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Summary

Plasmodium falciparum possesses a single mitochon-
drion with a functional electron transport chain.
During respiration, reactive oxygen species are gen-
erated that need to be removed to protect the organelle
from oxidative damage. In the absence of catalase and
glutathione peroxidase, the parasites rely primarily on
peroxiredoxin-linked systems for protection. We have
analysed the biochemical and structural features of
the mitochondrial peroxiredoxin and thioredoxin of
P. falciparum. The mitochondrial localization of both
proteins was confirmed by expressing green fluores-
cent protein fusions in parasite erythrocytic stages.
Recombinant protein was kinetically characterized
using the cytosolic and the mitochondrial thioredoxin
(PfTrx1 and PfTrx2 respectively). The peroxiredoxin
clearly preferred PfTrx2 to PfTrx1 as a reducing
partner, reflected by the KM values of 11.6 mM and
130.4 mM respectively. Substitution of the two dyads
asparagine-62/tyrosine-63 and phenylalanine-139/
alanine-140 residues by aspartate-phenylalaine and
valine-serine, respectively, reduced the KM for Trx1 but

had no effect on the KM of Trx2 suggesting some role
for these residues in the discrimination between the
two substrates. Solution studies suggest that the
protein exists primarily in a homodecameric form. The
crystal structure of the mitochondrial peroxiredoxin
reveals a fold typical of the 2-Cys class peroxiredoxins
and a dimeric form with an intermolecular disulphide
bridge between Cys67 and Cys187. These results
show that the mitochondrial peroxiredoxin of P. falci-
parum occurs in both dimeric and decameric forms
when purified under non-reducing conditions.

Introduction

Peroxiredoxins (Prx) are ubiquitous peroxidases that
reduce reactive oxygen and nitrogen species such as
hydrogen peroxide, alkyl hydroperoxides and peroxinitrite
using an active-site cysteine residue (Bryk et al., 2000;
Hofmann et al., 2002). The reducing equivalents required
for these reactions are provided by thioredoxin, glutare-
doxin, alkylhydroperoxide reductase, glutathione or cyclo-
philin (Lee et al., 2001; Rouhier et al., 2002; Wood et al.,
2002; Echalier et al., 2005). Prx are generally highly abun-
dant proteins, possibly to compensate for their relatively
low catalytic activities compared with those of other per-
oxidases such as catalase and glutathione peroxidase
(Hofmann et al., 2002). In addition to their antioxidant
functions Prx have roles in signal transduction pathways
that use hydrogen peroxide as a second messenger
(Wood et al., 2003a; Veal et al., 2004; Choi et al., 2005;
Okazaki et al., 2005; Rhee et al., 2005).

According to their structural and catalytic features, Prx
are divided into five classes (Echalier et al., 2005). A
common characteristic of Prx is the presence of a highly
conserved cysteine, the peroxidatic cysteine (Cp), in the
N-terminal domain of the protein, which accepts the hydro-
peroxide substrate and forms a cysteine sulphenic acid
(Cys-SOH) intermediate during the catalytic cycle (Wood
et al., 2003a). In 2-Cys peroxiredoxins, this active-site
residue is found in the first turn of an a-helix that is able to
unwind to form a disulphide bridge with a second cysteine,
the resolving cysteine (Cr), close to the C-terminus of the
same or another subunit of the dimeric protein (Evrard
et al., 2004; Echalier et al., 2005; Rhee et al., 2005). One
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other striking feature of 2-Cys peroxiredoxins is their alter-
nation between oligomeric states – in the reduced state,
typical 2-Cys peroxiredoxins are (a2)5 decamers and in the
oxidized state these decamers are typically destabilized
and resolved into homodimers (Wood et al., 2002; 2003a,
b; Echalier et al., 2005). However, among 2-Cys peroxire-
doxins from different sources, the tendency to form higher
oligomers appears to differ. AhpC from Salmonella typh-
imurium, for instance, has been structurally analysed and
both reduced and oxidized states were found to be
decameric in the crystal structure. (Wood et al., 2002). A
recent structure of an oxidized form of AhpC from Myco-
bacterium tuberculosis revealed a dodecamer structure
consisting of six, rather than five, dimers arranged as a
doughnut-like ring (Guimaraes et al., 2005).

The malaria parasite Plasmodium falciparum possesses
five different peroxiredoxins – two [P. falciparum 2-Cys
peroxiredoxin (PfTrx-Px1) and P. falciparum mitochondrial
peroxiredoxin (PfTrx-Px2)] show a high degree of seq-
uence similarity to typical 2-Cys peroxiredoxins (Krnajski
et al., 2001; Rahlfs and Becker, 2001) and two [P. falci-
parum 1-Cys peroxiredoxin (PfTrx-Px3) and PfAOP (AOP:
antioxidant protein)] are 1-Cys peroxiredoxins (Kawazu
et al., 2000; Krnajski et al., 2001; Sarma et al., 2005). The
fifth is a glutathione peroxidase-like protein [P. falciparum
glutathione peroxidase-like protein (PfTrx-G1)] that prefers
thioredoxin as a reductant (Sztajer et al., 2001). PfTrx-G1
has been biochemically characterized and shows catalytic
efficiencies comparable to thioredoxin-dependent peroxi-
dases from other sources (kcat/Km ~ 103-104 M-1 s-1)
whereas the 2-Cys peroxiredoxin PfTrx-Px1 reduces
hydrogen peroxide with a higher catalytic efficiency of
106 M-1 s-1 (Akerman and Müller, 2003). The biochemical
and catalytic features of all other Plasmodium peroxiredox-
ins have not been analysed yet and structural information
is available only for PfAOP (Sarma et al., 2005). Given that
the parasites lack catalase and glutathione peroxidase, it
has been suggested that peroxiredoxins are key antioxi-
dants that guarantee parasite survival under enhanced
oxidative stress (Müller, 2004). However, there appears to
be redundancy among the various Prx in Plasmodium as
the knockout of PfTrx-Px1 is not lethal although the null
mutants show an increased sensitivity towards hydrogen
peroxide and peroxinitrite (Komaki-Yasuda et al., 2003).
On the other hand, interruption of the thioredoxin redox
cycle, by disruption of the gene encoding thioredoxin
reductase, is fatal for the parasites, suggesting that their
thioredoxin-dependent peroxiredoxin-linked antioxidant
system plays a crucial function in defence against oxidative
insults (Krnajski et al., 2002).

