
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12016  | https://doi.org/10.1038/s41598-021-91437-3

www.nature.com/scientificreports

Mixed‑effect Bayesian network 
reveals personal effects of nutrition
Jari Turkia1,2*, Lauri Mehtätalo1,3, Ursula Schwab4,5,6 & Ville Hautamäki1,6

Nutrition experts know by their experience that people can react very differently to the same 
nutrition. If we could systematically quantify these differences, it would enable more personal 
dietary understanding and guidance. This work proposes a mixed-effect Bayesian network as a 
method for modeling the multivariate system of nutrition effects. Estimation of this network reveals 
a system of both population-wide and personal correlations between nutrients and their biological 
responses. Fully Bayesian estimation in the method allows managing the uncertainty in parameters 
and incorporating the existing nutritional knowledge into the model. The method is evaluated 
by modeling data from a dietary intervention study, called Sysdimet, which contains personal 
observations from food records and the corresponding fasting concentrations of blood cholesterol, 
glucose, and insulin. The model’s usefulness in nutritional guidance is evaluated by predicting 
personally if a given diet increases or decreases future levels of concentrations. The proposed method 
is shown to be comparable with the well-performing Extreme Gradient Boosting (XGBoost) decision 
tree method in classifying the directions of concentration increases and decreases. In addition to 
classification, we can also predict the precise concentration level and use the biologically interpretable 
model parameters to understand what personal effects contribute to the concentration. We found 
considerable personal differences in the contributing nutrients, and while these nutritional effects are 
previously known at a population level, recognizing their personal differences would result in more 
accurate estimates and more effective nutritional guidance.

Nutrition is an important contributor to good health, and dietary factors affect the risk of common diseases, such 
as type 2 diabetes1, cardiovascular diseases1, and cancer2. Dietary recommendations are based on the general 
effects of nutrients at the population level. However, there is an increasing body of knowledge that the effects of 
nutrients may vary largely between individuals3. This observation has led to an increased interest in personal-
ized nutrition where information on personal characteristics is used to develop targeted nutritional guidance4,5.

Personally targeted nutritional guidance has shown to be more effective than guidance at a general level based 
on common recommendations. Food4Me study4 provided strong evidence for the effect of personal guidance. 
Increased knowledge of inter-individual variations optimized the results of nutritional guidance in Food4Me 
study, and it showed also that the increased personal information motivates also patients themselves. In a more 
specific case, Zeevi et al.6 could predict personal glucose response and use this information in selecting personal 
diets. Clear statistical indicators of personal reactions would be a significant aid in targeted nutritional guidance.

The computational approaches for diet recommendations in both Food4Me4 and the glucose metabolism 
prediction6 were based on decision trees. In Food4Me, the decision trees were constructed manually based on 
expert knowledge, while the decision trees for optimizing the diet for glucose metabolism were constructed 
algorithmically with boosted decision trees from observational data. Decision trees may perform well in clas-
sification, but we argue that a statistical model that provides biologically interpretable parameters and manages 
uncertainty in parameter estimations would be more useful in understanding and drawing conclusions on the 
complex effects of nutrition.

Bayesian networks have been found to be useful in learning the structures of large interconnected systems 
like gene interactions7, lifestyle predictors of obesity8 and causalities of attention-deficit/hyperactivity disorder 
(ADHD)9. Bayesian network is a directed graph of interconnected random variables, and unlike decision trees, it 
allows conditioning on any of these variables once the graph is estimated10. In the context of nutritional guidance 
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this belief propagation11 could be used in conditional reasoning of nutrient intake levels once the evidence from 
personal reactions is gathered.

We propose a mixed-effect Bayesian network as an appealing method for modeling the connections between 
nutrients and their biological responses. Mixed-effect parameterization12,13 allows studying the effects of nutri-
tion in both general and personal levels, and implementing it as a Bayesian hierarchical model14 allows manag-
ing the uncertainty in all parameter estimates. Our procedure for creating the Bayesian network was to give a 
biologically motivated preliminary graph structure and then learn the meaningful effects and their magnitudes 
from observational data. We did not want to restrict the model too tight on previously known effects but also 
leave a possibility to find new connections between the nutrients and the blood concentrations. The structure of 
our graph is inspired by the systems biology of personal nutrition described by Boorsma et al.3. They illustrate a 
system that starts from nutrients at a person’s diet and results in personally different biological responses. In this 
system, the nutrients participate in different biological processes, continue to affect several organs, and finally 
manifest themselves in responses like different blood characteristics. This layered behavior can be naturally 
modeled with a Bayesian network where nutrients and their biological responses are represented as connected 
random variables. In our model, we also enforced this assumption that the nutrients have directed connections 
towards the concentrations, but not the other way around. For now, we observe only the nutrient intake and 
the personal responses in resulting concentrations, but the network could be expanded to model the biological 
processes causing these responses. The model parameters are intended to have a clear biological interpretation 
that helps confirming the findings against the existing clinical knowledge. The nutritional effects are presented 
in an additive scale with clearly separated general and personal effects.

The aim of this work is to model the personal responses on blood concentrations and indicate the nutrients 
that contribute to these concentrations. The model is aimed for personal nutritional guidance and its usefulness 
in this context is evaluated by predicting personally if a given dietary modifications will increase or decrease 
the responses in concentrations. This classification test allows comparing our method with the existing decision 
tree methods that can only be used in classifying the diet options. In addition to classification, our model also 
reveals the full probability distributions for nutrient levels that personally contribute to the concentrations. This 
can be used in reasoning the personally adjusted nutrient intakes given their estimated effects. By applying our 
method to nutritional data, we have succeeded in finding the expected personal differences in reactions and 
they are shown to be even opposite between persons. Furthermore, these reactions are shown to form clusters 
of similarly reacting persons.

