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Summary
The importance of predisposition to leukaemia in clinical practice is being increasingly 
recognized. This is emphasized by the establishment of a novel WHO disease category 
in 2016 called “myeloid neoplasms with germline predisposition”. A major syndrome 
within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome 
with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute 
myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common 
hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic 
stem cell transplantation is the only curative option; however, chances of survival de-
crease with progression of immunodeficiency and MDS evolution. Penetrance and ex-
pressivity within families carrying GATA2 mutations is often variable, suggesting that 
co- operating extrinsic events are required to trigger the disease. Predictive tools are lack-
ing, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet 
medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review 
we describe the genetic, clinical, and biological aspects of familial GATA2- related MDS, 
highlighting the importance of developing robust disease preclinical models to improve 
early detection and clinical decision- making of GATA2 carriers.
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I N TRODUC TION

Over a decade ago, the first germline pathogenic variants in 
the GATA2 gene with a predisposition to myelodysplastic 
syndrome (MDS) and acute myeloid leukaemia (AML) were 
reported by Hahn and colleagues.1 Since then, a number of 
germline GATA2 variants across individual cases and fam-
ilies with associated characteristic haematological and non-
haematological phenotypes have been described. Together 
they define GATA2 deficiency syndrome, a rare autosomal 
dominant genetic disease with increased susceptibility to 
myeloid malignancies and other non- malignant symptoms.2 
Clinical presentations of GATA2 deficiency syndrome may 
range from severe bone marrow failure (BMF), myeloid ma-
lignancies, immunodeficiencies and congenital syndromic 
features to a minority of asymptomatic cases due to partial 
or incomplete penetrance.3,4

Despite the highly variable manifestations of GATA2 
deficiency, associated phenotypes are now recognized as a 
single monogenic syndrome, introduced in the revised 2016 
WHO classification of haematopoietic tumours as the novel 
category of ”myeloid neoplasms with germline GATA2 mu-
tations”. GATA2 deficiency syndrome encompasses cellular 
immunodeficiency disorders, namely MonoMac5,6 (mono-
cytopenia and mycobacterial infections) and Emberger syn-
drome7,8 (myelodysplasia and lymphoedema), dendritic cell, 
monocyte, B-  and NK-  lymphoid (DCML) deficiency9,10 and 
myeloid malignancies, predominantly familial and primary 
paediatric MDS and AML.1– 3,11,12 Germline GATA2 mu-
tations have also been identified and linked to additional 
clinical manifestations such as chronic neutropenia,5 hypo-
cellular BMF,13,14 defects of megakaryopoiesis, B and NK cell 
deficiency,15,16 congenital auditory and neurological disor-
ders (predominantly sensorineural deafness and ADHD)17,18 
and recurrent miscarriages.5,17,19

Despite the frequent and significant overlap among these 
clinical features and temporal changes in the clinical presen-
tations over the disease course, no common pathognomonic 
GATA2 phenotype has been defined to date. It suggests 
that different unknown underlying co- operating factors 
(“stressor events”) in specific cellular contexts and processes 
are required for each GATA2- related clinical manifesta-
tion, as recently proposed by Homan and colleagues.20,21 
Amalgamation of an impaired GATA2 function and the 
accumulation of stochastic biological or environmental 
stressors may (substantially) dysregulate a subset of GATA2- 
dependent processes, rattling normal cellular function. This 
mechanism has been proposed for haematopoietic stem cell 
(HSC) exhaustion and BMF due to recurrent infections,13,22 
myeloid malignancies due to acquired somatic alterations, 
such as ASXL1 mutations or monosomy 723 and presumably 
lymphoedema due to mechanical or inflammatory stresses 
of lymphatic vessels and valves during development.24

The ERAPerMed GATA2 HuMo consortium is an inter-
national collaborative network aiming for the precise under-
standing of GATA2 deficiency syndrome and subsequent 
myeloid transformation by combining clinical and genomic 

approaches with in vitro and in vivo models. In this review, 
we provide an overview of the molecular background of 
GATA2 deficiency with an insight into clinical implications, 
and current and future challenges in the management of pa-
tients with GATA2 predispositions.

ROL E OF GATA 2 TR A NSCR IP TION 
FAC TOR I N H A E M ATOPOIETIC A N D 
NON H A E M ATOPOIETIC TISSU E S

GATA2 is a member of the GATA transcription factor fam-
ily and is a master regulator of haematopoiesis and lym-
phatic angiogenesis by regulating target genes through 
occupying WGATAR DNA structure motifs with two zinc 
finger domains (ZF1 and ZF2).4,25,26 ZF1 controls protein– 
protein interactions, while ZF2 is critical for regulating 
transcription through protein- DNA binding.22,27 GATA2 
has a major role in the early embryonic haematopoietic 
specification through endothelial haematopoietic transi-
tion (EHT).28– 32 During postnatal haematopoiesis GATA2 is 
expressed at high levels in HSCs and early haematopoietic 
progenitors,31– 35 and promotes myeloid- erythroid progeni-
tor cell development11,21,27,36– 38 (Figure 1A).