Like other eukaryotes, P. falciparum needs to avoid oxi-
dative insults to its organelles, the mitochondrion and the
apicoplast. The mitochondrial respiratory chain results in
the formation of superoxide anions that are dismutated by

a mitochondrial superoxide dismutase (SOD; Sienkiewicz
et al., 2004). The resulting hydrogen peroxide has to be
removed to prevent oxidative injury to the organelle and
this is likely to be achieved by a mitochondrial
peroxiredoxin-linked detoxification system as has been
reported for mammals and yeast (Miranda-Vizuete et al.,
2000; Wheeler and Grant, 2004). A potential mitochon-
drial peroxiredoxin gene of P. falciparum (pftrx-px2) has
previously been cloned and recombinantly expressed but
no further biochemical characterization of the protein was
performed (Rahlfs and Becker, 2001). Immunofluorescent
studies using polyclonal antibodies raised against the
protein suggest a mitochondrial localization (Yano et al.,
2005). In this study, we report the biochemical and struc-
tural characterization of PfTrx-Px2 and identify its mito-
chondrial reducing partner as well as the localization of
both proteins to the mitochondrion in parasites. Our
results show that PfTrx-Px2 is a thioredoxin-dependent
peroxidase with a preference for H2O2 and that it structur-
ally belongs to the class of typical 2-Cys peroxiredoxins.
These data suggest an important function of the PfTrx-
Px2-linked detoxification of reactive oxygen species in the
parasite’s mitochondrion.

Results

Expression of PfTrx-Px2 and P. falciparum thioredoxin 2
(PfTrx2)

The deduced amino acid sequence of pftrx-px2 was
analysed by a variety of prediction programmes. PlasMit,
MitoProt and TargetP predicted that the protein is mito-
chondrial and that it possesses an N-terminal mitochon-
drial targeting sequence. The length of the predicted
targeting peptide differed according to the prediction soft-
ware used. TargetP suggested that the first 19 amino acid
residues comprise the mitochondrial targeting peptide
whereas MitoProt predicted that the first 27 amino acids of
the protein comprise the targeting peptide. Three different
constructs were used for expression trials of which only
the construct pftrx-px2-2, missing the first 19 amino acids,
produced appreciable amounts of soluble recombinant
protein. Therefore, all further studies were performed with
protein recombinantly expressed from construct pftrx-
px2-2. The protein was purified by chelating chromatog-
raphy using Ni-NTA agarose (Qiagen).

Analyses of the deduced amino acid sequence of pftrx2
revealed that the predicted protein possesses an
N-terminal extension of 47 amino acids before similarity in
alignments with other thioredoxins is exhibited. The pre-
diction programmes used suggested a hydrophobic signal
peptide followed by an apicoplast transit peptide, although
it was deposited in the NCBI database as a mitochondrial
thioredoxin (accession number: AAQ05974). The pre-
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dicted apicoplast transit peptide encompasses the poten-
tial active site motif of this unusual thioredoxin (WCQAC
instead of WCGPC) and it is unlikely that the length of the
targeting peptide is predicted correctly. Therefore three
constructs differing in the length of their N-termini were
recombinantly expressed. PfTrx2-S3, lacking the first 47
amino acids was solubly expressed at 30°C for 4 h at a
yield of 10 mg l-1 bacteria and purified by Ni-NTA agaraose
(Qiagen). The other two constructs yielded primarily
insoluble recombinant proteins or precipitated during and
after purification and thus were excluded from further
studies. PfTrx2 was reduced by P. falciparum thioredoxin
reductase (TrxR) and thus its ability to interact with PfTrx-
Px2 could be investigated in the coupled assay system
used in this study.

Catalytic activity of PfTrx-Px2

The activity of PfTrx-Px2 was analysed using different
reducing systems. The assays revealed that the enzyme is
thioredoxin-dependent and that neither glutathione nor
dihydrolipoamide had the capacity to reduce the peroxire-
doxin. The catalytic parameters of PfTrx-Px2 differ consid-
erably depending on the thioredoxin used in the assay
system. When Trx1 was used as the reductant, hydrogen
peroxide and tert-butylhydroperoxide were reduced with
similar kinetic parameters whereas cumene hydroperoxide
was not accepted as a substrate by the peroxidase
(Table 1). The data are probably underestimating the true
maximal velocity of the enzymatic reaction because the

thioredoxin concentrations used were not saturating when
analysing the kinetic parameters of the enzyme for the
reduction of the hydroperoxides. The reason for this was
that increasing Trx1 and Trx2 concentrations led to
increased background reaction rates due to the non-
enzymatic reduction of the hydroperoxides by the thiore-
doxins themselves as reported by Akerman and Müller
(Akerman and Müller, 2005). Trx2, which potentially is a
mitochondrial protein, was found to be a more specific
reducing substrate for PfTrx-Px2 with a 10-fold lower KM

value and a threefold higher catalytic efficiency. To address
the differential specificity of PfTrx-Px2 for the two thiore-
doxins, several surface residues possibly involved in the
interaction between the reducing substrate and the peroxi-
dase were altered by site-directed mutagenesis. PfTrx-
Px2Mut1 (where Asn62Tyr63, which is adjacent to the
active site residue Thr64, is replaced by AspPhe) and
PfTrx-Px2Mut2 (where Phe139Ala140 near Arg142 is sub-
stituted with ValSer) showed a decrease of KM for Trx1
suggesting a role of these residues in distinguishing
between the two reducing substrates. The KM values of the
peroxiredoxin for Trx2 are only marginally changed and
this clearly shows that other residues than the two dyads
that were analysed in this study are also responsible for the
discrimination between the two reducing substrates.