Description of personal nutrition data
For evaluating our method, we have used personal nutrition data from a dietary intervention study called 
Sysdimet15. This randomized controlled trial data included food records, personal information, and laboratory 
results from 106 subjects with impaired glucose metabolism and features of the metabolic syndrome. The data 
were gathered in four repeated time points during 12 weeks. At the beginning of the trial, the subjects kept a 4-day 
food record, and personal concentrations were measured. During the weeks 3, 7, and 11 of the trial, the subjects 
kept food records and new blood samples were drawn within a week after that at weeks 4, 7, and 12. This gave a 
1 week response time for the food record observation to show in the first blood measurement.

For predicting the personal reactions we selected sex, a cholesterol-lowering medication, and 20 different 
nutrients as possible predictors of change at the blood concentrations. Goals of the personal nutrition may vary, 
but in this example, we considered the personal blood concentrations of total serum cholesterol, HDL-cholesterol, 
LDL-cholesterol, insulin, and plasma glucose. The goal would be then reaching the reference values of these 
concentrations. The considered nutrients were selected based on the existing clinical knowledge for possibly 
reacting with the concentrations. Preliminary exploration of the HDL-concentration data in Fig. 1 shows that 
there are personal differences both in levels and in changes of concentrations during the observed 12-week 
period. Similar trends can be seen also in other measured concentrations. Plots of all considered concentrations 
are provided in Supplementary Fig. S1.

These data provide an initial setting for the Bayesian network with five responses and 22 possible predictors 
for each of them, making 110 different possible effects between nutrients and concentrations. This network 
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Figure 1.   The progress of HDL cholesterol concentration for 10 out of all 106 subjects during the 12-week study 
in the Sysdimet data. The concentrations are measured at weeks 0, 4, 8, and 12 and the food records are kept in a 
week before the measurement. The figure is plotted with ggplot2 package for R language (v 3.3.2, https://​ggplo​t2.​
tidyv​erse.​org).

https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
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corresponds to the systems biological framework3 where nutrients affect bodily responses. Only now, we don’t 
have information about the bodily processes and organs responsible for the effect. A list of the considered nutri-
ents and the network setting is seen in Fig. 3.

In the original Sysdimet trial, the subjects were randomly assigned into groups for studying the effects of 
different diets15. Subjects at the different groups were still assumed to react similarly to the same nutrition and 
the original grouping was omitted in this analysis. Possible personal differences in the reactions were unknown, 
and those are our goal to estimate.

Mixed‑effect Bayesian network for effects of nutrition
A thorough overview of Bayesian networks, and probabilistic graphical models in general, can be found at the 
works of Pearl10, Koller and Friedman16, Bishop17, and Nagarajan and Scutari18. Overview of classical univariate 
and multivariate mixed-effects models can be found e.g. in Mehtätalo and Lappi13. Blei19 describes an iterative 
procedure of graphical model development and criticism that is followed here. First, a simple model is formu-
lated based on the personal variations that are believed to exist in data. Then, given the data, an approximate 
posterior is inferenced for the model candidate and it is tested against the data to see if the model is useful or 
biased. Finally, the model is revised until criteria are met and improvement can be done.

Model specification.  Let us denote data with food records and concentration measurements with D and a 
Bayesian network modeling the data with G. The posterior probability of the network G can be decomposed into 
a product of data likelihood given the network and a prior probability of that network

The conditional likelihood of data factorizes further into v independent local distributions of blood concentra-
tions according to their Markov blankets and data are assumed to be grouped by k = 1, . . . , s subjects with nk 
observations for each subject

where Yi is a random variable for an ith concentration response, and pa(Yi) denotes the set of p observed par-
ent variables for Yi in the directed graph Gi . Parent variables are direct predecessors of variables in a directed 
graphical model. Furthermore, µikd is an expected value of the concentration for a personal observation and set 
φi pools general parameters of the distribution.

The expected value of the concentration Yik for the subject k is then defined then with a linear predictor that 
is divided into general and personal parts

where operator paX() picks the values of observed parent variables from the food record data as a model matrix, 
and paZ() picks a similar model matrix for subject k of those food record variables that are assumed to have 
personal differences between subjects. The model’s assumptions of personal differences are elaborated in the 
following sections. Furthermore, the variance-covariance matrix �bik of personal effects bik is defined with a 
diagonal matrix T ik containing personal effect standard deviations and personal effect correlation matrix Cik 
that decomposes into triangular Cholesky matrix Lik . These matrices are unique to each response variable Yi.

The personal effects are calculated as follows by using the estimated matrices T̂ ik and L̂ik that describe the 
effect behaviour

where multiplying standard normal data z with the learned Cholesky decomposition L̂ik generates a multivariate 
distribution with the personally correlated effects of nutrients. Then, multiplying it with T̂ ik adds the estimated 
standard deviation of personal effects to the distribution. It should be noted that values in b̂ik are only personal 
adjustments from the general effects β̂ i for subject k and the full personal effect is then their sum β̂ i + b̂ik . The 
concentration-specific correlation matrix Ĉik = L̂ikL̂

′
ik holds correlations ρjl between each j, l = 1, . . . , p pair of 

personal effects (Fig. 2b). This matrix can be further studied for finding the reasoning of personal effect estimates.
Definition of the expected value is further extended to model the correlation of nk successive observations of 

a person k with a first order auto-regressive process, AR(1),

(1)P(G|D) ∝ P(D|G)P(G).

