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Abstract: Oncostatin M (OSM) is essential in a wide range of inflammatory responses, and most
OSM is produced by neutrophils in respiratory diseases. While resveratrol (RES) is regarded as
an anti-inflammatory agent in a variety of conditions, the mechanism of OSM inhibition by RES
in neutrophils remains to be elucidated. In this study, we investigated whether RES could inhibit
OSM production in neutrophil-like differentiated (d)HL-60 cells. The effects of RES were measured
by means of an enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and
Western blotting. Increases in production and mRNA expression of OSM resulted from the addition
of granulocyte-macrophage colony-stimulating factor (GM-CSF) in neutrophil-like dHL-60 cells;
however, these increases were downregulated by RES treatment. Exposure to GM-CSF led to
elevations of phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor (NF)-
kB. Treatment with RES induced downregulation of the phosphorylated levels of PI3K, Akt, and
NF-κB in neutrophil-like dHL-60 cells. These results suggest that RES could be applicable to prevent
and/or treat inflammatory disorders through blockade of OSM.
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1. Introduction

Oncostatin M (OSM) is known as a cancer-associated cytokine that is highly expressed
in patients with tumors [1,2]. OSM is a member of the interleukin (IL)-6 family cytokines,
and is released from a variety of cells, including macrophages, dendritic cells, activated
T lymphocytes, monocytes, and neutrophils [3–5]. Cytokine OSM plays a role in various
pathophysiologic conditions, such as cancer progression, extracellular matrix reconstruc-
tion, hemopoiesis, liver regeneration, heart remodeling, and inflammatory reactions [2,6–9].
OSM plays a role in a wide range of inflammatory responses [2]. Inflammatory reactions
in joint disease and hepatic disease involve OSM [2,10]. In addition, OSM is involved in
respiratory inflammatory disorders, including allergic rhinitis and asthma [11,12]. Treat-
ment with OSM protein enhanced inflammatory responses in human intestinal stromal
cell line CCD-18Co cells [3]. It was reported that OSM stimulation elevates inflamma-
tory reactions in human keratinocyte cell line HaCaT cells [13]. Our previous report also
suggested that recombinant OSM treatment upregulates inflammatory cytokine IL-1β
production, indicating a contribution of OSM to inflammatory reactions [14]. Pothoven
and colleagues [12] suggested that OSM is produced mainly in neutrophils in respiratory
inflammatory disorders. However, there are no reports that provide a mechanism for OSM
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inhibition by resveratrol (RES) in neutrophils. Hence, we examined whether RES inhibits
OSM expression in neutrophil-like differentiated (d)HL-60 cells.

It was widely known that phosphatidylinositol 3-kinase (PI3K) is important in reg-
ulating a variety of intracellular signaling processes [15]. Akt is a downstream kinase of
PI3K, and responsible for inflammatory responses [16]. It is believed that the PI3K/Akt
signaling pathway is critical in triggering and amplifying the cytokine system [17]. Lv and
colleagues [18] suggested that the PI3K/AKT signal cascade is regarded as a crucial factor
in the treatment of various disorders, such as tumorigenesis, cardiovascular problems, and
inflammatory reactions. Activated Akt induced the activation of nuclear factor (NF)-κB
(a downstream molecule of Akt) [17]. It is known that NF-κB plays an important role as
a transcription factor in chronic inflammatory reactions [19]. Su et al. [19] reported that
PI3K/Akt/NF-κB signaling pathways are involved in OSM expression in osteoblasts.

Resveratrol (RES, Figure 1) is a well-known dietary polyphenolic compound found
in numerous plant species, including peanuts, grapes, mulberry, pines, apples, knotweed,
blueberries, and plums [20,21]. RES is beneficial to human health because of its various bio-
logical properties, such as anti-cardiovascular, anti-oxidant, anti-obesity, anti-diabetic, anti-
inflammatory, anti-viral, neuroprotective, anti-microbial, and anti-cancer effects [21–25].
However, the effect of RES on OSM expression has not been fully clarified. We thus
investigated whether RES could inhibit OSM expression in neutrophil-like dHL-60 cells.
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Figure 1. Chemical structure of resveratrol.

2. Materials and Methods
2.1. Materials

RES (C14H12O3) was purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA). OSM
antibodies and granulocyte-macrophage colony-stimulating factor (GM-CSF) were pur-
chased from R&D Systems (Minneapolis, MN, USA). In Western blotting, phosphorylated
(p)-PI3K p85 was purchased from Cell Signaling Technology (Danvers, MA, USA), and the
others were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.2. Cells

HL-60 cells were cultured in RPMI 1640 (Gibco BRL, Grand Island, NY, USA) con-
taining 10% (v/v) heat-inactivated fetal bovine serum (FBS) (Welgene, Daegu, Korea),
100 IU/mL penicillin, and 100 µg/mL streptomycin. To prepare the neutrophilic pheno-
type dHL-60 cells, HL-60 cells were incubated with 1.3% DMSO for 7 days. A total of
5 ng/mL of recombinant human GM-CSF was used to stimulate the cells, considering the
reports of Elbjeirami et al. [26] and Han et al. [14].