Localization of PfTrx-Px2 and PfTrx2

The subcellular localization of PfTrx-Px2 in P. falciparum
erythrocytic stages was analysed by fusing green fluores-
cent protein (GFP) to the C-terminus of the full-length
protein. The green fluorescence in the parasites express-
ing the peroxiredoxin-GFP fusion protein was clearly
present in an organelle of the parasites that colocalized
with the MitoTracker marker (Fig. 1A). This corroborates
previous work of Yano et al. (2005), who have shown
mitochondrial localization of PfTrx-Px2 by immuno-
fluorescence. More importantly, the location of Trx2 was
also shown to be mitochondrial, thus suggesting that the
protein is the endogenous reducing partner of the mito-
chondrial peroxiredoxin (Fig. 1B).

Structure of PfTrx-Px2

To establish the structure of PfTrx-Px2, crystals of the
protein were grown for X-ray diffraction experiments. The
structure was solved by the molecular replacement
method and refined against X-ray data extending to 1.8 Å
resolution as described in Experimental procedures. There
are two molecules (A and B) in the asymmetric unit of the
PfTrx-Px2 crystals. Each PfTrx-Px2 chain contains five
a-helices and nine b-strands arranged as a seven-
stranded b-sheet and a pair of strands connected by a short
turn (Fig. 2). The principal b-sheet has the topology b2-b1-

Table 1. Kinetic parameters of PfTrx-Px2 and PfTrx-Px2 mutants
with Trx1 and Trx2.

Trx1 Trx2

KM
app (mM) PfTrx-Px2WT 130.4 ± 37.3 11.6 ± 4.0

Vmax
app (mmol min-1 mg-1) 300.0 ± 54.6 77.2 ± 14.6

kcat (s-1) 125 32.1
kcat/KM (M-1 s-1) 0.96 ¥ 105 2.76 ¥ 105

KM
app (mM) PfTrx-Px2Mut1 86.2 ± 20.1 7.7 ± 2.9

Vmax
app (mmol min-1 mg-1) 316.9 ± 48.2 44.9 ± 7.7

kcat (s-1) 132 18.7
kcat/KM (M-1 s-1) 1.5 ¥ 105 2.4 ¥ 105

KM
app (mM) PfTrx-Px2Mut2 78.8 ± 26.9 12.1 ± 4.1

Vmax
app (mmol min-1 mg-1) 262.0 ± 54.3 73.3 ± 13.2

kcat (s-1) 109 30.5
kcat/KM (M-1 s-1) 1.4 ¥ 105 2.5 ¥ 105

KM
app H2O2 (mM) 3.6 ± 1.3 2.2 ± 0.4

Vmax
app H2O2 (mmol min-1 mg-1) 18.0 ± 0.2 35.9 ± 0.2

kcat H2O2 (s-1) 7.5 15.0
kcat/KM H2O2 (M-1 s-1) 2.0 ¥ 106 6.8 ¥ 106

KM
app t-BuOOH (mM) 4.0 ± 1.2

Vmax
app t-BuOOH (mmol min-1 mg-1) 19.9 ± 0.2

kcat t-BuOOH (s-1) 8.3
kcat/KM t-BuOOH (M-1 s-1) 2.0 ¥ 106

The parameters displayed in the table are means of 5–10
measurements ± standard deviations. Mut1 and Mut2 are
Asp62Ser63 and Val139Ser140 respectively.
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b5-b4-b3-b8-b9, with strands b1 and b8 running antiparal-
lel to the other six strands. Embedded within the structure
is a thioredoxin fold encompassing strands b4-b3-b8-b9 of
the b-sheet and three of the flanking helices, these being
a1, a2, a4 and a5 (Fig. 2). Overall the structure is strikingly
similar to those of other 2-Cys peroxiredoxins. PfTrx-Px2
can be superposed onto the dimeric, oxidized rat protein
(PDB entry; 1QQ2) and two neighbouring subunits of the
decameric, reduced human protein (1QMV) with root mean
squared deviation (rmsd) values of 1.3 Å and 1.1 Å,
respectively, over 306 and 319 equivalent Ca atoms
(Hirotsu et al., 1999; Schroder et al., 2000).

The two molecules in the asymmetric unit of the PfTrx-
Px2 crystal are related to one another by non-
crystallographic twofold symmetry (Fig. 3A and B). The
association of this pair of molecules buries approximately
1200 Å2 per subunit of what would otherwise be solvent
accessible surface area. This accounts for 13% of the
total surface area, typical for contact interfaces in dimers
(Argos, 1988). In the dimer, the seven-stranded b-sheets
from each subunit come together to form an extended
14-stranded b-sheet, with the apposed b9 strands in anti-
parallel orientation (Fig. 3A).