(2)

P(D|G) =
v
∏

i=1

P(D|Gi)

=
nk
∏

d=1

s
∏

k=1

v
∏

i=1

P(Yikd |Xjkd = paj(Yik)d ,Gi ,µikd ,φi), j = 1, . . . , p,

(3)

µik = X ikβ i + Zikbik ,

X ik = paX(Yik),Zik = paZ(Yik)

bik ∼ N (0,�bik ),

�bik = T ikCikT
′
ik = T ikLikL

′
ikT

′
ik ,

T ik = diag(σ
(1)
bi

, . . . , σ
(p)
bi

),

(4)
z ∼ N (0, I)

b̂ik = T̂ ikL̂ikz ,
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where coefficient ρi quantifies the correlation of successive observations of concentration Yi , y(t−1)
ik  is a concen-

tration level from the previous personal measurement and ǫt is noise in the process.
The following sections elaborate considerations on network structure, choices for the personal effect model 

matrix Zik , shape of the local distribution P(.), and the prior distribution of general effect parameters β.

Assumptions for the network structure.  Only such networks where nutrients are affecting blood con-
centrations are considered plausible for modeling the effects of nutrients, and so a network prior P(Gi) = 1 is set 
for those networks, and P(Gi) = 0 for all the others in Eq. (1). This makes all the considered networks bipartite 
with two layers of random variables. The layers are assumed fully connected and so every nutrient is a possible 
predictor of any blood concentration. This structure is illustrated in Fig. 2a.

It is also assumed that all the effects from nutrients and other predictors may contain personal differences, and 
because of that, the inputs are same for both general and personal parts in Eq. (3) by assuming identical model 
matrices paX(Yik) = paZ(Yik) . It is possible, though, to leave some of the effects common for all the subjects 
by dropping the corresponding column from Zik if it is known that these effects cannot vary among persons.

Distributions of random variables.  Normal distribution is used as a starting assumption for all the 
observed random variables at the network. Reference intakes of nutrients are based on normal distribution20 
and so it is practical to use the same distribution for dietary nutrient levels here as well. For the concentration 
values in Eq. (2) this means Yik ∼ N

(

µik ,�ik

)

 where µik is a vector of expected values from Eq. (3) and �ik is a 
covariance matrix of the multivariate distribution.

The blood concentration values are non-negative and usually right-skewed with occasional values greatly 
above average. This kind of biometric data is usually better modeled with Log−Normal or Gamma distribution 
than with normal distribution21. In our model, Gamma distribution is considered as an alternative distribution 
candidate as it allows keeping the regression parameters additive by using an identity link function with 

(5)y
(t)
ik = µ

(t)
ik + ρi(y

(t−1)
ik − µ

(t−1)
ik )+ ǫt , t = 2, . . . , nk ,
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Figure 2.   In (a) a bipartite Bayesian network is constructed from a few of the variables in Sysdimet data. The 
overall network factorizes into subnetworks G1 and G2 that form independently estimated local probability 
distributions. In (b) a general concentration-specific graphical model Gi is shown. It includes p observed 
random variables X for the nutrient levels and the corresponding concentration level Yi . The latent variables 
of each nutritional effect are estimated from the data. Personal variations bi are assumed to follow Normal 
distribution, but blood concentrations can also be better modeled with Gamma distribution. Evaluation of the 
directed graphical model starts from the prior and the observed nodes. Their sampled values are propagated as 
input to downward nodes, and finally, the linear predictor (3) in the concentration node Yi gathers them all and 
results in an estimation.
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Yi ∼ Gamma
(

αi ,
αi

g(µi)

)

 where αi is a shape parameter of Gamma distribution and g(µi) = µi is the identity link 
function for the expected value. Parameter additivity achieved with the identity link is important as it allows 
using the same parameter estimates in expected values of both normal and Gamma distributed random variables. 
This is valuable in future use cases where normally distributed nutrient levels are conditioned from estimated 
effects and given reference values of concentrations. Parameters are also easier to interpret in the additive scale.

Choices of the prior distribution for the general effects.  Parameters of the network are estimated 
with Bayesian regression. Before the estimation, all predictors are standardized on the same scale. This allows 
using the parameters βj and bj at the concentration-specific vectors β i and bik in Eq. (3) as direct measures of 
effect strength. Bayesian modeling allows applying different prior distributions for parameters, and two different 
prior distributions are considered for the general parameters βj . As a first option, when general effects are stud-
ied in detail, it is justifiable to use a vague prior that lets even the weakest of signals to emerge22. Here, Cauchy 
distribution is used with

by giving different scales for the intercept and the effect strengths as suggested by Gelman et al.14.
As a second option, when the effects of nutrition are predicted for new subjects, it might be better to use 

a shrinkage prior that forces weak signals to a minimum and allows the model to generalize better. Piironen 
and Vehtari23 give a thorough overview of Bayesian shrinkage priors and other model selection methods. For 
exploring a large number of possible predictors they suggest a projection method, but for this relatively small 
dataset a regularized horseshoe prior (RHS) is considered suitable. It allows more efficient computation and better 
predictive performance than the vague prior (6).

Regularized horseshoe prior for general coefficients in β i is defined with

where C+ denotes positive half-Cauchy distribution, �j are local scaling parameters for parameters βj , and τ 
is a global scaling parameter. Parameter c here is an additional regularization parameter, and without knowl-
edge of βj parameter scales, a prior distribution suggested by Piironen and Vehtari23 is used, by setting 
c2 ∼ Inv − Gamma(α,β), α = ν/2, β = νs2/2 , where ν is degrees of freedom. Suggested value for ν is 1, but 
increasing it is reported to help possible computational problems.

