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Plants have been evolving for millions of years to survive in their fast-changing envi-
ronments, by promoting beneficial interactions with other organisms or taking advantage
of new conditions in the physical environment, while finding ways to repel pathogens and
pests or tolerate unfavorable conditions. The ability of the plant to adapt to the environ-
ment is mainly encoded in its genome. On the other hand, organisms that interact with
plants have also developed unique sets of genetic elements to ensure successful interactions.
Recent advancements in genome biology have unveiled the underlying mechanisms of
genetic and epigenetic regulations of plant-environment interactions. This Special Issue
explores the latest conceptual and technological breakthroughs in this aspect.

Through photosynthesis, plants produce sugars in the leaf mesophyll cells. These
sugars are required as building blocks and an energy source for various vital functions
throughout the whole organism. Thus, efficient deployment of these photosynthates is
required to maintain the plant’s health. Sugars Will Eventually be Exported Transporters
(SWEETs) are a class of sugar transporters involved in biological processes such as re-
production, seed-filling, phloem-loading, plant-microbe interactions, and sugar-loading
upon osmotic stresses [1,2]. It is interesting that SWEETs play opposite roles in response to
pathogen infection, as some of them cater to the pathogen’s need for sugars upon induction
by pathogen effectors, while others remove sugars from the site of infection to minimize
loss [2,3]. Watermelon (Citrullus lanatus [Thunb.]) produces highly sugary fruits. Xuan et al.
identified 22 SWEET-encoding genes in the C. lanatus genome (ClaSWEET) [4]. Expression
studies demonstrated that the ClaSWEETs were responsive to Fusarium oxysporum infection,
drought, salt, and low-temperature stress [4]. This study establishes the genetic foundation
for future studies on the roles of ClaSWEETs in the interactions between the watermelon
plant and its environment.

Serving as functional units in the cell, the spatial and temporal distribution/
compartmentalization of specific proteins are critical for proper cellular functions and thus
the survival of the entire organism. Cells possess different ways to clear themselves of un-
desirable proteins, one of which is the ubiquitin-proteasome system (UPS), crucial for the
precise removal of designated proteins. Compared to the UPS in animals, the plant UPS has
an extensive collection of E3 ligase-encoding genes in the genome, which explains the high
degree of substrate specificity [5]. It is believed that the expansion of E3 ligases in plants was a
measure to cope with environmental changes as plants are incapable of relocating themselves
away from stresses [5]. The RING/U-box E3 ligases are involved in growth and development,
metabolism, and stress responses, etc [5,6]. Kim et al. identified 73 homologous U-box E3
gene pairs in the allohexaploid genome of wheat, constituting 213 U-box E3 ligase-encoding
genes in total [6]. Through analyzing the transcriptome, the expressions of the majority of
U-box E3 ligase-encoding genes in wheat were found to be responsive to drought, heat and
cold stress, implying their potential roles in abiotic stress responses.

Reactive oxygen species (ROS) are mainly produced as metabolic by-products in
plants. In most cases, ROS are tightly tied to detrimental stress responses, but in reality, a
controlled production of ROS could serve as a defense mechanism toward stresses [7]. The
plant genome encodes a few different classes of ROS-scavenging enzymes. One of them is
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catalase, which can convert hydrogen peroxide (H2O2) into harmless water and oxygen.
Raza et al. identified 14 catalase-encoding genes and six microRNAs (miRNAs) from two
miRNA families that target three of the catalase genes in the rapeseed (Brassica napus L.)
genome [8]. The cis-elements in the promoters of these catalase genes were predicted.
Most of the 14 genes were responsive to at least one environmental stress such as cold,
salinity, waterlogging, abscisic acid, and gibberellic acid treatments. This study provides
important genomic information for further investigations into the roles of catalase genes in
the interactions of B. napus with its environment.

Trading off seed dormancy in exchange for better germination has resulted in the
undesirable pre-harvest sprouting (PHS) of cereal crops during domestication [9]. PHS
is especially common in warm and highly humid regions, causing significant yield loss
in cereal crops. Being able to suppress PHS without re-introducing seed dormancy has
become a great challenge to crop improvement. Zhu et al. have identified an abscisic acid
(ABA)-regulated basic leucine zipper-encoding gene from rice (OsbZIP09) that is involved
in PHS [10]. They found that the mutation of OsbZIP09 could partially suppress PHS
with only minor delay in seed germination [10]. Through RNA-seq and DNA affinity
purification sequencing (DAP-seq), the direct targets of OsbZIP09 were revealed [10].

Underneath the soil surface, there are enormous microbe communities that play
essential roles in plant growth in both beneficial and detrimental ways. The diversity and
composition of soil microbes can also serve as an indicator of the health of the plantation.
Poplar trees are planted for soil restoration and landscape protection, and the timber is also
an important raw material for industries. Liu et al. compared the soil microbe communities
of three different plantations with different degrees of poplar tree degeneration using a
metagenomic strategy, and unveiled the correlation between the health of poplar trees and
the soil microbial diversity and functions [11].

Soil-borne pathogens are one of the threats compromising crop productivity. Pythium
is a genus in Phylum Oomycota. A majority of species within this genus are pathogenic
toward plants and animals, and different Pythium species have different host ranges. Mo-
hammadi et al. isolated Pythium brassicum P1, which has a much narrower host range
compared to other Pythium spp. [12]. Through whole-genome sequencing and de novo
genome assembly, it was found that the P. brassicum P1 genome lacks the RxLR effectors
or cutinase-encoding genes and has a lower number of genes encoding other pathogenic
proteins than other Pythium species [12]. These features might have resulted in the low
pathogenicity of P. brassicum P1. These discoveries may help reveal the molecular mecha-
nisms behind host specificity of Pythium spp.

Cadmium (Cd) is toxic to both plants and humans. Excessive Cd would lead to
defective plant growth and eventually affect crop yield. Unfortunately, some of the arable
lands are polluted with Cd due to anthropogenic activities [13], and this directly affects
food security and food safety. Understanding the plant responses toward Cd toxicity will be
important for improving Cd tolerance in plants. Niekerk and colleagues have reviewed the
current understanding on Cd stress responses in plants at the epigenetic level, a relatively
unexplored area in plant heavy metal tolerance research [14]. The aspects covered in
the review include chromatin remodelling, histone modification, DNA methylation, and
microRNA in Cd toxicity response and tolerance in plants [14], providing a framework for
future studies.
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