Active site and oxidation state

The two active cysteines are each contained in a con-
served Val-Cys-Pro segment (Fig. 2), one of which pre-
cedes the helix a1 while the other is in the region at the
C-terminus of the protein that lacks defined secondary
structure. The two active centres in the dimer are sepa-
rated by approximately 30 Å. Analysis of the PfTrx-Px2
crystal structure clearly reveals that the protein is in the
oxidized state. There is an intermolecular disulphide bond
between the peroxidatic cysteine, Cys67 of chain A and
the resolving cysteine, Cys187 of chain B. This is mirrored
by a corresponding disulphide bond between Cys67 of
chain B and Cys187 of chain A. It is known that oxidation
of other peroxiredoxins is accompanied by conformational
changes in the protein in the form of local unwinding of the
Cp helix containing the peroxidatic cysteine, Cys67 and a
reorganization of the C-terminus (Wood et al., 2002).
These rearrangements facilitate the close approach of the
two cysteines for disulphide bond formation (Fig. 3D). The
electron density maps around Cys187 from the B chain
indicate the presence of two alternate positions of the
sulphur atom, giving rise to a double conformation of the

Fig. 1. Localization of PfTrx-Px2 and PfTrx2 in P. falciparum erythrocytic stages. P. falciparum erythrocytic stages were transfected with
construct pHH2-Px2-GFP, pHH2-Trx2-GFP leading to the expression of the peroxiredoxin or thioredoxin2 C-terminally fused to green
fluorescent protein (GFP).
A. The localization of the peroxiredoxin-GFP fusion protein in parasites previously treated with MitoTracker CMX-Ros was analysed by
fluorescence light microscopy. Phase, phase contrast of parasitized erythrocytes infected with P. falciparum trophozoites; PfTrx-Px2-GFP,
parasitized erythrocytes expressing the peroxiredoxin-GFP fusion protein analysed using the FITC channel; MitoTracker, parasitized
erythrocytes expressing the peroxiredoxin-GFP fusion protein analysed using the rhodamine channel; PfTrx-Px2-Mito; merge of FITC and
rhodamine channels; merge, merge of all images. The images show that the peroxiredoxin-GFP fusion protein is colocalizing with the
mitochondrion (stained by MitoTracker).
B. The expression of pHH2-PfTrx2 results in the localization of the fusion protein the mitochondrion. Phase, phase contrast of parasitized
erythrocytes infected with P. falciparum trophozoites; PfTrx2-GFP, parasitized erythrocytes expressing the Trx2-GFP fusion protein analysed
using the FITC channel; MitoTracker, parasitized erythrocytes expressing the Trx2-GFP fusion protein analysed using the rhodamine channel;
PfTrx2-Mito; merge of FITC and rhodamine channels; merge, merge of all images.
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B

A

Fig. 2. A. Ribbon diagram of the PfTrx-Px2 monomer colour ramped from its N- (orange) to C-terminus (purple) and with elements of
secondary structure labelled. The side-chains of the active cysteine residues 67 and 187 (which has a dual conformation) are drawn together
with the two pairs of residues (Asn62-Tyr63 and Phe139-Ala140) that were substituted by mutagenesis.
B. Amino acid sequence alignment of selected Plasmodium 2-Cys peroxiredoxins. Strictly conserved residues are highlighted with red boxes,
conservative substitutions are also boxed. Secondary structure elements are shown above the alignment, with TT denoting turns. The active
site cysteines are labelled with green inverted triangles. The residues chosen for mutation are indicated by black triangles. This figure was
generated using ESPript (Gouet et al., 1999). Pf, P. falciparum; Pk, Plasmodium knowlesi; Pv, Plasmodium vivax.
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disulphide bond (Fig. 3C) that may be a manifestation of
the mobility necessary for the C-terminal cysteine to
resolve the peroxidatic cysteine during the reaction
mechanism.

There is a conserved glutamic acid residue, Glu70, near
to and buried by the disulphide bridge. Its side-chain
makes ionic interactions with arginines 142 and 165. The
guanidinium group of Arg142 is situated 4.6 Å from the
peroxidatic cysteine. This arginine is conserved across
2-Cys peroxiredoxins and it is thought that it may stabilize
negative charge that develops on the peroxidatic cysteine
in the reaction cycle (Hirotsu et al., 1999).

The observation of dimers in the crystal was initially
surprising as retention volumes on gel-filtration suggested
the predominant species was much larger in size. In the
presence and absence of the reducing agent dithiothreitol
at 5 mM (DTT), the protein migrated through the column

with an apparent molecular weight greater than 200 kDa.
The molecular mass of PfTrx-Px2 (in the absence of DTT)
was determined more accurately by analytical ultracen-
trifugation using velocity runs. A plot of relative concen-
tration versus sedimentation coefficient from such a run is
shown in Fig. 4 revealing the presence of species with
sedimentation coefficients of 3.2 S, 9.4 S and 14.2 S.
Assuming equivalent frictional ratios for all species
present, these correspond to molecular masses of 50,
230 and 420 kDa respectively. The peak corresponding to
50 kDa appears only at lower concentrations of the PfTrx-
Px2 protein. It is likely, allowing for experimental error, that
the 420 kDa species is a dimer of the 230 kDa species. As
the calculated relative molecular mass of the recombinant
PfTrx-Px2 protein is 25.2 kDa, the 230 kDa species cor-
responds most closely to a nonamer, with octameric to
decameric species within the range of experimental error.

A B

C D

Fig. 3. A. The PfTrx-Px2 dimer with subunits coloured in purple and red. This figure was made using the program ccp4mg (Potterton et al.,
2004).
B. Orthogonal view to A to show the intersubunit disulphide bridges.
C. Electron density in the vicinity of the intermolecular cystine. The 2Fobs - Fcalc, acalc map is contoured at the 1 s level. The chains are
coloured in cyan and green and the dual conformation of the resolving cysteine from chain B is evident.
D. Ribbon diagram showing the active site disulphide in the context of the Cp loop (red) and the C-terminal tail (blue).
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We interpret the small peak seen at 50 kDa to be the
dimeric form of the protein, which was ultimately observed
in the crystals.

Our observations are consistent with those of Wood
et al. (2002), who demonstrated that the oxidized form of
2-Cys peroxiredoxins is an equilibrium mixture of dimers
and decamers with the dimeric species observed only at
lower concentrations of the protein. These authors crys-
tallized protein purified under non-reducing conditions as
an oxidized decamer, in contrast to our observation of
oxidized dimers. We observed extensive protein precipi-
tation in the crystallization drops from which our crystals
emerged. It is possible therefore that our crystals grew
from solutions of much lower protein concentration than
the 200 mM originally present in the drop, and at which the
dimer form may be more prevalent in solution.