Regularized horseshoe prior allows setting a hyperprior for the global shrinkage parameter τ . This hyperprior 
τ0 allows applying domain knowledge about the number of effective predictors. It regularizes the highest coef-
ficient values and lets the weaker signals to emerge despite the shrinkage. Regularized horseshoe still shrinks 
some weak signals that the vague prior allows but an optimal value for τ0 hyperprior makes it a good compromise 
for predictions. The value for optimal global shrinkage τ0 is calculated from the expected number of nonzero 
coefficients, p0 , with

where p is the total number of predictors and p0 is in this application the assumed number of nutrients affecting 
a blood concentration. Piironen and Vehtari22 show further that even a crude guess for number of nonzero 
parameters improves the prediction accuracy and computation time. With the Sysdimet dataset, it is approxi-
mated that one third of the nutrients might be significant for each measured concentration. This makes 
τ0 = 7

22−7
1√
424

≈ 0.023.
Sensitivity analysis of the prior choice with the Sysdimet dataset is illustrated in Supplementary Table S4. It 

shows that estimation of the personal effect standard deviations σ̂bi in Eq. (3) is not sensitive to the prior distri-
bution of the general effects βj . The prior choice affects mainly on how the personal effect is shared between the 
general and personal parts. Regularizing horseshoe prior puts less weight on generally weak effects and gives 
more weight to personal variations.

Clustering of personal effects.  Bayesian network factorizes the joint distribution of concentrations into 
distinct local distributions. For considering the overall reaction profiles, the personal effects from all the concen-
trations are pooled together and then clustered for finding self-similar groups of behavior. The clustering is not 
implemented as part of the model, but in the analysis of the model estimations for gaining more insights on the 
results. For this, standard k-means clustering24 is applied to the means of personal effect distributions, β̂ i + b̂ik . 
It should be noted that in this way the clustering shows only average reactions within the clusters and more 
extreme personal differences can be found.

In k-means clustering, it is essential to find an optimal number of clusters. The number is approximated with 
the elbow method25 where a within-cluster sum of squares ratio is plotted for different numbers of clusters. The 

(6)
β0 ∼ Cauchy(0, 10)

βj ∼ Cauchy(0, 2.5), j = 1, . . . , p,

(7)

βj | �j , τ , c ∼ N
(

0, τ 2�̃2j
)

,

�̃
2
j =

c2�2j

c2 + τ 2�2j
,

�j ∼ C
+(0, 1), j = 1, . . . , p,

(8)τ0 =
p0

p− p0

σ√
n
,
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elbow point of the plot, where this sum of squares ratio stops decreasing substantially, shows the approximate 
number of clusters that are distinguishing clearly.

Estimation of the Bayesian network.  Probabilistic programming language Stan26 was used in imple-
menting and estimating the local probability distributions Gi of the Bayesian network as defined in Eq. (2). These 
blood concentration distributions were estimated with MCMC-sampling by using Stan’s Hamiltonian Monte 
Carlo (HMC) algorithm and the estimated distributions of parameters were collected as a joint Bayesian net-
work G with a custom R-language code and iGraph27 R-package.

The result is a generative model that allows drawing samples of predicted blood concentrations when a dietary 
composition is given by using ancestral sampling17. In this method, the root nodes, including fixed hyperpriors 
of parameters and all the observed inputs, are populated first with values. Their values are then propagated 
downwards in the directed graph as inputs to the next connected variables until the linear predictors at the 
concentration variables are reached. Then, all the distribution parameters are estimated and predictions can be 
drawn. This flow is illustrated in Fig. 2b.

This ancestral sampling is used in posterior predictive checking14,19,28 to evaluate the model fit. The original 
input data are fed to the graphical model and, if the parameters are estimated correctly, the outcome is expected 
to match closely the true concentrations. Both visual posterior predictive checks and numerical error metrics 
are used to detect biased estimations that suggest refining the model structure.

Data application
The proposed mixed-effect Bayesian network (MEBN) model was applied to personal nutrition data from the 
Sysdimet study. The aim of this application was to gain statistical information about general nutritional effects 
in these data, reveal personal variations from the general effects, and finally predict personal networks of the 
nutritional effects. This model estimation and the following analysis can be fully replicated with data and code 
notebook at the Supplementary Information.

Evaluation of the model performance.  Several model candidates were developed with alternative dis-
tributions of concentrations, different prior distributions of general effects, and with and without an autocor-
relation structure. These options were described in the method section. The model candidates were compared 
visually with posterior predictive checks and numerically with mean squared errors. The plots of visual posterior 
checks for different model candidates are available online in Supplementary Figs. S3, S4, S5, S6, and S7. The used 
numerical normalized root mean squared error metrics are defined with

where the error metrics for the whole network is calculated as mean of errors from local distributions 
Gi , i = 1, . . . , v . Normalization in the error metrics allows comparing the predictions of the different concen-
trations on the same scale.

The best overall model fit was reached with a model version that uses normal distribution for insulin concen-
tration (fsins) and Gamma distribution for all the other concentrations. This version is called EXPFAM AR(1)-
model as the model consists of several different distributions from the exponential family and it had network 
NRMSE of 0.07. It uses the autocorrelation process of successive observations from Eq. (5) that also improved 
the model fit. Using regularized horseshoe shrinkage prior in Eq. (7) for the general effects provided a simpler 
model with only a slight increase in the network NRMSE to 0.07. As the shrinkage prior provides a more general 
model, and also faster and more stable computation, it is used in predictions at the model cross-validation. A 
detailed comparison of different model versions is shown in Table 1 and is illustrated in Supplementary Fig. S8.

(9)
Network NRMSE =

v
∑

i=1
NRMSEGi

v
, NRMSEGi =

√

1
n�

n
j=1(ŷij − yij )

2

ȳ
,

Table 1.   Comparison of model candidates. Model candidates were compared with a normalized root mean 
squared error (NRMSE) separately for each concentration and with mean accuracy of the whole Bayesian 
network. The final versions (Gamma AR(1) RHS CV and Expfam AR(1) RHS CV) were evaluated with cross-
validation (CV).