Furthermore, GATA2 is expressed in the lymphatic endo-
thelium, instigating fetal lymphatic vessel valve development 
and normal valve function in adults,24,39 and its mechano- 
sensitive expression in endothelial cell compartment also 
implicates GATA2 in angiogenesis and vascular integri-
ty.25,40– 42 Several single nucleotide polymorphisms (SNPs) 
of GATA2 have been associated with coronary artery dis-
ease implying its putative role in arterial development; how-
ever, underlying molecular mechanisms involving GATA2 
are still poorly understood.24,43,44 Additionally, HSPCs and 
endothelial components, high GATA2 protein levels were 
observed during fetal neurodevelopment,45,46 as well as in 
selected types of differentiated cells, including neurons, 
androgen receptor- expressing and endocrine cells,47– 49 and 
macrophages.50,51

E X ISTI NG A N D N EW 
E X PER I M E N TA L MODE L S TO ST U DY 
GATA 2 FU NC TION

The role of GATA2 gene as master regulator of haemat-
opoietic system has been defined in 1994, when Orkin and 
colleagues showed that Gata2- KO mice died at 10.5 days 
post- coitum (dpc), due to the collapse of primitive and de-
finitive haematopoiesis.28,29 Notably, mouse Gata2- null 
endothelial cells failed to produce HSCs because of im-
paired EHT.28,31– 35 Formal demonstration of GATA2 func-
tion within HSC development, proliferation and survival 
in adult haematopoiesis has been gleaned using Gata2 +/− 
mice. Heterozygous Gata2 +/− mice survive and show a re-
duced number of HSCs both in the embryo and within adult 
BM, and Gata2+/− HSCs are qualitatively defective.35,52 In 
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addition, in vivo studies at single cell level revealed a GATA2 
dose- dependent mechanism regulating HSC identity.53– 55 
Furthermore, Gata2 haploinsufficiency also reduces 
granulocytes- macrophage function but no other myeloid 
committed progenitors.56 Of note, most recently, others and 
us have demonstrated a primary role of GATA2 in promoting 
EHT also in a human background using engineered pluripo-
tent stem cells.28,30– 35,57 Importantly, GATA2 is highly ex-
pressed in HSCs and its expression is tightly regulated by 
conserved cis- regulatory elements and other signalling path-
ways. Results of mouse studies based on targeted ablation of 
the far upstream Gata2– 77 enhancer showed that it abro-
gates the multilineage differentiation potential of fetal liver 
progenitor cells without affecting HSC emergence,38 which 
is diminished by the intronic +9.5 enhancer deletion35,39,58,59 
(Figure 2). Furthermore, Notch signals tightly regulate the 
precise level of expression of GATA2 required for generation 
of HSCs in the embryonic aorta.60,61

Zebrafish is another valuable model that have been exten-
sively used to study the function of GATA2 in haematopoi-
esis. A genome duplication event in early teleosts generated 
two Gata2 paralogs in the zebrafish genome: Gata2a and 

Gata2b.62 Previous studies have indicated that Gata2a is im-
plicated in lymphovascular development with some expres-
sion in HSPCs in adult haematopoiesis,63– 65 whereas Gata2b 
is mainly expressed in HE cells that give rise to HSCs in 
adult haematopoiesis.66 In addition, Gata2a mutant for the 
conserved enhancer i4, corresponding to the described +9.5 
enhancer in the mouse Gata2 locus, revealed that Gata2a is 
required upstream of Gata2b, regulating Runx1 and Gata2b 
expression in the haemogenic endothelium67 (Figure  2). 
Recent transcriptomic analyses have shown that Gata2b 
loss impaired progression of the myeloid transcriptional 
programme while increasing the lymphoid programme in 
haematopoietic progenitors.68,69 Altogether these finding 
suggest that mammalian Gata2 functions are divided among 
gata2a and gata2b in zebrafish.