Discussion

The peroxiredoxin PfTrx-Px2 of P. falciparum was previ-
ously cloned and expressed in Escherichia coli as a full-
length protein (Rahlfs and Becker, 2001). Despite the high
degree of sequence similarity (51% identity) with PfTrx-
Px1, a typical 2-Cys peroxiredoxin of the parasites, the
recombinant protein was inactive using P. falciparum
thioredoxin 1 (PfTrx1) as a reductant in the presence of a
variety of hydroperoxide substrates (Rahlfs and Becker,
2001). Analyses of the deduced amino acid sequence of
PfTrx-Px2 predicted the presence of a potential mitochon-

drial targeting sequence at the N-terminus of the protein.
Using a variety of prediction programmes, two potential
cleavage sites after residues 19 and 27, respectively, were
proposed. Expression of both N-terminally truncated
PfTrx-Px2 forms in E. coli suggests that the first 19 amino
acid residues constitute the actual targeting sequence
because this construct alone was expressed in a soluble
form at an appreciable yield. The localization of the protein
was further analysed by expressing the full-length pftrx-
px2 gene fused to GFP in the erythrocytic stages of P. fal-
ciparum and analysing the localization of fusion protein in
the parasites by fluorescent light microscopy. It was clearly
targeted to the mitochondrion of the parasites, an obser-
vation that was verified by colocalization with MitoTracker.
This verifies the localization of PfTrx-Px2 previously shown
by immunofluorescent studies (Yano et al., 2005). Simi-
larly, the localization of Trx2 was analysed. The Trx2-GFP
fusion protein was targeted to the mitochondrion despite
the fact that it does not possess a consensus mitochondrial
targeting peptide. This has also been observed for P. falci-
parum SOD2 (Sienkiewicz et al., 2004) and the precise
mechanisms that govern the targeting of these proteins are
currently being investigated in more detail.

The structure of PfTrx-Px2 was solved as a dimer in the
oxidized form. The active sites of 2-Cys peroxiredoxin
contain a disulphide-linked cysteine pair. The two cys-
teines that form the disulphide arise from a cysteine (Cr)
on the C-terminal tail and a cysteine (Cp) preceding helix
a1. The PfTrx-Px2 dimer contains a pair of interchain
disulphide linkages and thus belongs to the class of
typical 2-Cys peroxiredoxins (Wood et al., 2003a). The
catalytic mechanism of typical peroxiredoxins involves
cycling of the active site pair of cysteines between the
reduced form and the disulphide-linked oxidized form. The
protein is normally maintained in the reduced state by
thioredoxin. Under oxidizing conditions, the Cp residue
reacts with hydroperoxide substrates to form a cysteine
sulphenic acid. In order to prevent over-oxidation of the
protein, the Cr residue attacks the oxidized peroxidatic
cysteine (Cys-SOH) and a disulphide bridge is formed.
During the catalytic cycle it is believed that the protein
undergoes structural transitions, typically resulting in the
formation of an (a2)5 decamer in its reduced state, which
resolves partially into homodimers at lower concentrations
in the oxidized state (Alphey et al., 2000; Wood et al.,
2002). Our data strongly suggest that the mitochondrial
peroxiredoxin of Plasmodium is predominantly decameric
in the oxidized state with a small proportion of dimers that
increases as the concentration of the protein lowers.
Analysis of the oxidized protein by velocity sedimentation
experiments reveals a predominant homodecamer, with a
dimeric species at lower concentrations of the protein.

PfTrx-Px2 proved to be a thioredoxin-dependent
peroxiredoxin and did not show activity when either
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Fig. 4. Analytical ultracentrifugation of PfTrx-Px2. A sample of
PfTrx-Px2 at an initial concentration of approximately 0.2 mg ml-1

was centrifuged at 28 000 r.p.m. A plot of relative concentration
versus sedimentation coefficient is shown revealing the presence of
peaks at 3.2 S, 9.4 S and 14.2 S. The increases at the limits of the
plot indicate there may be some additional aggregates and some
very-low-molecular-weight material.
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glutathione reductase/glutathione or dihydrolipoamide
dehydrogenase/lipoamide redox pairs were used in
enzymatic assay systems. This is of particular interest
because both redox active molecules potentially could
act as reducing partners for the peroxiredoxin. Even
though the peroxiredoxin is not reduced by these two
redox systems, it has been shown previously that thiore-
doxins can be efficiently reduced by for instance the
dihydrolipoamide dehydrogenase/lipoamide redox pair
(Akerman and Müller, 2005). Indeed the absence of a
mitochondrial thioredoxin reductase from the P. falci-
parum genome implies that lipoic acid (free or protein-
bound) might act as a reductant for Trx2 in vivo (Müller,
2004). A similar situation has been reported for the
peroxiredoxin-linked detoxification in Mycobacterium,
where it was shown that protein-bound lipoic acid
reduces a thioredoxin-like protein leading to the reduc-
tion of a peroxiredoxin-like protein and eventually reac-
tive oxygen species (Bryk et al., 2002). PfTrx-Px2 is
reduced not only by the mitochondrial Trx2 but also by
the cytosolic PfTrx1 although their kinetic parameters
differed considerably and PfTrx-Px2 clearly preferred
thioredoxin-2 to thioredoxin-1 as a electron donor, which
is reflected in the distinct apparent KM values for both
substrates (Table 1). Similarly it was found that in Droso-
phila melanogaster thioredoxin peroxidase-1 is primarily
reduced by Drosophila thioredoxin-2 rather than Droso-
phila thioredoxin-1 (Bauer et al., 2002). This phenom-
enon was further investigated by mutagenesis studies.