Model

NRMSE

HDL-chol. LDL-chol. Insulin Total chol. Glucose BN Mean

Normal 0.04 0.06 0.22 0.06 0.06 0.09

Gamma 0.02 0.06 0.28 0.05 0.03 0.09

Gamma AR(1) 0.01 0.03 0.27 0.04 0.03 0.07

Gamma AR(1) RHS 0.01 0.03 0.29 0.04 0.03 0.08

EXPFAM AR(1) 0.01 0.03 0.23 0.04 0.03 0.07

EXPFAM AR(1) RHS 0.01 0.03 0.23 0.04 0.03 0.07

Gamma AR(1) RHS CV 0.02 0.05 0.44 0.06 0.05 0.12

EXPFAM AR(1) RHS CV 0.02 0.05 0.45 0.06 0.05 0.13
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In predicting the new and unseen concentration values with cross-validation14,19, we used the available per-
sonal reaction history and the information from other persons in estimating the prediction model. The model 
assumes with AR(1) autocorrelation that the blood concentration level is correlated only with one previous 
concentration measurement in addition to the previous food record. We also assume that personal reactions to 
nutrients are similar in every week of the study. This allows using 3 × 10-fold validation by splitting the concen-
tration time series of weeks 0, 4, 8, and 12 in Fig. 1 into three distinct parts where the true values from weeks 4, 
8, and 12 were held out from the model estimation for a tenth of the subjects at a time. The estimated model was 
then used for predicting the concentrations for these held out subjects. The week 0 was used only as an input 
for the week 4 prediction. Network NRMSE increased then from in-sample error 0.07–0.13 for out-of-sample 
predictions of cross-validated (CV) models.

Yet, NRMSE metrics do not say much about the actual usefulness of the model. In personal nutritional guid-
ance, it is essential to know how a given diet will affect the future blood concentrations, or any other personal 
goal that is measured. Will the concentrations increase or decrease towards their reference values? For better 
understanding, a custom classification test was used to evaluate if the model predicts correctly the direction of 
change in the blood concentrations by using the same cross-validation folding of the data. In this classification, 
we predict only if the concentration increases or decreases from its past value without considering the actual 
level of the concentration.

The classification test enables us to compare the Bayesian network to other classification methods. Extreme 
Gradient Boosting (XGBoost)29 method was chosen for comparison as it is a well-performing decision tree 
method and similar to the computational approach in glucose prediction of Zeevi et al.6. XGBoost is a non-par-
ametric machine learning method that requires separate training and testing partitions of data. Cross-validation 
was used also with XGBoost to ensure that any specific data partitioning to training and test sets do not affect 
the result. XGBoost can be sensitive to predefined hyperparameter values and to mitigate this a hyperparameter 
tuning was used to find the best performing values. Similarly to MEBN, the direction of the next blood concen-
tration was predicted based on previous food records and one last concentration measurement.

In the comparison shown in Table 2 and Supplementary Fig. S9, our MEBN model repeats the increases and 
decreases of the in-sample measurements with 86% average accuracy for insulin concentration and over 80% for 
HDL- and LDL-cholesterol concentrations. Plasma glucose was most difficult to repeat with nutrient predictors 
only, and there 72% accuracy was reached. Plasma glucose can also react to other factors like the amount of 
exercise, time from last meal, and inflammation. When regularized horseshoe shrinkage prior from Eq. (7) was 
used for the general effects, the accuracy dropped a few percent overall with a similar trend. The cross-validated 
comparison between XGBoost and MEBN shows them to be comparable with similar classification accuracy 
ranging from 60 to 70%. Supplementary Information includes also a similar comparison with a Random Forest 
decision tree30 that uses bagging instead of boosting to improve the performance. The predictive accuracy of 
Random Forest is found similar to XGBoost and MEBN with a similar trend in concentration specific accuracy.

General effects of nutrition and their personal variation.  Visualization in Fig.  3 shows the con-
structed bipartite Bayesian network G that is based on the most accurate EXPFAM AR(1) model version with 
in-sample predictions. The visualization shows the general effects of nutrients by indicating the means of β̂ij 
parameter distributions with the thickness of the edges between a concentration i and its contributing nutrients 
j. The visualized model uses vague priors from Eq. (6) on parameters βij for emphasizing the general effects and 
putting less weight on personal variations. This graph visualization offers an overview of the most considerable 
general effects. Examples of personal differences can be seen by comparing this general graph to personal graphs 
in Fig. 5.

More detailed information on the effects and their behavior is given in Table 3 and Fig. 4. The figure com-
pares β̂ij estimations with vague (6) and shrinkage (7) prior distributions. As expected, the cholesterol-lowering 
medication has a strong decreasing effect on serum cholesterol concentrations, but it also increases insulin 
concentration. The effect is so strong that it overwhelms the most nutritional effects of the model.

Besides the general effects, our interest is on the variations of effects between the subjects. The amount of 
effect variations are estimated in standard deviation parameters σ̂ (1)

bi
, . . . , σ̂

(p)
bi

 of Eq. (3). The highest variations are 
found at the effects of energy intake and gender to insulin concentration. On these effects, 90%-credible intervals 
of standard deviance estimations are far from zero. In the contributing nutrients, the effect of polyunsaturated 

Table 2.   Comparison of modeling methods. Comparison of modeling methods in a classification test where 
the direction of change for future concentration is predicted based on its past value and past diet. In-sample 
accuracy of mixed-effect Bayesian network (MEBN) assures that the found personal effects are real in this 
sample. The cross-validated (CV) accuracy is lower for out-of-sample observations but it is similar to the 
compared XGBoost decision tree method.

Method

Prediction accuracy for the direction of change

HDL-chol. LDL-chol. Insulin Glucose Total chol.