2.3. Cytotoxicity

dHL-60 cells (1 × 105) were exposed to RES or PBS for 1 h and incubated with 5 ng/mL
of GM-CSF for 4 h. The cytotoxicity was examined as previously described [27–30].

2.4. OSM Assay

dHL-60 cells (5 × 105) were exposed to RES or PBS for 1 h and incubated with 5 ng/mL
of GM-CSF for 4 h. OSM levels were measured using an enzyme-linked immunosorbent
assay, as previously described [31–34].
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2.5. Real-Time Polymerase Chain Reaction (PCR)

dHL-60 cells (1 × 106) were exposed to RES or PBS for 1 h and incubated with 5 ng/mL
of GM-CSF for 1 h. Real-time PCR was conducted as previously described [35–38].

2.6. Western Blotting

dHL-60 cells (5 × 106) were exposed to RES or PBS for 1 h and incubated with
5 ng/mL of GM-CSF for 15 min (PI3K) or 30 min (Akt) or 1 h (NF-κB). Western blotting
was performed, as previously described [39–42].

2.7. Statistical Analysis

One-way ANOVA, followed by the Tukey post hoc test and independent t-test, was
utilized to analyze the statistically significant differences between the means (IBM SPSS
Statistics version 25, Armonk, NY, USA). The statistical significance was set at p < 0.05.

3. Results
3.1. RES Decreases OSM Production in Neutrophil-like dHL-60 Cells

To investigate whether RES decreases the OSM production in neutrophil-like dHL-60
cells, we added RES into the cells 1 h before GM-CSF treatment. Similar to a previous
report [14], increased OSM production resulted from GM-CSF treatment for 4 h (Figure 2a).
The addition of RES led to decreased OSM production (Figure 2a). OSM production levels
at concentrations of 0.03 to 3 µM were 33.192 ± 1.442, 31.077 ± 0.782, and 30.305 ± 0.752,
respectively (Figure 2a). OSM levels in the control and blank groups were 35.148 ± 0.961
and 24.172 ± 0.642, respectively. Cytotoxicity was not shown by the addition of RES
(Figure 2b). RES alone did not affect OSM production (Figure S1a).
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3.2. RES Reducs OSM mRNA Expression in Neutrophil-like dHL-60 Cells

To evaluate whether RES reduces OSM mRNA expression in neutrophil-like dHL-60
cells, we added RES into the cells 1 h before GM-CSF treatment. Similar to a previous re-
port [14], GM-CSF treatment for 1 h resulted in elevated OSM mRNA expression (Figure 3).
The addition of RES led to reduced OSM mRNA expression (Figure 3). The relative levels
of OSM mRNA, at concentrations of 0.03 to 3 µM, were 0.547 ± 0.027, 0.461 ± 0.015, and
0.424 ± 0.013, respectively. The levels in the control and blank groups were 0.568 ± 0.021
and 0.311 ± 0.013, respectively. We examined the regulatory effect of 3 µM of RES in
the subsequent experiment (Western blotting), because the effect of 3 µM of RES was
greater than those of 0.03 and 0.3 µM. RES alone did not affect OSM mRNA expression
(Figure S1b).
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60 cells (1 × 106) were exposed to RES (0.03 to 3 µM) for 1 h, and then stimulated with GM-CSF
(5 ng/mL) for 1 h. B, PBS-treated and unstimulated cells; C, PBS-treated and GM-CSF-stimulated
cells. B, PBS-added and unstimulated cells; C, PBS-added and GM-CSF-stimulated cells. Data are
shown as the mean ± SEM of three independent experiments. * p < 0.05 vs. the PBS-added and
GM-CSF-stimulated cells.

3.3. RES Downregulates Phosphorylation of PI3K in Neutrophil-like dHL-60 Cells

To understand the regulatory mechanism of OSM reduction by RES, we exposed
neutrophil-like dHL-60 cells to RES (3 µM) for 1 h. Similar to a previous report [14], GM-
CSF treatment for 15 min induced upregulated PI3K phosphorylation (Figure 4). However,
the exposure to RES resulted in downregulation of PI3K phosphorylation (Figure 4). RES
alone did not affect PI3K phosphorylation (Figure S2a,b).
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3.4. RES Inhibits Phosphorylation of Akt in Neutrophil-like dHL-60 Cells

To examine the regulatory mechanism of OSM reduction by RES, we exposed neutrophil-
like dHL-60 cells to RES (3 µM) for 1 h. Similar to a previous report [14], GM-CSF treatment
for 30 min induced elevated Akt phosphorylation (Figure 5). However, the exposure to
RES resulted in decreased phosphorylation of Akt (Figure 5). RES alone did not affect Akt
phosphorylation (Figure S2c,d).
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Figure 5. Effects of RES on the phosphorylation of Akt in neutrophil-like dHL-60 cells. (a) dHL-60
cells (5 × 106) were exposed to RES (3 µM) for 1h, and then stimulated with GM-CSF (5 ng/mL) for
30 min. (b) The protein levels were quantitated by densitometry. B, PBS-added and unstimulated
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Data are shown as the mean ± SEM of three independent experiments. * p < 0.05 vs. the PBS-added
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3.5. RES Decreases Phosphorylation of NF-κB in Neutrophil-like dHL-60 Cells

