1-, 3- and 5-year survival rates of LUAD patients with IClncRNA-related signatures. A calibration 
plot was then carried out to determine the nomogram accuracy.

Analysis of tumour immune infiltration.  To estimate the relationship between the immune infiltration 
landscape and the risk score, we utilized the "CIBERSORT" algorithm28,29 to estimate the fraction of 22 immune 
cell types among the LUAD samples, and Spearman correlation was used to assess the relevance between signa-
ture-related lncRNAs and immune cells. A P value less than 0.05 was considered significant.

Gene set enrichment analysis.  By using gene set enrichment analysis (GSEA)30,31, enrichment analyses 
were conducted to explore the potential mechanisms and functions between Cluster 1 and Cluster 2, with the 
following parameters: nPerm = 1000, minGSSize = 10, maxGSSize = 1000, and nominal P value < 0.05.

Immunotherapy and chemotherapy.  We implemented the Tumour Immune Dysfunction and Exclu-
sion (TIDE) score, which has proven to be an effective predictor of the ICI therapeutic response32. In addition, 
the "pRRophetic" R package has been utilized in studies evaluating drug sensitivity in cancers by calculating each 
LUAD sample’s IC50 value based on the GDSC website33–35.

Statistical analyses.  All statistical analyses were carried out with R software (version 3.6.1). Patients were 
randomly grouped using the “caret” R package. Univariate and multivariate Cox regression models were used 
to evaluate the prognostic significance. Kaplan–Meier curves were plotted to analyse the OS between different 
groups by the log-rank test. The prediction accuracy of the IClncRNA-related risk model was determined by 
ROC curve analysis. The above statistical analysis was regarded as significantly different at P value < 0.05.

Ethics statement.  We obtained RNA sequence transcriptome data and relevant clinical information of 
the LUAD patients from the TCGA (https://​cance​rgeno​me.​nih.​gov/) database. Their use did not require ethical 
approval.

Results
Identification of IClncRNAs in LUAD individuals.  We abstracted 14,086 lncRNAs from the TCGA-
LUAD samples associated with immune checkpoint genes (PD1, PD-L1, and CTLA4) by Pearson correlations, 
and 75 lncRNAs were screened as IClncRNAs that are visualized in Fig. 1A,B. Merging the survival informa-
tion with the IClncRNAs from 464 LUAD patients, 18 prognostic IClncRNAs were identified by univariate Cox 
regression analysis (Fig. 1C; P < 0.05), all considered protective factors except HIF1A-AS1 and AC022813.1. As 
shown in Fig. 1D,E, the expression of 18 IClncRNAs showed significant differences between normal and LUAD 
tissues (P < 0.05).

Classification of LUAD by IClncRNAs.  Extracting 18 IClncRNAs expressed in the LUAD sample, we 
subsequently categorized 464 samples using a consensus clustering algorithm to elucidate their differences 
between subgroups. We found that k = 2 was the optimum value; thus, patients in the entire cohort were sorted 
into subtypes (Fig. 2A,B).

The patients were separated into Cluster 1 (n = 365) and Cluster 2 (n = 99). Cluster 1 (C1) had significantly 
worse OS than Cluster 2 (C2) (Fig. 2C). The heatmap showed the differences in IClncRNA expression between 
subgroups (Fig. 2D), and the majority of the IClncRNAs were overexpressed in Cluster 2. Clinical variables, 
such as N, T, and stage, differed between the clusters. In addition, PD1 and CTLA4 expression in LUAD were 
higher than in normal samples, while PD-L1 had lower expression in LUAD (Fig. 2E–G). Similarly, we found 
significantly higher PD1, PD-L1, and CTLA4 expression in C2 (Fig. 2H–J).