In Fig. 2B the sequences of peroxiredoxins from various
Plasmodium species are aligned, revealing a high level of
sequence conservation with invariant residues at 86 of 189
equivalent positions. The putative mitochondrial enzymes
are easily distinguished from their cytosolic counterparts
by the presence of the 17 residue extensions at their
N-termini. More detailed analysis shows other potential
correlations between sequence and subcellular localiza-
tion. In many positions there are residues that are invariant
in the cytoplasmic and mitochondrial subsets but different
between them. Some of these differences may be signifi-
cant for recognition of partner thioredoxin proteins. We
looked for such residues situated on the enzyme surface
adjacent to the active site that are not involved in dimer
formation and may be involved in protein binding. For
instance the dyad Asn62Tyr63, which is adjacent to the
active site residue Thr64, is replaced by AspPhe in the
cytosolic counterpart. Similarly, Phe139Ala140 near
Arg142 is substituted with ValSer. Mutant PfTrx-Px2 pro-
teins were made, in which these two surface dyads were
exchanged for residues that are more commonly found in
cytosolic peroxiredoxins. This resulted in a decrease of the
KM for Trx1 but had no effect on the kinetic parameters of
the enzyme with Trx2. These results suggest that apart
from the two dyads that were analysed in this study, other

residues are involved in the discrimination between the two
reducing substrates. The preference for PfTrx2 suggests
that this reductant is the natural substrate of PfTrx-Px2 in
contrast to PfTrx1, which, as a cytosolic protein, is unlikely
to encounter the mitochondrial peroxidase in vivo. The
presence of the mitochondrial peroxidase is imperative for
the malaria parasite to maintain the integrity of the
organelle because it is likely that, through the respiratory
chain and the action of mitochondrial SOD, hydrogen
peroxide is generated. Therefore we suggest that the
mitochondrial peroxiredoxin-linked reduction of H2O2 is an
important line of defence protecting the organelle from
oxidative damage. Other redox active molecules like lipoic
acid possibly lead to the reduction of Trx2, a hypothesis
that will be further tested in future studies. In other organ-
isms, mitochondrial peroxiredoxins and thioredoxins have
also been identified and it has been suggested that they
play pivotal roles in defence against oxidative stress gen-
erated in the organelle (Miranda-Vizuete et al., 2000;
Wheeler and Grant, 2004). Recently it was reported that
the expression of a mitochondrial peroxiredoxin in Leish-
mania donovani protects the parasites against hydro-
gen peroxide-induced cell death (Harder et al., 2006).
Further experiments dissecting the precise roles of
the peroxiredoxin-linked system using reverse genetics
approaches will help to gain a better understanding of the
mechanisms that the parasites have employed to protect
themselves against fatal oxidative damage.

Experimental procedures

Materials

Plasmodium falciparum TrxR and PfTrx1 were generated as
described in the studies by Gilberger et al. (1997) and
Akerman and Müller (2003). P. falciparum glutathione reduc-
tase (GR) was expressed and purified as described
previously (Gilberger et al., 2000). Hydrogen peroxide, tert-
butylhydroperoxide and cumene hydroperoxide were from
Sigma-Aldrich. The P. falciparum expression plasmid pHH2
(Crabb et al., 2004) was a kind gift from Professor Alan
Cowman, Melbourne, Australia.

Sequence analyses of PfTrx-Px2 and PfTrx2

The deduced amino acid sequences of PfTrx-Px2 (accession
number: AAK20024) and PfTrx2 (accession number:
AAQ05974) were analysed for the presence of N-terminal
targeting sequences using SignalP (Nielsen et al., 1997),
TargetP (Emanuelsson et al., 2000), MitoProt (Claros and
Vincens, 1996), PlasMit (Bender et al., 2003) and PlasmoAP
(Foth et al., 2003). Nucleotide and protein sequence analy-
ses were performed using Vector NTI (Invitrogen). Align-
ments of the P. falciparum-translated pftrx-px2 and pftrx2
genes with those of other species were created using Clust-
alW and were manually adjusted.
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Cloning and expression of PfTrx-Px2 and PfTrx2

Plasmodium falciparum pftrx-px2 full-length cDNA was ampli-
fied from genomic DNA as described previously (Rahlfs and
Becker, 2001) using the sense oligonucleotide PfTrx-Px2-S1
5′-GCGCCATATGATGTTTTTAAAAAAACTGTG C-3′ and the
antisense oligonucleotide PfTrx-Px2-AS1 5′-GCGCCTCG
AGTTACAACTTTGATAAATATTCAC-3′ containing NdeI and
XhoI restriction sites respectively. The polymerase chain
reaction (PCR) fragment amplified using Pfu polymerase
(Invitrogen) was cloned into TOPO-blunt (Invitrogen) and
subcloned into pJC40 (Clos and Brandau, 1994) after its
nucleotide sequence was confirmed. The latter directs
expression of the protein with an N-terminal (His)10 tag to
facilitate purification of the recombinant protein. From the
full-length pftrx-px2 PCR product, two additional constructs
were amplified, which lacked coding sequence for the first 19
or 27 amino acid residues respectively. The oligonucleotides
used to amplify PfTrx-Px2-S2 were sense 5′-GCGCCA
TATGTCGCTAGTGACAAAGAAGGC-3′ and antisense oligo-
nucleotide PfTrx-Px2-AS1.

The full-length cDNA of pftrx2 was amplified using the
oligonucleotides PfTrx2-S1 5′-GCGCCATATGAAGAAGTA
TATATTTTTCTTTCTC-3′ and PfTrx2-AS1 5′-CGCGCTCG
AGTTATAAATGTTTTTTAATTAATGC-3′ containing NdeI and
XhoI restriction sites. The PCR product was cloned into
TOPO-blunt and used as template for amplification using
PfTrxs-S3 5′-GCGCCATATGTTTAAAAAAGTACCAAGATT
ACAACAAAATGG-3′ together with PfTrx2-AS1 to produce
constructs that confer the recombinant expression of PfTrx2
lacking the first 47 amino acid residues. All PCR fragments
were cloned into TOPO-blunt and once their nucleotide
sequences were confirmed, all three constructs were sub-
cloned into pJC40 as described above for the PfTrx-Px2
expression fragments.