Overall, these findings have contributed greatly to our 
understanding of the role of GATA2 in embryonic and adult 
haematopoiesis. However, Gata2 +/− mice do not develop 
MDS and AML, probably due to the short lifespan of mice, 
the different external stressor factors or the absence of con-
current somatic lesions as observed in GATA2- related MDS 
patients. Furthermore, there is still lack of a knock- in mouse 

F I G U R E  1  (A) Role of the GATA2 transcription factor during embryonal haematopoietic development and postnatal haematopoiesis. GATA2 
plays a major role in the early embryonic haematopoietic specification through endothelial haematopoietic transition, maintenance of long- term 
haematopoietic stem cells (LT- HSC) and erythroid differentiation. The GATA2 transcriptional factor also instigates fetal lymphatic vessel valve 
development and normal valve function in adults, and its high expression in endothelial compartments also implicates its tole in angiogenesis. During 
postnatal haematopoiesis GATA2 is expressed at high levels in haematopoietic stem cells (HSCs) and early haematopoietic progenitors and induces 
myeloid- erythroid progenitor cell development and differentiation through cell- specific transcription factor complexes. (B) Impact of GATA2 mutations 
and phenotype- modifying factors, and clinical phenotypes associated with GATA2 deficiency syndrome. Although different types of germline GATA2 
variants have not been linked strongly to substantial phenotypes, some phenotypes seem to cluster within affected carrier families. AML, acute myeloid 
leukaemia; DCML, dendritic cell, monocyte, B-  and NK-  lymphoid deficiency; MDS, myelodysplastic syndrome.
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model, which allows the overexpression of GATA2 mutant 
protein, mimicking the haematological manifestations ob-
served in human GATA2 carriers. Therefore, there is a clear 
need for the development of better faithful mouse models 
of GATA2 deficiency, including patient- derived xenograft 
(PDX), to mimic better this complex disease. Nowadays, 
there are no PDX studies focusing on patients carrying 
germline GATA2 mutations. Generally, the establishment 
of human preclinical models by xenotransplantation of 
primary MDS cells in immunodeficient mice represent a 
bottleneck that hampers research of the mechanism under-
standing this disease. During the last decade, several labora-
tories have tested different approaches including intratibial 
injection in NSG (NOD- Scid- IL- 2Rcnull) or NSG- S (NSG/
IL3/GM- CSF/hSCF), cotransplantation with patient- derived 
or normal mesenchymal stem cell (MSC).70 However, these 
methods showed low efficiency and poor engraftment 
rate, with a skew towards the lymphoid lineage.71– 73 The 

biological reasoning behind the poor engraftment of MDS 
primary cells remains unclear and might be related to both 
the specific requirements for environmental factors and/
or the intrinsic biological characteristic of individual sam-
ples. This limitation might be overcome by the generation 
of a humanized BM- MSC- derived ossicles (ectopic bone 
organoid composed of human bone, stroma, and haemato-
poietic tissue) that provides a human microenvironment.74 
A more consistent outcome was achieved by using MISTRG 
mice, a humanized strains expressing human M- CSF, IL- 3, 
GM- CSF, SIRP alpha and thrombopoietin at physiological 
level.75 The selection of the most suitable mouse model can 
significantly affect the outcome of the research findings. The 
pivotal question that remains unanswered is which mouse 
model should be used to study GATA2 deficiency. Another 
limitation for the development of mouse disease models is 
the genetic heterogeneity and the low prevalence of GATA2 
deficiency that limits the access to patient primary cells. A 

F I G U R E  2  Schematics of different strategies of disease modelling GATA2 deficiency in vivo. (A) Zebrafish; (B) genetically engineered modified 
mouse (GEEM); (C) CD34+ genetic edited cells transplanted to immunodeficient mice; (D) in vitro induced pluripotent stem (iPS) cells derived from 
patients and (E) genome edited iPS cells. (D and E) are used for in vitro disease modelling (left). Experimental readout of the disease models (right).
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possible solution could be the generation of GATA2 defi-
ciency preclinical mouse models using engineered human 
haematopoietic CD34+ cells (both from cord blood and 
mobilized peripheral blood). The ongoing improvement of 
CRISPR/Cas9 genomic engineering technologies enable the 
manipulation of genes in primary CD34+ cells, facilitating 
the development of preclinical models to study the molecu-
lar mechanisms and the clonal evolution of haematological 
diseases76– 78 (Figure  2). Furthermore, those models would 
be fundamental tools to identify genetic subtype that are 
sensitive or resistant to therapeutic agents. In parallel, the 
induced pluripotent stem cells (hiPSCs)- based approach 
represents an alternative cellular platform for mechanistic 
studies and drug screening.79– 82 Recently, we reported the 
generation of human iPSC carrying two of the most recur-
rent GATA2 mutations in paediatric MDS patients.83 The 
availability of differentiated haematopoietic progenitor cells 
from iPSCs carrying GATA2 mutations will allow a com-
prehensive investigation of effects of these mutations as well 
as of secondary oncogenic somatic alterations (Figure  2). 
Indeed, hiPSC model offers the possibility to study the step-
wise progression of GATA2- related MDS in vitro through 
the sequential introduction of secondary oncogenic genetic 
lesions by CRISPR/Cas9 gene editing, as already shown for 
adult AML.84 Importantly, the iPSC- based approach allows 
the characterization of transcriptional programs driving 
specific stage malignant transition and the identification of 
possible prognostic markers for early therapeutic targeting 
(Figure 2).