Immune cell infiltration and functional enrichment analysis between C1 and C2.  Then, we 
explored the association with the TME between the two clusters based on CIBERSORT. The violin plot results 

https://cancergenome.nih.gov/


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12785  | https://doi.org/10.1038/s41598-022-16715-0

www.nature.com/scientificreports/

indicated that there were 13 immune infiltrating cell differences between clusters (Fig. 3A), with memory B 
cells, plasma cells, CD8 T cells, activated memory CD4 T cells, regulatory T cells (Tregs), and M1 macrophages 
having higher infiltration in Cluster 2, while native B cells, gamma delta T cells, activated NK cells, M2 mac-
rophages and activated mast cells had more infiltration in Cluster 1 (P < 0.05). The TME scores in Cluster 1 were 
considerably higher than those in Cluster 2 (Fig. 3C–E; p < 0.05). However, the response rate to ICIs predicted 
by the TIDE score showed no difference between Clusters 1 and 2 (Fig. 3F). In addition, to predict the func-
tions or pathways involved in IClncRNAs from LUAD, GSEA was selected for comparison between the clusters. 
The results were highly enriched in Cluster 2, including the non-small cell lung cancer pathway, T-cell recep-
tor signalling pathway, B-cell receptor signalling pathway, NK-cell-mediated cytotoxicity, and VEGF signalling 
pathway (P < 0.05; Fig. 3B), and the unwarping IClncRNAs proved to be remarkably associated with the immune 
status of patients in the TCGA-LUAD cohort.

Construction and validation of the IClncRNA‑associated risk model in LUAD patients.  The 
results of the univariate Cox regression model showed that 18 out of the 75 IClncRNAs were significantly associ-
ated with the overall survival of patients with LUAD. Based on the Lasso Cox regression model, these 18 lncR-
NAs were screened out to avoid overfitting, improve the accuracy and obtain the best penalty parameters. Hence, 
6 IClncRNAs (AC022613.1, LINC00892, TSPOAP1-AS1, HIF1A-AS1, ADPGK-AS1, and LINC02390, Table 2) 
were eventually used to construct the IClncRNA-associated signature (Fig. 4A,B). K-M survival analysis showed 
worse OS in the high-risk group (Fig. 4C). The ROC curves showed that our signature had a robust predictive 
ability, with AUCs predicting 1-year, 3-year, and 5-year overall survival of 0.710, 0.703, and 0.659, respectively 
(Fig. 4D). Next, we ranked the training cohort by the risk score from low to high; the follow-up time and genetic 
heatmap of the population are also shown by this standard (Fig. 4E). The heatmaps showed that LINC00892, 

Figure 1.   Identification of IClncRNAs of prognostic value in patients with LUAD. (A) Network diagram for 
PD1, PD-L1, CTLA4 and 75 IClncRNAs. (B) Sankey relational diagram for three immune checkpoint genes and 
the IClncRNAs. (C) Univariate Cox regression analysis revealed that the 18 selected lncRNAs were significantly 
correlated with the clinical prognosis. (D) Heatmap for the expression difference of IClncRNAs between tumour 
and normal tissue. (E) Boxplot for the expression difference of IClncRNAs between tumour and normal tissue 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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Figure 2.   Identification of LUAD subtypes using NMF consensus clustering in LUAD patients. (A,B) NMF 
clustering using 18 IClncRNAs. The patients were divided into two clusters (Cluster 1 and Cluster 2). (C) 
Survival analysis of patients in Clusters 1 and 2 in the LUAD cohort. (D) Heatmap of two clusters defined by 
IClncRNA expression. (E–G) Differences in PD1, PD-L1, and CTLA4 expression between lung cancer tissue 
and normal tissue. (H–J) Differences in PD1, PD-L1, and CTLA4 expression between Cluster 1 and Cluster 2.

Figure 3.   Identification of the immune cell infiltration landscape, tumour microenvironment score, KEGG 
pathway, and TIDE score in the two clusters. (A) The difference in immune cell infiltration between Cluster 1 
and Cluster 2. (B) KEGG pathway analysis between Cluster 1 and Cluster 2. (C–E) ImmuneScore, StromalScore 
and ESTIMATEScore between Cluster 1 and Cluster 2. (F) The difference in TIDE_score between the two 
clusters.
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TSPOAP1-AS1, ADPGK-AS1, and LINC02390 expression in the low-risk group was significantly greater than 
that in the high-risk group, while the other lncRNAs were downregulated (Fig. 4E).