MEBN 81% 85% 85% 74% 83%

MEBN RHS 78% 81% 84% 70% 80%

MEBN RHS CV 63% 67% 68% 59% 64%

XGBoost CV 61% 69% 68% 60% 71%
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fatty acid (PUFA) and eicosapentaenoic acid (EPA) have also variation between subjects on insulin concentra-
tion, but it is less certain. Details of most varying effects are seen in Table 3 that lists 38 of the all 110 analysed 
effects that have highest standard deviations of personal effects. Table also shows the minimum and maximum 
of those effects from all the subjects. We also analysed if the found reactions are personally unique or do they 
form self-similar groups.

Hidden clusters of personal effects.  We applied k-means clustering24 to personal effects ( β̂ij + b̂ijk ) first 
with all the predictors and then with nutrient predictors only. In both cases the elbow plots25 revealed four 
clusters that had distinguishing differences between the effects. The elbow plots are available in Supplementary 
Figs. S13 and S15.

When all the predictors were considered, the subjects grouped into clusters with 83 (78.3%), 11 (10.4%), 5 
(4.7%), and 7 (6.6%) of all the 106 subjects. The clusters showed clearly the personal variations in the effects of 
cholesterol medication that was also seen in Fig. 4. The cholesterol medication decreases cholesterol concentra-
tions in all clusters but increases the serum insulin concentration only with part of the subjects. In the second 
cluster with 11 of 106 subjects (10.4%) the medication has no effect on insulin concentration, but for 7 subjects 
(6.6%) it increases insulin concentrations clearly and for the rest of the subjects the effect is only slightly increas-
ing. This effect of cholesterol-lowering medication increasing insulin concentrations has also been shown in a 
clinical trial31. These clusters are illustrated in detail in Supplementary Fig. S14.

As the effect of cholesterol medication dominates the clusters, and our main interest is to find personal dif-
ferences especially in nutritional effects, another clustering was considered with nutrient predictors only. This 
time the subjects were also grouped into four clusters with 18 (17%), 36 (34%), 4 (3.8%), and 48 (45.3%) of all 
106 subjects. The second and fourth clusters with most of the subjects are quite similar to the general behaviour 
of insulin reactions as seen in Figs. 3 and 4. Distinguishing differences are found in the first and third clusters. 
The first cluster, with 18 subjects, is characterized by slight insulin decreasing effects of monounsaturated fatty 
acids (MUFA) and vitamin C. However, in the third cluster, with only 4 subjects, those effects are opposite and 
clearly increasing. In addition, with these subjects lignin and vitamin D are slightly decreasing the insulin con-
centration while this effect is opposite and increasing in other clusters. These cluster characteristics are illustrated 
in Supplementary Fig. S16. This clustering analysis considers only typical behaviour within the clusters, and to 
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Figure 3.   Visualization of the mixed-effect Bayesian network shows the general effects from nutrients 
( j = 1, . . . , 22 ) to concentrations ( i = 1, . . . , 5 ). The strength of the effects from parameters β̂ij are indicated 
by the thickness of the edge. Red edges denote the increasing effect and blue edges denote the decreasing effect. 
The Bayesian network corresponds to the systems biology of personalized nutrition by connecting the statistical 
effects of nutrients to personal goals of well-being. The goal might be, for example, reaching the reference values 
of the blood concentrations. The figure is plotted with iGraph package for R language (v 1.2.6, https://​igraph.​
org/r).
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conclude the analysis, two different personal reaction types are compared in detail and possible personal dietary 
guidance is discussed.

Personally predicted reaction types.  The clustering revealed two different reaction types for serum 
insulin concentration. In one group the insulin concentration raises rapidly and in the other groups, the response 
is weaker or average. Constantly high concentrations of serum insulin may lead to insulin resistance and per-
sonal guidance for lowering the concentration would be necessary. What nutrients cause these differences and 
what personal recommendations can be given?

Two subjects are picked from these differently reacting clusters and their personally predicted reaction types 
are compared in Fig. 5. The biggest differences between these groups are found in reactions of insulin concentra-
tion to saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA), and vitamin C. During the study, the 

Table 3.   Those effects of nutrition that have highest variations between the studied subjects. These 38 (of all 
110) effects from nutrients and other modeled features (j = 1, . . . , 22) to blood concentrations (i = 1, . . . , 5) 
had the highest variations between the studied subjects (k = 1,...,106). The estimated standard deviation ( ̂σbij ) 
of personal effects varies from 4.29 to 0.02, and this table is sorted to include the most varying effects with the 
standard deviation over 0.10. The table also shows the minimum and maximum of the personally adjusted 
effects (β̂ij + b̂ijk) with 90%-credible interval.

Nutrient or feature Concentration

Inter-subject Personal effect ( β̂ij + b̂ijk)

Variation ( ̂σbij) Min. Max.

Energy Insulin 4.29 [2.16; 6.37] 0.12 [− 4.00; 4.43] 1.12 [− 3.00; 6.09]

Gender (1-female) Insulin 3.93 [3.26; 4.60] − 1.03 [− 4.82; 1.64] 0.19 [− 2.59; 5.56]

Chol. medication Insulin 1.46 [0.21; 3.02] − 1.29 [− 7.50; 3.70] 8.63 [2.18; 15.94]

Pufa Insulin 1.35 [0.39; 2.22] − 1.12 [− 3.47; 0.29] − 0.40 [− 1.81; 1.59]

EPA-fatty acid Insulin 1.11 [0.58; 1.63] 0.23 [− 1.06; 1.61] 1.72 [− 0.14; 4.80]

Mufa Insulin 0.97 [0.19; 1.79] − 0.96 [− 3.83; 1.29] 2.27 [− 0.51; 6.01]

DHA-fatty acid Insulin 0.92 [0.27; 1.59] − 0.62 [− 2.28; 0.72] − 0.10 [− 1.47; 1.90]

Sucrose Insulin 0.85 [0.14; 1.64] − 0.28 [− 1.83; 0.63] 0.12 [− 0.75; 1.82]