T Y PE S OF DISE ASE -  CAUSI NG 
GER M LI N E GATA2  MU TATIONS

Hereditary genetic alterations disrupting GATA2 expression 
and protein function are pivotal in leukemogenesis by sabo-
taging normal haematopoiesis leading to GATA2 deficiency 
and subsequent myeloid malignancies. Approximately one- 
third of all germline GATA2 variants are passed on through 
autosomal dominant inheritance (familial), while at least 
two- thirds of the mutations occur de novo.4,85,86 Mutational 
landscape of GATA2 deficiency includes a steadily increasing 
number of variants with approximately 500 published cases 
harbouring roughly 180 different familial or de novo ger-
mline mutations and partial or whole gene deletions.11,20,87 
The majority of reported pathogenic or probably pathogenic 
germline variants are inactivating (null) or loss- of- function 
(LOF) resulting in haploinsufficiency (~60% of all GATA2 
deficient cases) either through truncating (nonsense), 
frameshift or splicing mutations and deletions.1,19,22,27,88– 91 
These confirmed germline variants along with less common 
in- frame deletions and insertions are scattered throughout 
the coding region of GATA2.3,21

In addition to variants leading to premature trans-
lation termination prior or within ZF2, missense vari-
ants within ZF2 represent a large proportion of germline 
GATA2 variants (~30%) instigating LOF via disrupting 

protein– protein interactions21,92 and DNA binding.1,10,90,92 
Monoallelic missense mutations of the ZFs have been re-
ported mostly, albeit not exclusively, within the extended 
ZF2 domain with only a few confirmed cases of germline 
variants affecting ZF1. Intriguingly, unlike germline LOF 
GATA2 variants, somatic GATA2 mutations of adult AML 
affecting the ZFs occur with a preference for ZF1 and can 
exhibit gain- of– function (GOF) effects.22,93,94 Germline 
variants in ZF1, such as p.Ala318Thr,65 p.His313Tyr and 
p.Leu315Pro17 are recognized as LOF alterations and in 
most cases associated with paediatric MDS and accompa-
nying symptoms of underlying GATA2 deficiency. Notably, 
a novel germline missense mutation in ZF1 (p.Asn317Ser) 
was recently reported by Rütsche and colleagues in a pa-
tient with JAK2 positive primary myelofibrosis (PM) and 
pancytopenia, although the role of GATA2 in the patho-
genesis of PM remains unclear.95

Recurrent missense mutations in the extended ZF2 re-
gion diminishing DNA binding, including hotspot vari-
ants p.Thr354Met,1,6,10,96– 98 p.Arg396Trp/Gln3– 5,17,98– 101 and 
p.Arg398Trp,6,9,10,98,101 have been reported across a number 
of individuals and families and seem to be almost exclusively 
familial. Interestingly, similar to somatic GATA2 mutations 
p.Leu359Val92,93 and p.Arg307Trp,102 the germline muta-
tions p.Thr354Met and p.Cys373Arg were both reported to 
exhibit gain of binding affinity to a GATA2 partner protein 
(PU.1 encoded by SPI1 gene). This might suggest an addi-
tional mechanism to LOF driving leukemogenesis, namely 
context- dependent gain of function.20,92

Apart from missense variants, there are a few reports of 
synonymous GATA2 mutations in a handful of GATA2- 
deficient cases to date. Despite the unaltered amino acid 
composition, the variants result in RNA degradation and 
can be categorized as null alleles. The variant p.Thr117=, 
first described by Wehr and colleagues,103– 105 along with 
four additional mutations, namely p.Leu217=, p.Gly327=, 
p.Ala341  =  and p.Phe472=, reported by Kozyra and col-
leagues,104 was found to strongly alter splicing and induce 
selective loss of messenger RNA.20,104,105 Although sub-
stantial phenotypic changes may support the putative role 
of synonymous GATA2 mutations, sequencing of GATA2 
mRNA to confirm monoallelic loss and in silico analyses 
are essential to assess the actual impact of these seemingly 
innocuous, albeit potentially damaging variants on GATA2 
expression for each individual case.20,104

Regulatory variants (in approximately 10% of patients) 
constitute an important group of germline mutations affect-
ing the GATA2 intronic +9.5 enhancer site and thus leading 
to haploinsufficiency via decreased GATA2 expression in 
HSPCs. Consequently, damaging mutations and deletions of 
intron 4 (NM_032638 isoform) perturb the dose- dependent 
transactivation activity of the Gata2 intronic enhancer dis-
rupting haematopoietic cell development and cell differen-
tiation fates.35,38,58,59 Interestingly, no germline variants of 
the distant upstream Gata2– 77 enhancer site have been de-
scribed to date, although current clinical platforms (panel 
and exome sequencing) do not account for such regulatory 
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regions. Future studies using whole genome sequencing have 
the potential to uncover undefined causes of GATA2 defi-
ciency, that is, in hitherto unknown regulatory regions.