The nucleotide sequences were determined by automated
sequencing (University of Dundee Sequencing Service).
Optimal expression conditions were determined and PfTrx-
Px2 was subsequently expressed over 18 h at 20°C in E. coli
BLR (DE3) and PfTrx2 was expressed over 4 h at 30°C.
Soluble expressed recombinant proteins were purified via
Ni-NTA agarose (Qiagen) and analysed by SDS-PAGE.

Mutational analyses of PfTrx-Px2

Site-directed mutagenesis of two dyads close to the active site
of PfTrx-Px2 was performed using the quick-change mutagen-
esis kit (Stratagene). Residues asparagine 62 and tyrosine 63
were substituted with aspartate and phenylalanine using the
mutagenic oligonucleotides 5′-GAAATACTGTTGTTTGTT
ATTTTATCCATTAGATTTTACCTTCGTATGTCCAACAG-3′
and 5′-CTGTTGGACATACGAAGGTAAAATCTAATGGAT
AAAATAACAAACAACAGTATTTC-3′. The resulting mutant
protein was named PfTrx-Px2Mut1 and was expressed as
described above. Residues phenylalanine 139 and alanine
140 were exchanged by valine and serine using the oligo-
nucleotides 5′-CTAAAAATTATAATGTACTTTATGATAATTC
TGTTTCTTTAAGAGGTTTATTTATTATTGATAAAAATGG-3′
and 5′-CCATTTTTATCAATAATAAATAAACCTCTTAAAGAA
ACAGAATTATCATAAAGTACATTATAATTTTTAG-3′. Letters
in bold face define the mutated residues. The mutant protein

was called PfTrx-Px2Mut2 and recombinant expression and
purification was performed as described above. Both muta-
tions were verified by nucleotide sequencing (MWG Biotech).

Enzymatic assays

The catalytic activities of PfTrx-Px2 were analysed using a
stopped-flow rapid kinetics device (SFA-20, Hi-Tech Scien-
tific) attached to a spectrophotometer (Shimadzu UVPC
2501) to determine the initial rates of the peroxidase reaction
as previously described for Toxoplasma gondii Trx-Px2
(Akerman and Müller, 2005). The reaction mix contained
100 mM HEPES pH 7.6, 1 mM EDTA, 10 mg P. falciparum
thioredoxin reductase, 0.1 mM PfTrx-Px2, 200 mM NADPH,
varying concentrations of P. falciparum cytosolic thioredoxin
(5–100 mM) or PfTrx2-S3 (1–20 mM) at a constant concentra-
tion of 20 mM hydrogen peroxide or varying concentrations
of hydrogen peroxide (3–40 mM), tert-butyl hydroperoxide
(3–40 mM) and cumene hydroperoxide (1–100 mM) at a con-
stant concentration of 10 mM or 8 mM of PfTrx1 and PfTrx2
respectively. The decrease in absorbance at 340 nm due to
NADPH oxidation was determined over 30 s with time points
taken every 10 ms. Assays were performed at 25°C. The
linear rates were determined and fitted to the Michaelis–
Menten equation using Graphit 5.0 (Erithracus).

In additional assays we examined whether glutathione or
dihydrolipoamide can serve as reductants for PfTrx-Px2. The
glutathione reduction assay consisted of 100 mM HEPES
pH 7.6, 1 mM EDTA, 200 mM NADPH, 1 mM glutathione,
5 mg of P. falciparum GR, 0.4 mM PfTrx-Px2 and 20 mM H2O2.
The dihydrolipoamide reduction assay consisted of 100 mM
HEPES pH 7.6, 1 mM EDTA, 1 mM dihydrolipoamide,
200 mM NADH, 5 mg of dihydrolipoamide dehydrogenase
(Sigma), 0.4 mM PfTrx-Px2 and 20 mM H2O2. The change in
absorbance in both assay systems was followed spectropho-
tometrically at 340 nm.

Gel filtration and analytical ultracentrifugation

PfTrx-Px2 was analysed by gel filtration on a Sephadex
S-200 column (1.6 ¥ 60 cm) previously equilibrated at a flow
rate of 1 ml min-1 with 50 mM sodium phosphate buffer,
pH 7.6 containing 150 mM NaCl. Two milligrams of the
Ni-NTA purified protein was applied to the column at a flow
rate of 1 ml min-1 in the same buffer using an FPLC system
(Amersham Biosciences).

Sedimentation velocity experiments were performed in a
Beckman XL/I analytical ultracentrifuge using Beckman cells
with 12 mm path-length double sector charcoal-filled Epon
centrepieces and sapphire windows in an AN-60Ti rotor.
Protein samples (at approximate concentrations of
0.9 mg ml-1 and 0.2 mg ml-1 in 0.42 ml) were prepared in
50 mM Tris pH 7.5, 100 mM NaCl and centrifuged at 20 000
and 28 000 r.p.m. over 7.5 h at 20°C along with buffer
samples as references. Sedimentation was observed by
scanning the absorbance at 280 nm at 3 min intervals until
the plateau region disappeared. Data were analysed with the
program SEDFIT (Schuck, 2000) using a simple c(s) model
(distribution of sedimentation coefficients without assumption
of size or number of species) then transformed to c(M) (dis-
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tribution of molecular weight). Molecular weights were calcu-
lated using the program SEDNTERP (Laue et al., 1992).