Safa Insulin 0.83 [0.14; 1.69] − 1.46 [− 4.22; 0.48] 0.30 [− 2.09; 4.13]

Protein Insulin 0.78 [0.11; 1.62] − 0.97 [− 2.93; 0.42] − 0.40 [− 1.88; 2.06]

Alcohol Insulin 0.75 [0.16; 1.39] − 0.17 [− 1.49; 0.89] 0.11 [− 0.98; 1.48]

Linoleic acid Insulin 0.71 [0.13; 1.39] 0.18 [− 2.84; 4.95] 0.91 [− 1.81; 5.68]

Fat Insulin 0.63 [0.11; 1.28] 0.70 [− 2.75; 4.28] 1.73 [− 1.37; 6.26]

Gender (1-female) Total chol. 0.59 [0.47; 0.72] − 0.70 [− 1.98; 0.24] 0.82 [0.01; 1.94]

Folic acid Insulin 0.57 [0.09; 1.18] − 0.66 [− 2.22; 0.27] − 0.22 [− 1.15; 1.60]

Gender (1-female) LDL-chol. 0.53 [0.44; 0.63] − 0.67 [− 1.63; − 0.02] 0.36 [− 0.27; 1.36]

Fibre Insulin 0.52 [0.08; 1.06] − 0.24 [− 1.37; 0.70] 0.00 [− 0.91; 1.23]

Chol. medication Total chol. 0.48 [0.16; 0.78] − 1.39 [− 2.50; − 0.83] − 0.71 [− 1.32; 0.50]

Lignin Insulin 0.48 [0.08; 0.99] − 0.40 [− 2.75; 0.85] 0.68 [− 0.43; 2.48]

Vitamin C Insulin 0.44 [0.07; 0.90] − 0.76 [− 2.67; 0.65] 2.43 [0.43; 4.82]

Cholesterol Insulin 0.44 [0.06; 0.88] 0.27 [− 0.75; 1.13] 0.39 [− 0.47; 1.48]

Alpha lipoic acid Insulin 0.43 [0.09; 0.83] − 1.69 [− 6.65; 1.19] − 0.86 [− 5.63; 1.98]

Cellulose Insulin 0.41 [0.07; 0.84] − 0.12 [− 1.76; 0.96] 0.23 [− 0.94; 1.86]

Vitamin D Insulin 0.39 [0.06; 0.80] − 0.04 [− 2.16; 1.02] 0.52 [− 0.32; 1.97]

Chol. medication LDL-chol. 0.36 [0.11; 0.60] − 1.08 [− 1.77; − 0.70] − 0.81 [− 1.23; 0.12]

Energy Total chol. 0.36 [0.07; 0.66] − 0.18 [− 3.76; 3.27] − 0.07 [− 3.67; 3.36]

Carb.hydr. Insulin 0.35 [0.05; 0.74] − 0.29 [− 3.11; 1.96] 1.00 [− 1.44; 4.29]

Gender (1-female) Glucose 0.30 [0.24; 0.36] − 0.10 [− 0.48; 0.12] 0.00 [− 0.22; 0.38]

Gender (1-female) HDL-chol. 0.24 [0.20; 0.29] 0.09 [− 0.29; 0.34] 0.53 [0.21; 0.96]

Energy Glucose 0.23 [0.05; 0.41] − 0.06 [− 3.32; 3.20] 0.06 [− 3.17; 3.35]

Energy LDL-chol. 0.23 [0.04; 0.47] − 0.20 [− 3.53; 3.03] − 0.12 [− 3.45; 3.10]

Chol. medication HDL-chol. 0.18 [0.07; 0.29] − 0.19 [− 0.54; 0.02] 0.08 [− 0.17; 0.49]

Energy HDL-chol. 0.17 [0.04; 0.30] − 0.29 [− 3.63; 2.77] − 0.24 [− 3.60; 2.77]

Cellulose LDL-chol. 0.14 [0.06; 0.21] − 0.03 [− 0.17; 0.08] 0.00 [− 0.11; 0.15]

Cellulose Total chol. 0.13 [0.03; 0.22] − 0.02 [− 0.17; 0.12] 0.00 [− 0.13; 0.16]

Sucrose Glucose 0.12 [0.04; 0.20] − 0.06 [− 0.27; 0.05] − 0.01 [− 0.11; 0.17]

Chol. medication Glucose 0.12 [0.02; 0.24] 0.04 [− 0.52; 0.36] 0.39 [0.06; 0.96]

Sucrose Total chol. 0.12 [0.02; 0.22] − 0.01 [− 0.29; 0.13] 0.06 [− 0.05; 0.22]
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average personal serum insulin concentration for the subject 1 was 29.38 mU/l and 22.04 mU/l for the subject 2. 
Both of these concentrations are high in comparison to the reference values, but there are personal differences in 
the nutrients that affect these concentrations. The personal averages of all the concentrations and the following 
personal effects can be found in Supplementary Tables S8 and S9.

In general, subject 1 reacts to most nutrients with increasing serum insulin concentration and the overall 
energy content of the diet has a greater effect on the concentration with slope 1.26 (90% credible interval, CI 
[− 1.96; 4.79]). For the subject 2, the effect of the energy content is lower with slope 0.67 (90% CI [− 2.47; 3.98]).

Specific personal differences are found in reactions to saturated fat, lignin, vitamins C and D, and eicosap-
entaenoic acid (EPA) fatty acid. Saturated fat decreases serum insulin concentration for subject 2 with a slope 
− 1.02 (90% CI [− 2.84; 0.82]) but for subject 1 the effect mean is close to zero. Then again, the subject 1 has a 
greater lowering effect from lignin with − 0.44 (90% CI [− 2.05; 0.83]) while the same for the subject 2 is − 0.1 
(90% CI [− 1.39; 1.06]).