Rare cases of whole gene deletions,97,106,107 in- frame de-
letions1,6,9,98 and missense mutations located outside of 
relevant protein domains6,108,109 have also been reported, al-
though data and functional studies on their putative impact 
(presumably LOF) are still absent.89 Recently, a novel type 
of germline in- frame GATA2 variants has been reported 
by Cavalcante de Andrade Silva and colleagues in a patient 
with characteristic features of GATA2 deficiency, including 
bilateral lower limb lymphoedema, haematological manifes-
tations, and recurrent infections. The familial in- frame in-
sertion of nine amino acids between ZF1 and ZF2 increased 
the spacing between the two ZFs abrogating target gene reg-
ulation and cell differentiation.110

CLI N ICA L PH E NOT Y PE S 
ASSOCI ATED W ITH 
GATA 2 DEFICIE NC Y

Detailed description of the clinical presentations of GATA2 
deficiency syndrome is beyond the scope of this review, 
therefore we refer to comprehensive reviews discussing 
GATA2- associated phenotypes20,89 and previously pub-
lished large cohort studies.4,17

Myeloid malignancy is the most common phenotype 
associated with germline GATA2 mutations, manifest-
ing in roughly 80% of reported carriers at a median age of 
approximately 20 years,1,4,5,20,89 (Figure  1B). GATA2 defi-
ciency is considered the most common germline predispo-
sition in paediatric MDS, accounting for 15% of cases with 
MDS with excess blasts, and 7% of overall paediatric MDS 
within the co- operative European Working Group of MDS 
in Childhood (EWOG- MDS) cohort of 426 patients pub-
lished by Wlodarski and colleagues.4 These numbers were 
validated in a larger cohort of 669 patients from the EWOG- 
MDS registry, where GATA2 deficiency was detected in 7% 
of MDS cases and was mutually exclusive with germline 
SAMD9/SAMD9L mutations (another driver of paediatric 
marrow failure and MDS) which accounted for 8%.111

Immunological phenotypes of GATA2 predisposition 
most commonly present as cellular immunodeficiencies 
with subsequent recurrent or atypical mycobacterial, viral, 
and fungal infections and autoimmunity. Immune dysfunc-
tion is often the initial presentation in this patient popu-
lation; however, pre- existing immunodeficiency may also 
be observed retrospectively in more than half of the cases 
with myeloid malignancy and thus is strongly suggestive for 
GATA2- related MDS/AML.22,89 Prominent clinical mani-
festations of GATA2 deficiency also include repeatedly ob-
served pulmonary alveolar proteinosis (PAP), and interstitial 
pulmonary diseases112 and high incidence of solid tumours 
and precancerous lesions with the majority of the cancers 
arising from underlying viral infections, particularly HPV 
and EBV.3,6,15,100,113

Apart from general symptoms including fever, fatigue 
and weight loss, further extra- haematological phenotypes 
of GATA2 deficiency encompass premature birth, develop-
mental delays and congenital malformations,5,17,56,114,115 and 
high incidence of primary lymphedema and lymphadenop-
athy in the GATA2 deficient patient population underlying 
the crucial role of GATA2 in lymphatic angiogenesis and 
lymphatic valve development.97

GE NOT Y PE – PH E NOT Y PE 
COR R E L ATIONS I N 
GATA 2 DEFICIE NC Y

Despite the rising number of reported cases with GATA2 
deficiency, different types of germline GATA2 variants have 
not been linked strongly to substantial phenotypes, clinical 
outcomes or age of onset, although some phenotypes seem 
to cluster within affected carrier families (Figure 1B). Some 
analyses have shown missense GATA2 mutations to be associ-
ated with increased rates of myeloid malignancies compared 
to nonsense and frameshift variants12,17,86 with a predomi-
nance of leukaemia in patients harbouring p.Thr354Met.20 
However, this association was not confirmed in a cohort of 
173 European MDS patients with germline GATA2 vari-
ants, examined on behalf of the GATA2 HuMo consortium; 
cases with null alleles (encompassing nonsense, frameshift 
truncating, splice site, whole gene deletion and synonymous 
-  RNA deleterious variants) had a higher prevalence of high- 
risk MDS (including leukaemia) in comparison to missense 
mutation carriers (unpublished observations of the EWOG- 
MDS study group). Recurrent or severe infections and un-
derlying cellular immunodeficiencies have been linked to 
variants leading to premature translation termination and 
deletions,12,86 although interestingly, missense mutations 
p.Arg398Trp and p.Arg396Gln, have also recently been as-
sociated with immunodeficiency by Homan and colleagues 
based on analysis of reported cases.20