To understand the regulatory mechanism of OSM reduction by RES, we exposed
neutrophil-like dHL-60 cells to RES (3 µM) for 1 h. Similar to a previous report [14], GM-
CSF treatment for 1 h led to increased NF-κB phosphorylation (Figure 6). However, a
decrease in NF-κB phosphorylation resulted from the exposure to RES (Figure 6). RES
alone did not affect NF-κB phosphorylation (Figure S2e,f).
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4. Discussion

Numerous studies have reported that increased OSM levels are detected in inflam-
matory diseases, including chronic rhinosinusitis and asthma [12,43,44]. Ma et al. [45]
suggested that GM-CSF stimulation induces elevated OSM mRNA expression. Moreover,
many studies reported that elevation of OSM resulted from stimulation by GM-CSF in hu-
man neutrophils [12,26,46,47]. Similar to our previous report [14], the results of the present
study demonstrated that exposure of neutrophil-like dHL-60 cells to GM-CSF results in
increased OSM production and mRNA expression (Figures 2a and 3). The increases in OSM
production and mRNA expression were attenuated by addition of RES (Figures 2a and 3).
Treatment with OSM protein in the nasal cavity led to the infiltration of inflammatory
cells and upregulation of inflammatory cytokines and chemokines in a murine model [48].
Modur and colleagues [49] suggested that skin inflammation is increased by hypodermic
injection of OSM protein in mice. It was reported [50] that lung inflammation resulted from
hyperexpression of OSM in a murine model. High levels of OSM mRNA and protein were
exhibited in patients with asthma, whereas no OSM was shown in control subjects [44].
Furthermore, an OSM-deficiency and neutralizing antibody treatment decreased colon in-
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flammation [3]. Thus, we presuppose that RES might be advantageous for use in preventing
and/or treating inflammatory diseases through blockade of OSM.

It is widely known that the PI3K/AKT signal pathway plays a pivotal role in inflam-
matory reactions [15–18]. NF-κB is a well-known transcription factor of inflammatory
responses [19]. It was reported that OSM production is mediated by PI3K/Akt/NF-κB
signal pathway in osteoblasts [19]. Our previous report also confirmed a dependency
of the PI3K/Akt/NF-κB signal pathway on OSM production in neutrophil-like dHL-60
cells [25]. Treatment with PI3K inhibitor decreased the mRNA expression and protein levels
of various inflammatory cytokines, such as IL-1β, IL-6, and tumor necrosis factor (TNF)-α,
in nucleus pulposus cells [51]. In addition, blockade of PI3K/Akt signal pathway resulted
in reduction of osteoarthritis in mice [52]. Administration of well-known PI3K inhibitors,
including wortmannin, LY-294002, and IC87114, suppressed airway hyperresponsiveness
and inflammation in a murine model of asthma [53,54]. Furthermore, treatment with an
Akt inhibitor (deguelin) downregulated airway inflammation in asthmatic mice [55]. NF-κB
inhibition also attenuated airway inflammation and hyperresponsiveness in ovalbumin-
induced asthma model [55,56]. Our results showed that RES treatment induced decreases
in phosphorylation of PI3K, Akt, and NF-κB (Figures 4–6). Thus, we presume that decrease
of OSM by RES might be at least partly controlled by PI3K/Akt/NF-κB signaling pathway
in neutrophil-like dHL-60 cells.

Cardiovascular and cerebrovascular disorders, together with cancers, constitute the
most important causes of death in Europe, the USA, and most Asian countries. It was
suggested that RES exerts beneficial effects on cardiovascular diseases [57]. Thaung
Zaw et al. [58] reported that RES enhances cerebrovascular function in postmenopausal
women. Hence, we assume that RES may be helpful for many people to prevent and/or
treat inflammatory diseases, as well as cardiovascular and cerebrovascular disorders, in
Europe, USA, and most Asian countries. Therefore, RES could reduce duplication of medi-
cation in inflammatory disease patients with cardiovascular and cerebrovascular disorders.

Lastly, no toxic effect was shown in rats that were administered 300 mg/kg of RES
daily for 4 weeks [59]. Here, we utilized 3 µM of RES (approximately 0.684 mg/kg). Hence,
we could assume that RES may not be toxic to humans at concentration of 3 µM.

5. Conclusions

In conclusion, we showed that RES repressed OSM production via downregulation
of PI3K/Akt/NF-κB signal cascade in neutrophil-like dHL-60 cells (Figure 7). The results
of the present study suggest that RES may be a useful drug target for inflammatory
disorders treatment.
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