To further examine the predictive efficacy of the model, the IClncRNA-associated risk model was verified 
in the testing and entire groups. We calculated the optimal cut-off point and randomly separated patients into 
low-risk and high-risk groups. The survival analysis showed significantly longer OS in the high-risk group than 
in the low-risk group (P < 0.05; Fig. 5A,D). As shown in Fig. 5B, all of the time‐dependent ROC curve results 
obtained superior AUC values for the 1-year, 3-year, and 5-year OS of LUAD patients (AUC = 0.693, 0.595, 
and 0.617). The AUCs in the entire set for predicting patient OS at 1, 3 and 5 years were 0.700, 0.652 and 0.640 
(Fig. 5E), respectively. The six-lncRNA expression heatmap sorted by the risk score is also shown in Figs. 5C,F.

Stratified survival analysis by the universal clinicopathologic characteristics, gender, age, stage, or tumour 
stage subgroups in low-risk group patients was significantly unfavourable to the low-risk group (P < 0.05; Fig. 6).

The IClncRNA‑related risk score as an independent risk factor.  To evaluate whether this risk model 
of IClncRNAs had independent prognostic characteristics, stage and risk scores were strongly associated with 
prognosis via univariate and multivariate analyses, for which the HRs of the risk score were 2.449 and 1.990 
(p < 0.001; Fig. 7A,B), indicating that the signature was an independent prognostic factor for LUAD.

Table 2.   The model information of lung adenocarcinoma.

Gene Coef

AC022613.1 0.101634

LINC00892 − 0.42989

TSPOAP1-AS1 − 0.18157

HIF1A-AS1 0.1437

ADPGK-AS1 − 1.05709

LINC02390 − 1.35457

Figure 4.   A risk model for LUAD patients based on IClncRNAs. (A) The LASSO coefficient profile of 18 
OS-related lncRNAs. The perpendicular imaginary line is drawn at the value chosen by tenfold cross-validation. 
(B) The tuning parameters (log λ) of OS-related proteins were selected to cross-verify the error curve. According 
to the minimal criterion and 1-se criterion, the perpendicular imaginary line is drawn at the optimal value. (C) 
Kaplan–Meier survival curves of OS of patients in the high- and low-risk groups. (D) The time‐dependent ROC 
analyses of this model in the training cohort. (E) The distribution of risk scores based on the IClncRNAs, vital 
statuses of the patients sorted by risk score and the six-lncRNA expression heatmap in the training cohort.
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Construction and evaluation of the nomogram.  We then constructed a nomogram with the 
IClncRNA risk score and other clinicopathological variables to predict the 1-, 3-, and 5-year survival of LUAD 
patients (Fig. 7C). The concordance index of the risk grade was always higher than that of the other clinical 
factors, indicating a promising prognostic ability (Fig. 7D). Moreover, the calibration plot was identified as a 
sensitive prediction strategy for the prognosis of LUAD patients (Fig. 7E–G).

Clinical correlation analysis between the tumour immune microenvironment and risk 
model.  We further explored the relationship between risk scores and clinical characteristics. The outcomes 

Figure 5.   The prognostic value of the risk model of the six IClncRNAs in the TCGA testing and entire cohorts. 
(A) Kaplan–Meier survival curves of OS of patients in the high- and low-risk groups for the testing cohort. (B) 
The time‐dependent ROC analyses of this model in the testing cohort. (C) The distribution of risk scores based 
on the IClncRNAs, vital statuses of patients sorted by risk score and the six-lncRNA expression heatmap in 
the testing cohort. (D) Kaplan–Meier survival curves of OS of patients in the high- and low-risk groups for the 
entire cohort. (E) The time‐dependent ROC analyses of this model in the entire cohort. (F) The distribution of 
risk scores based on the IClncRNAs, vital statuses of patients sorted by risk score and the six-lncRNA expression 
heatmap in the entire cohort.