Emberger syndrome has been exclusively reported in 
cases with regulatory, premature termination or LOF mis-
sense variants diminishing DNA binding and transactiva-
tion activity (p.Arg361Leu, p.Cys373Arg, p.Arg396Gln), 
implying the crucial role of haploinsufficiency in lymph-
edema development.17,20,24,86,92 Underlying molecular mech-
anism for normal lymphatic vessel valve development and 
defects of the lymphatic vasculature in GATA2 deficiency 
was first proposed by Kazenwadel and colleagues.24 They 
demonstrated that GATA2 levels in lymphatic endothelial 
cells are regulated via mechanic stimuli, including oscil-
latory fluid flow116 and extracellular matrix- induced ten-
sion42 driving valve morphogenesis and vessel sprouting, 
respectively. Stimuli- dependent expression and cell- specific 
transcription factor complexes of GATA2 in lymphatic en-
dothelial cells seem to be profoundly impacted by haploin-
sufficiency compared to HSPCs.

Based on a handful of cases, large, whole gene deletions 
and losses of chromosome 3q21.3 resulting in GATA2 
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haploinsufficiency have been linked to dysmorphisms, de-
velopmental and neurological defects, monocytopenia and 
subsequent infections.12,91,97

Regulation and transcription factors interacting with 
GATA2 vary greatly in selected biological systems and in the 
steady state versus stress, providing a possible explanation 
to phenotype– genotype clustering in GATA2 deficiency. 
Although it has been noted that substantial clinical presen-
tations and defects of certain organs are related to distinct 
types of GATA2 variants, in vitro studies on GATA2 func-
tion in different cellular contexts and processes are required 
to provide novel insight to underlying molecular mecha-
nisms of phenotypic complexity.20,21,86

SOM ATIC A BER R ATIONS I N 
M Y E LOID M A LIGNA NCIE S W ITH 
GATA 2 PR EDISPOSITION

There are a number of recurrent cytogenetic aberrations and 
somatic mutations in a host of genes that occur commonly 
with GATA2 deficiency and subsequent myeloid malignan-
cies. Monosomy 7 is the most frequently described clonal 
cytogenetic aberration. It has been reported in nearly half of 
the GATA2 deficient cases with associated myeloid malignan-
cies20 and together with the deletion of 7q17 and unbalanced 
translocation der(1;7)(q10;p10)3,14,117 uniformly result in the 
monoallelic loss of chromosome 7q conferring poor progno-
sis.89,118 Among paediatric MDS with monosomy 7, 37% of 
cases were found to carry germline GATA2 mutations; this as-
sociation is even more striking in adolescents with monosomy 
7 where GATA2 deficiency is found in 72% of patients.4,118,119

Similarly, the association between der(1;7) and GATA2 
deficiency was reiterated in a recent study by Kozyra and 
colleagues, demonstrating the majority (73%) of primary 
MDS with der(1;7) have an underlying GATA2 deficiency.120 
Isolated trisomy 8 is the second most common aneuploidy in 
GATA2 mutation carriers, occurring in approximately 20% 
of the cases.1,3– 6,17,20,98 Other cytogenetic events, such as tri-
somy 21,1,97,121 have also been encountered alone (isolated) 
or in combination with other aberrations; however, due 
to the lack of routine screening their prevalence is largely 
unknown to date. Contrary to MDS of adulthood, loss of 
5q and complex karyotypes are generally not reported in 
GATA2 deficiency.11,22

Recurrent somatic mutations in SETBP1, ASXL1, CBL, 
EZH2, KRAS/NRAS, JAK3, STAG2, RUNX1, and PTPN11 
and STAG2 have been described in cases with GATA2- 
driven myeloid malignancies.88,96,101,106,122– 131 LOF ASXL1 
mutations are reported in approximately one- third of all 
patients with AML/MDS and similarly to SETBP1 variants, 
are strongly linked to monosomy 7 and thus associated with 
a more advanced disease state.96,98 Interestingly, single- cell 
level analyses reported by Pastor Loyola and colleagues re-
vealed a non- random acquisition of these secondary events, 
implying monosomy 7 as an early somatic event in the MDS 
founding clone, followed by the acquisition of concomitant 

SETBP1 and ASXL1 mutations.89,132 Unlike in cases with 
germline CEBPA, DDX41 and RUNX1 predispositions,103– 105 
biallelic mutations are uncommon as somatic GATA2 muta-
tions mainly within ZF1 seem to be rare secondary events in 
GATA2- driven myeloid neoplasia.20,127,133

Similar to biological and environmental stresses, com-
monly seen somatically mutated genes and recurrent cyto-
genetic alterations are putative “stressor events” that may 
constitute pathogenic triggers for clonal evolution and sub-
sequent disease progression/evolution to AML.21 Therefore, 
there is a strong, and today still unmet need for comprehen-
sive screening of concurrent somatic aberrations in GATA2 
deficiency, especially in individuals and families with unex-
pected clinical presentations and incomplete penetrance.