The subjects have yet different nutrients that specifically increase the serum insulin concentration. For the 
subject 1, vitamin C has an increasing effect of 2.36 (90% CI [0.80; 3.80]) while it decreases the concentration 
with a slope − 0.66 (90% CI [− 2.32; 0.82]) for subject 2. Vitamin D has also a similar effect. On the other hand, 
EPA increases insulin concentration for subject 2 with a slope 1.95 (90% CI [0.20; 4.03]) while the same effect 
is only 0.15 (90% CI [− 1.79; 1.82]) for subject 1. With these findings, it would seem reasonable to give these 
subjects different nutritional guiding for lowering their insulin concentrations.

Discussion
In this work, we have implemented a statistical model for the personal effects of nutrition. As our long-term 
goal is computing personalized nutrient intake recommendations for personalized nutrition, we aimed for a 
model that is biologically interpretable and has rich possibilities for inference. This was achieved with a Bayesian 
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Figure 4.   List of nutritional effects where the effect is either generally strong or it has high variation between 
subjects. If a generally insignificant effect, with low β̂ij , has a high inter-subject variation σ̂b , it can still be 
significant for someone. The figure shows posterior means with 90%-credible intervals and compares the effect 
of shrinkage prior (7) to vague prior (6) in β̂ij estimation. The figure is plotted with ggplot2 package for R 
language (v 3.3.2, https://​ggplo​t2.​tidyv​erse.​org).
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network that follows the systems biology of personalized nutrition3 from dietary nutrients to their biological 
response. The mixed-effect parameterization of our Bayesian network allows studying the effects in both general 
and personal levels. In addition to producing these estimates in an additive scale with full posterior distributions, 
our model also reveals the autocorrelation of successive concentration levels and the correlation between the 
effects of different nutrients. We argue that a high inter-individual variation in effects indicates a possibility, and 
perhaps a need, for personalized nutritional guidance.

We have confirmed that the learned effects between the nutrients and the concentrations match the existing 
clinical knowledge. As the in-sample classification performance and the posterior predictive check for the final 
model version are accurate, we are confident that the found personal variations are real and the method is able 
to reveal them. Still, the cross-validated accuracy of this model is not high enough for clinical applications for 
new patients. More data need to be collected to improve the predictive accuracy.

Our findings from the analyzed nutrition data reveals personal differences from the general behavior that 
might even be opposite between individuals. One example is the effect of monounsaturated fatty acid (MUFA) to 
insulin concentrations. The effect is generally increasing but in one group that contains 17% of the studied sub-
jects, the effect is non-existing or even slightly decreasing. Also, a known side effect of the cholesterol-lowering 
medication is the increase of plasma insulin concentration31. Yet, this is not true for everyone. We have recognized 
clusters of subjects where the insulin increasing effect varied from considerable to non-existing.

In general, the clustering of personal effects showed that they are not unique, but tend to form self-similar 
clusters. There are studies that connect the differences in personal reactions to similar genotypes, like fatty acid 
desaturase 1 (FADS1) genotype affecting low-grade inflammation by linoleic acid32. On the other hand, Berry 
et al. report that even for identical twins the reactions are not identical33. They show that genetic factors explain 
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Figure 5.   Two subjects were picked from differently reacting clusters and their personally predicted reaction 
graphs show differences from the general behaviour in Fig. 3 and with each other. The visualization shows 
20 most personally prominent effects ( β̂ij + b̂ijk , i = 1, . . . 5, j = 1, . . . , 22, k = 1, 2 ). The red edges denote 
increasing effect and the blue edges denote a decreasing effect. Subject 1 is reacting generally with a greater 
increase in insulin concentration than subject 2, but there are even contradicting effects between the subjects. 
Vitamin D increases insulin concentration for subject 1 only and the effect of lignin is small but opposite 
between the subjects. The figure is plotted with iGraph package for R language (v 1.2.6, https://​igraph.​org/r).
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only a part of the personal variation in responses at glucose, insulin, and triglycerides. Only a weak correlation 
was found between an individual’s genotype and responses to total fat and carbohydrates. Rest of the variation 
may be explained with lifestyle and other personal factors like gut microbiome.

In our future work, we are improving the model and building the inference for personalized nutrition. In 
comparison to the existing decision tree methods, our method reveals probability distributions for the personal 
contributions of the nutrients. This allows predicting the optimal amounts of different nutrients in personal diets 
that most probably take the concentrations towards their recommended levels. The reasoning for these predic-
tions can also be justified by studying the learned personal effects correlation matrices Ĉik in linear predictor Eq. 
(3). The mixed-effect models can be calibrated for new patients with only few observations when well-predicting 
model exists34. The calibrated model could be used in accurate personal concentration predictions, but it does 
not explicitly show the contributing nutrients for a new patient. Our model could be improved by analyzing 
the non-linearity of responses instead of the current linear predictor. This could give more information on 
time-varying intensity the nutrients affect the blood concentrations. Modeling the effect non-linearity would 
require more measurements from each subject than was available in our current data. In addition, the blood 
concentrations are now independently modeled, but studying the correlations between them is also possible by 
introducing new latent variables.

Our goal for personalized nutrition is to provide a rich diet while mitigating the personal health issues and 
risks of non-communicable diseases. As shown in this analysis, the causes for high insulin levels may vary 
between individuals from different nutrients to use of cholesterol-lowering medication, and differences like this 
should be taken into account at the nutritional guidance. We have estimated the personal reactions mainly from 
past diet and concentration history. As the causal mechanisms of these personal differences are studied and found, 
the Bayesian network can be extended to model them explicitly with new random variables. If the lifestyle and 
environmental factors affect the personal reactions more than genotypes33, it means that the personal reaction 
type can change over time. This also prefers our Bayesian estimation that can be updated with new information 
while having the previous model as a prior knowledge17.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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