Figure 6.   Kaplan–Meier curves of differences in overall survival stratified by sex, age, or TNM stage between 
the low-risk and high-risk groups in the entire TCGA cohort.
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Figure 7.   Assessment of the prognostic risk model and clinical characteristics in the entire cohort; construction 
and evaluation of a prognostic nomogram. (A,B) Univariate and multivariate analyses of the clinical 
characteristics and risk level with OS. (C) The nomogram predicts the probability of 1-, 3-, and 5-year OS. 
(D) Concordance indices of the risk score and clinical characteristics. (E–G) The nomogram’s calibration plot 
predicts the probability of 1-, 3-, and 5-year OS.
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demonstrated that the expression levels of the 4 IClncRNAs were high in the low-risk group (Fig.  8A). We 
also analysed the risk score in different LUAD subgroups (Fig. 8A) to explore their correlations with clinico-
pathological features in LUAD, among which age and metastasis were not significantly different between the 
risk groups. At the same time, there was a significant difference in sex and stage (Fig. 8B–G). Compared to the 
low-risk group, the results of the stage and three types of TME scores were greater for patients in the high-risk 
group (Fig. 8H–K), which implies a potential correlation between the model and the LUAD microenvironment.

Therapeutic response assessment.  We then explored the differences in PD1, PD-L1, and CTLA4 
expression between the IClncRNA model and ICI biomarkers. The response to immunotherapy was better in 
patients in the low-risk group (P < 0.05; Fig. 9A–C). Intriguingly, TIDE, which has emerged as a vital predic-
tive immunotherapeutic biomarker36, had significantly lower scores in the low-risk group than in the high-risk 
group, indicating that our signature could better predict the response of LUAD to immunotherapy (p < 0.05; 
Fig. 9D).

The IPS has promising potential for cancer patients treated with CTLA-4 and PD-1 blockers37. In our research, 
the patients with high-risk scores/PD-1 negative, high-risk scores/PD-1 positive were found to have worse 
survival than those with low-risk scores/PD-1 positive and low-risk scores/PD-1 negative (p < 0.05; Fig. 9E). 
Similarly, PD-L1 or CTLA-4 stratification in patients with a risk score showed the same survival pattern fol-
lowing the PD-1 trend (p < 0.05; Fig. 9F,G), which indicated that the high-risk group patients showed a better 
opportunity for ICI application. After discussing the immunotherapy possibility of the signature, we investigated 
the risk score’s links to immune infiltration. As shown in Fig. 9H–T, it was inversely correlated with the abun-
dance of memory B cells, resting dendritic cells, M1 macrophages, resting mast cells, plasma cells, CD8 T cells, 

Figure 8.   Estimation of the tumour immune microenvironment and clinical characteristics with the IClncRNA 
model in the entire TCGA cohort. (A) Heatmap of high- and low-risk groups defined by IClncRNA expression. 
(B–H) The relationship between the risk score and clinical characteristics. (I–K) Differences in the risk scores in 
the high and low tumour microenvironment score groups (ImmuneScore, StromalScore, and ESTIMATEScore).
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and regulatory T cells (Tregs) (p < 0.05), whereas it had the same trend as activated dendritic cells and activated 
M0 macrophages (p < 0.05). These observations indicate that the IClncRNA-related signature could predict the 
efficacy of immune checkpoint inhibitors for LUAD.

Apart from the above analysis, we explored the resistance to chemotherapy changes to estimate the IC50 
between the two risk groups to investigate whether this signature also had a chemotherapeutic value. The results 
revealed significant differences in 36 targeting drugs between the groups, and patients in the high-risk group had 
strong drug sensitivity (P < 0.05; Fig. 10), suggesting it also has utility in predicting the response to chemotherapy.

Discussion
LUAD is the most common subtype of lung cancer that threatens human health3. Despite advances in therapeu-
tic strategies such as surgical techniques, radiotherapy, and chemotherapy, the survival of patients with LUAD 
is still unfavourable. Therapies targeting immune checkpoints that mainly involve PD1, PD-L1, and CTLA4 
have been widely applied in the treatment of advanced cancers, including melanoma38 and non-small cell lung 
cancer39–41. However, there are some limitations regarding immune checkpoints: their expression level does not 
directly reflect the tumour’s sensitivity to immunotherapy or the OS42. LncRNAs, a large class of noncoding 
RNAs > 200 nucleotides (nt) in length, have recently received increasing attention. They have been reported to 
function as essential regulators in tumour-infiltrating immune cells24,43–45. However, little is known about the 
roles of IClncRNAs in immunity assessment and immunotherapeutic responses in LUAD.