TH ER A PEU TIC STA N DA R D OF CA R E

Despite the increasing number of cases with GATA2 defi-
ciency syndrome, currently there are no comprehensive 
guidelines and recommendations on the diagnosis and 
clinical management of individuals and families carry-
ing germline GATA2 mutations. Similar to other germline 
cancer predisposition syndromes, suspicion of GATA2 de-
ficiency arises in cases with unusually early age of onset of 
myeloid malignancies, particularly MDS/AML, but positive 
family history may also be evocative.134 Although in some 
patients MDS/AML develops without pre- existing extra-
haematopoietic phenotypes, others may show progressive 
symptoms indicative for GATA2 deficiency, such as cytope-
nias, generalized warts and monocytopenia, mycobacterial 
infections, recurrent viral (predominantly HPV) infections, 
and lymphedema.4,86,135 Cytogenetic testing of BM biopsy 
samples in cases with MDS/AML or unexplained cytopenias 
may be informative, as concurrent monosomy 7 and trisomy 
8 can also point towards GATA2 deficiency.89

Early diagnosis of GATA2 deficiency based on clinical 
presentation and/or genetic testing for germline GATA2 
mutations (with conventional bidirectional Sanger sequenc-
ing or next generation sequencing methods) is pivotal in 
avoiding non- curative therapies and especially immunosup-
pression due to underlying HSPC defects and immunode-
ficiency.89 Patients with high risk of evolution to advanced 
MDS or AML and/or high- risk karyotypes, such as mono-
somy 7, should undergo timely HSCT with selected con-
ditioning regimens. Patients with stable disease (e.g. MDS 
with refractory cytopenia of childhood), without progress-
ing immunodeficiencies underlying recurrent infections, 
transfusion- dependency and MDS with karyotypic aber-
rations or dysplasia may qualify for the watch and wait ap-
proach, although progressive disease can be expected over 
time in the majority of cases.3,11,89,136– 138 General recom-
mendations for surveillance include frequent evaluation 
of complete blood counts, annual BM biopsies with cyto-
genetic testing, analysis of lymphocyte subsets and immu-
noglobulins, and screening for subclinical presentations of 
pulmonary disorders (predominantly PAP) and (HPV-  or 
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EBV- associated) cancers as part of yearly skin and gynaeco-
logical examinations.86

Currently, allogenic HSCT is the only curative approach 
for patients with GATA2 deficiency. There is consensus that 
in high- risk cases, the ideal point in time for pre- emptive 
HSCT is during the hypocellular phase of MDS prior to se-
vere complications, such as invasive infections or evolution 
to MDS- EB and AML.4,11,22,88,89,113,136 Myeloablative con-
ditioning regimens for HSCT are the preferred standard 
approach in paediatric MDS with GATA2 predisposition, 
but reduced intensity conditioning regimens have also been 
successfully used in some cases.4,11,86,89,121,139 Based on the 
results of EWOG- MDS cohort study, overall outcomes were 
not influenced by the presence of germline GATA2 variants 
with a comparably favourable 5- year overall survival of 66% 
in patients with MDS who had already acquired monosomy 
7. Rates of infectious complications were also comparable to 
the control GATA2 wild- type group (66% vs. 61%),4 but de-
spite the non- inferior results, HSCT in GATA2 deficiency 
remains challenging due to underlying immunodeficiencies 
and comorbidities threatening the outcome of HSCT.86,137 
Interestingly, Hoffman and colleagues recently reported 
a higher incidence of thrombotic events and neurological 
complications in a cohort of patients with GATA2- driven 
paediatric MDS undergoing HSCT with myeloablative con-
ditioning, although graft versus host disease (GVHD), graft 
failure and treatment related mortality rates were compara-
ble to patients with non- GATA2- driven MDS/AML.140

Considering highly variable phenotypes and incomplete 
penetrance of GATA2 deficiency, genetic testing of inher-
ited GATA2 variants should be performed in family mem-
bers to identify asymptomatic carriers.20 Although data and 
recommendations on early HSCT in phenotypically “silent” 
cases are still absent to date, baseline BM aspirate evaluation 

of healthy individuals carrying GATA2 variants is recom-
mended by the EWOG- MDS group to assess GATA2- related 
cytogenetic aberrations.86,88 Similar to patients with stable 
disease, further management of asymptomatic carriers may 
include evaluation of complete blood counts, pulmonary 
function tests and surveillance for malignancy and immu-
nodeficiencies.88,141 Notably, critical role of screening for 
inherited variants in relatives is also becoming generally 
recognized during HSCT donor selection in order to avoid 
donor- derived myeloid malignancies conferring dismal 
outcome.20,142