Generation of PfTrx-Px2- and PfTrx2-GFP fusion
proteins

The full-length coding region of pftrx-px2 was amplified by
reverse transcription (RT)-PCR using the sequence-specific
oligonucleotides 5′-GCGCAGATCTATGTTTTTAAAAAAACT
GTGC-3′ and 5′-GCGCCCTAGGCAACTTTGATAAATATTC
AC-3′ containing BglII and AvrII restriction sites and genomic
DNA of P. falciparum as a template. The PCR fragments were
cloned into TOPO-blunt (Invitrogen) and their nucleotide
sequences determined as described above. Subsequently
the PCR product was subcloned in frame with GFP into pHH2
previously digested with BglII and AvrII. Similarly the full-
length trx2 open reading frame was amplified by RT-PCR
using the sequence-specific oligonucleotides 5′-GCGCA
GATCTATGAAGAAGTATATA TTTTTCTTTCTC-3′ and
5′-CGCGCCTAGGTAAATGTTTTTTAATTAATGC-3′ and the
resulting PCR fragment was cloned into the BglII and AvrII
digested pHH2 plasmid as described above. The plasmid
also carries the human dhfr gene for selection with
WR99210. Transfection of both constructs into P. falciparum
D10 parasites was carried out by electroporation as previ-
ously described (Wu et al., 1996). Transfected cell lines were
maintained under selection by supplementing media with
5–100 nM WR99210.

Fluorescence microscopy

Parasites expressing PfTrx-Px2-GFP or PfTrx2-GFP were
treated with MitoTracker Red CMX Ros according to Wrenger
and Müller (2004) before they were analysed by fluorescence
microscopy (Zeiss Axioplan 2 equipped with an HBO100
digital camera).

Crystallization

Automated crystallization screening was carried out by
sitting-drop vapour diffusion in 96 well plates (Greiner) using
a Mosquito nanolitre pipetting robot (TTP labtech) and
screens from Hampton Research (Crystal Screen, Crystal
Screen 2 and Index). Each crystallization drop was made by
mixing 150 nl of protein solution at 10 mg ml-1 and 150 nl of
reservoir solution. PfTrx-Px2 crystallized in 3–4 days from
drops containing a large amount of insoluble precipitate from
a reservoir solution containing 0.2 M ammonium sulphate,
0.1 M Bis-Tris, pH 6.5 and 25% (w/v) PEG 3350.

Data collection and processing

Native diffraction data were collected on beamline ID23-1
using radiation with a wavelength of 0.9795 Å at the European
Synchrotron Radiation Facility (ESRF). A single crystal was
mounted in a rayon loop and transferred to a solution of the
crystallization mother liquor containing 15% glycerol and then
rapidly cooled in liquid nitrogen. Diffraction data were recorded
on an ADSC Quantum 4 CCD detector. Data were processed
using MOSFLM and SCALA within the CCP4 program suite

(Collaborative Computational Project, 1994). Data collection
and refinement statistics are presented in Table 2.

Structure solution and refinement

The structure of PfTrx-Px2 was determined by molecular
replacement using the program MOLREP (Vagin and Teplya-
kov, 1997) and the co-ordinate set for the tryparedoxin from
Crithidia fasciculata 1E2Y as the search molecule. All data
were used in both rotation and translation calculations. A
model was built in the program Arp/wARP (Perrakis et al.,
1999) and refinement calculations were performed using
REFMAC5 (Murshudov et al., 1997) interspersed with ses-
sions of manual modelling using COOT (Emsley and Cowtan,
2004). The electron density maps were generally of very

Table 2. X-ray data collection and refinement statistics.

PfTrx-Px2 (PDB
code 2C0D)

Data collection
X-ray source ESRF Beamline

ID23-1
Wavelength (Å) 0.9795
Collection temperature (K) 100
Resolution range (Å) 55.22 – 1.78
Space group C2
Unit-cell parameters (Å,°) a = 104.623,

b = 76.534,
c = 60.154
b = 113.34

Matthews coefficient/solvent content (Å3. Da) 2.4/42.7
Number of unique reflections 41 762
Completeness (%), overall/outer shella 100 (100)
Redundancy, overall/outer shella 3.61 (3.58)
I/s(I), overall/outer shella 13.45 (2.58)
Rmerge

b(%), overall/outer shella 9.0 (25.0)
Refinement and model statistics

R-factorc (R-freed) 0.167 (0.203)
Reflections (working/free) 39 652/2106
Outer shell R-factorc (R-freed) 0.198 (0.233)
Outer shell reflections (working/free)e 2934/151
Molecules/asymmetric unit 2
Number of protein non-hydrogen atoms 2780
Number of water molecules 280
R.m.s. deviation from targetf

Bond lengths (Å) 0.016
Bond angles (°) 1.505

Average B-factor (Å2) 15.29
Ramachandran plotg 89.3/10.0/0.6

a. Data in parentheses correspond to data for outer shell
1.88 – 1.78 Å.
b. R-merge = Shkl SI|Ii - �I�|Shkl SI�I� where Ii is the intensity of the
ith measurement of a reflection with indexes hkl and �I� is the
statistically weighted average reflection intensity.
c. R-factor = S||Fo| - |Fc||/S|Fo| where Fo and Fc are the observed and
calculated structure factor amplitudes respectively.
d. R-free is the R-factor calculated with 5% of the reflections chosen
at random and omitted from refinement.
e. Outer shell for refinement corresponds to 1.826 – 1.78 Å.
f. Root-mean-square deviation of bond lengths and bond angles from
ideal geometry.
g. Percentage of residues in most-favoured/additionally allowed/
generously allowed regions of the Ramachandran plot, according to
PROCHECK.
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good quality enabling confident modelling of residues 21–188
of chain A and 21–195 of chain B. The N-terminal histidine tag
and residue 20 of both chains, residues 189–216 of chain A
and residues 196–216 of chain B were not defined by the
maps, and they were assumed to be disordered. Equivalent
Ca atoms from chains A and B can be superposed by least
squares methods to give a positional rmsd of 0.3 Å. Refine-
ment and model statistics are presented in Table 2.
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