Using data from the TCGA-LUAD dataset, we first identified 18 of 75 IClncRNAs that had confirmed 
prognostic value. Moreover, we categorized the patients into two clusters by consensus clustering analysis to 
explore the immune checkpoint-related subtypes of LUAD. The results showed that tumour stage, OS, immune 

Figure 9.   Estimation of immune checkpoint gene expression and cancer immunotherapy response with 
the model in the entire TCGA cohort. (A–C) Boxplot showing the differences in PD1, PD-L1, and CTLA4 
expression between the high- and low-risk groups. (D) TIDE prediction score between the high- and low-risk 
patients. (D) Kaplan–Meier survival curves of the four patient groups stratified by the IClncRNA model and 
PD-1 (E), PD-L1 (F), and CTLA-4 (G). (H–T) Correlation between the risk score and immune cells.
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checkpoint expression, immune cell infiltration, and tumour microenvironment score exhibited significant differ-
ences between the clusters. However, there was no significant difference in TIDE, which is employed to evaluate 
the immunotherapy response.

In our risk model, we identified a signature of six IClncRNAs associated with OS that was constructed by 
multivariate regression analysis. Researchers previously found that LINC00892 is associated with the tumour 
microenvironment and immunotherapy response in bladder cancer46. These results are consistent with ours. The 
long noncoding RNA TSPOAP1-AS1 is a potential diagnostic biomarker for paediatric septic shock47. Other 

Figure 10.   Different chemotherapeutic responses in high- and low-risk patients with LUAD (P < 0.05). sup_
figure: Study flow chart.
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studies have shown that the long noncoding RNA TSPOAP1-AS1 is associated with obesity48 and influenza A 
virus replication43. Consistently, researchers previously reported that TSPOAP1-AS1 is a prognostic biomarker 
for pancreatic cancer. HIF1a-AS1 is involved in many types of malignant tumours49 and it plays a vital role in 
liver fibrosis47. Inhibition of HIF1a-AS1 could promote apoptosis of hepatoma cells induced by starvation50. 
These results are consistent with ours. Long noncoding RNA ADPGK-AS1 was associated with a poor prognosis 
of osteosarcoma51, breast cancer52, pancreatic cancer53, and gastric cancer53, and was also related to molecular 
subtypes of prostate cancer54. These results indicate that ADPGK-AS1 could play an essential role in regulating 
the occurrence and development of many cancers. Its mechanism is worthy of further study. Reports on the long 
noncoding RNAs LINC02390 and AC022613.1 are rare and they are worthy of further study.

Based on the above IClncRNAs, the IClncRNA-related signature that was constructed in the training popula-
tion was validated successfully in the testing and entire set. The risk scoring model had good prediction effec-
tiveness and was an independent risk factor in multivariate Cox regression analysis. The associated nomogram 
showed perfect consistency for 1-year, 3-year, and 5-year OS. Patients with a high-risk score in all three risk 
cohorts had significantly worse OS rates than the low-risk group. Moreover, we found that not only clinical stages 
but also tumour-infiltrating immune cells, immune checkpoint gene expression, and the tumour microenviron-
ment score had significantly different distributions between the two risk groups. Above all, our results revealed 
that patients at high risk have higher TIDE scores, which has been confirmed to predict the efficacy of anti-PD1 
and anti-CTLA4 therapy55. Therefore, we hypothesize that the prediction model might have massive potential 
for selecting LUAD patients likely to benefit from immunotherapy.

Some limitations of the current study need to be highlighted. First, due to the limited sample sizes, more large-
scale data are warranted for external verification. Second, to sufficiently understand their potential mechanisms, 
it is necessary to conduct in vitro and in vivo experiments on the identified IClncRNAs.

In summary, we successfully established and verified an IClncRNA-associated signature for predicting the 
survival of patients with LUAD. This signature based on 6 IClncRNAs was better than two molecular subtype 
methods in predicting the immunotherapeutic response of LUAD patients, especially the TIDE score prediction. 
Consequently, this signature in LUAD could offer novel insights into a theoretical foundation for future stud-
ies on immune treatment and be helpful for personalized management of LUAD in the clinical environment.

Data availability
The data are available in a public, open access repository. The datasets analysed during the current study are 
available in The Cancer Genome Atlas (TCGA) network (https://​cance​rgeno​me.​nih.​gov/).
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