POTE N TI A L NOV E L TH ER A PIE S

GATA2- related MDS/AML constitute a complex disorder 
with a profound impact on the quality of life of patients 
and their life expectancy. Due to the phenotypic diversity, 
clinical overlap, and the evolving phenotype of this disease, 
achieving a timely diagnosis is often difficult. This holdup 
has a direct impact on patient's management. The only cu-
rative option for these patients is allogenic HSCT, usually 
performed in the setting of advanced MDS or severe immu-
nodeficiency. The overall outcome after HSCT is favourable 
for the early stages of haematological disease but declines 
considerably in patients with advanced MDS. In addition, 
the lack of suitable donor and associated mortality and mor-
bidity can hinder this procedure in a number of patients. 
Correction of patients' HSCs by gene therapy could represent 
a promising alternative to allogenic HSCT, due to the pro-
liferative advantage of corrected cells (Figure 3). This phe-
nomenon has been recently described in one unique case, in 
whom spontaneous somatic genetic rescue in GATA2 gene 
conferred selective advantage of the corrected HSCs and 

F I G U R E  3  Isolation of haematopoietic stem cells (HSCs) of a GATA2mut patient and gene correction using the CRISPR/Cas9 system. The induced 
pluripotent stem cell (iPSC) function can be further evaluated after transplantation into mouse model.
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annulled the effect of pathogenic GATA2 mutation.143 These 
findings strongly indicate that having few corrected HSCs 
might be sufficient to restore haematopoiesis in GATA2 
carriers. It is important to highlight that the expression of 
GATA2 gene is tightly regulated in HSCs and during leu-
kaemia progression. Therefore, classical lentiviral trans-
genic approaches do not represent the best option as gene 
therapy method to treat GATA2 deficiency. Advanced gene 
editing technology via homologous recombination (HR) has 
paved the way to the development of precision medicine and 
outcome- driven therapy for individual patients.78,144,145 This 
allows the specific correction of the mutated gene, maintain-
ing the physiological expression of the gene and eliminat-
ing the integration of exogenous DNA material elsewhere. 
Moreover, gene editing based on CRISPR/Cas9 and large HR 
donor deliver by adeno- associated viral vector of serotype 6 
(rAVV6) has already revealed promising clinical results, as 
recently shown in haematological diseases such as sickle cell 
disease and pyruvate kinase deficiency.76,144,146,147

Based on these advances we can speculate that the op-
timization of a repair mechanism by large HR donor tem-
plates covering different exons could provide treatment for 
a substantial number of GATA2 patients allowing effective 
and sustainable translation in the clinical arena (Figure 3). 
Importantly, recurrent somatic mutations in MDS driver 
genes (i.e. SETBP1, ASXL1, STAG2 and RAS pathways) 
has been identified by us and others in GATA2- MDS pa-
tients .88,96,101,106,122– 130 Therefore, a preliminary genomic 
screening for additional somatic mutations should be imple-
ment as standard procedure for each GATA2 deficient pa-
tient. This may serve as prognostic markers predicting the 
risk of relapse, and thus be crucial in guiding treatment strat-
egy. Finally, a possible technical obstacle for clinical applica-
tion of gene editing correction of GATA2 mutations is the 
off- target effects (OTEs) that might occur in undesired parts 
of the genome. Therefore, detection of OTEs with screening 
strategies, such as GUIDE- seq or CIRCLE- seq,148,149 should 
be used before any clinical translation of this gene therapy 
approach.

CONCLUSION

GATA2 deficiency is a monogenic disorder with complex 
clinical manifestations and a very high propensity for MDS/
AML development. Carriers of GATA2 mutations show 
nearly complete life- time penetrance towards the develop-
ment of myeloid neoplasia; however, it is not clear what factors 
(genetic, epigenetic, or inflammatory) modify the pheno-
type leading to variable penetrance observed for identical 
mutations. Due to the phenotypic diversity, clinical overlap 
and evolving phenotype of this disease, a timely diagnosis is 
often difficult to achieve. Therefore, a crucial unmet need 
for novel, genotype- specific, more efficacious therapies for 
GATA2 deficient patients remain. Recently, Catto and col-
leagues suggested that early recovery of haematopoiesis in 
GATA2 deficiency either by transplant or potentially by gene 

therapy may be beneficial for haematopoiesis and to prevent 
other clinical complications.143

In this context, with the breakthroughs in CRISPR/Cas9 
technology, it is an imaginable scenario where GATA2 carri-
ers at early stage of the disease can be actively assisted by an 
innovative tailored and precise gene- based treatment. The 
reinfusion of corrected autologous HSCs would represent a 
promising and less toxic alternative treatment for GATA2- 
related MDS. However, a multidisciplinary effort is still 
needed to establish the clonal origin of leukemogenesis in 
GATA2 carriers in order to select the appropriate time frame 
to treat these patients by gene editing.
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