
Research Article
DVH Prediction for VMAT in NPC with GRU-RNN: An Improved
Method by Considering Biological Effects

Yongdong Zhuang ,1,2 Yaoqin Xie ,2 LuhuaWang ,1,3 Shaomin Huang,4 Li-Xin Chen ,4

and Yuenan Wang 5

1Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital &
Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
2Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China
3Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
4Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China,
Guangzhou 510060, China
5Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen 518036, China

Correspondence should be addressed to Luhua Wang; wlhwq@yahoo.com, Li-Xin Chen; chenlx@sysucc.org.cn,
and Yuenan Wang; yuenan.wang@gmail.com

Received 7 August 2020; Revised 28 October 2020; Accepted 4 January 2021; Published 19 January 2021

Academic Editor: Damiano Caruso

Copyright © 2021 Yongdong Zhuang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Purpose. A recurrent neural network (RNN) and its variants such as gated recurrent unit-based RNN (GRU-RNN) were found to be
very suitable for dose-volume histogram (DVH) prediction in our previously published work. Using the dosimetric information
generated by nonmodulated beams of different orientations, the GRU-RNN model was capable of accurate DVH prediction for
nasopharyngeal carcinoma (NPC) treatment planning. On the basis of our previous work, we proposed an improved approach
and aimed to further improve the DVH prediction accuracy as well as study the feasibility of applying the proposed method to
relatively small-size patient data. Methods. Eighty NPC volumetric modulated arc therapy (VMAT) plans with local IRB’s
approval in recent two years were retrospectively and randomly selected in this study. All these original plans were created using
the Eclipse treatment planning system (V13.5, Varian Medical Systems, USA) with ≥95% of PGTVnx receiving the prescribed
doses of 70Gy, ≥95% of PGTVnd receiving 66Gy, and ≥95% of PTV receiving 60Gy. Among them, fifty plans were used to
train the DVH prediction model, and the remaining were used for testing. On the basis of our previously published work, we
simplified the 3-layer GRU-RNN model to a single-layer model and further trained every organ at risk (OAR) separately with
an OAR-specific equivalent uniform dose- (EUD-) based loss function. Results. The results of linear least squares regression
obtained by the new proposed method showed the excellent agreements between the predictions and the original plans with the
correlation coefficient r = 0:976 and 0.968 for EUD results and maximum dose results, respectively, and the coefficient r of our
previously published method was 0.957 and 0.946, respectively. The Wilcoxon signed-rank test results between the proposed
and the previous work showed that the proposed method could significantly improve the EUD prediction accuracy for the
brainstem, spinal cord, and temporal lobes with a p value < 0.01. Conclusions. The accuracy of DVH prediction achieved in
different OARs showed the great improvements compared to the previous works, and more importantly, the effectiveness and
robustness showed by the simplified GRU-RNN trained from relatively small-size DVH samples, fully demonstrated the
feasibility of applying the proposed method to small-size patient data. Excellent agreements in both EUD results and maximum
dose results between the predictions and original plans indicated the application prospect in a physically and biologically related
(or a mixture of both) model for treatment planning.
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1. Introduction

Due to the complex tumor volumes in close proximity to
critical structures, the nasopharyngeal carcinoma (NPC)
radiation therapy (RT) plan was of great difficulty and
experience-dependent [1–4]. In recent years, numbers of
researches to aid in treatment planning using knowledge-
based planning (KBP) techniques had improved the
consistency of the plan quality and reduced the required opti-
mization time [5–13]. The most popular tools [14–18] were
developed to predict the dose-volume histogram from the
organ at risk (OAR)—planning target volume (PTV) anat-
omy, which could assist in treatment planning by giving
the appropriate OAR constraints and enabling the produc-
tion of high-quality plans. The most widely used tools for
quantifying the OAR-PTV anatomy, namely, the overlap
volume histogram (OVH) [15, 16] and the distance-to-
target histogram (DTH) [17, 18], were equivalent when
the Euclidean form of the distance function was used in
the DTH.

Compared to 3D-dose prediction [19–32] in the stage of
academic research, DVH prediction has been clinically
applied for years; for example, the commercial software
named RapidPlan was developed based on the DTH
approach by Varian Medical Systems (Palo Alto, California,
US). However, one concern regarding the DTH and OVH
was that their simplicity might lead to inaccurate presenta-
tion of the interpatient variations in anatomical features,
which might have an impact on the dose deposition [12, 15,
33]. Another concern regarding the existent research was
that the ignorance of the radiobiological difference in
different structures or the different key features make dose
distribution acceptable or unacceptable in clinic. For exam-
ple, for an organ like the spinal cord, the maximum dose
was considered to have the highest priority.

In our previously published works [12, 13], a multilayer
gated recurrent unit-based recurrent neural network (GRU-
RNN) was established to predict the DVHs for NPC
treatment planning using the DVHs generated by the
nonmodulated beams of different orientation. Using dosi-
metric information such as GRU-RNN inputs, the GRU-
RNN was capable of accurate DVH prediction. Similar
results were also obtained by other dosimetric information-
driven researches [11, 30, 31]. RNN and its variants, such
as the GRU-RNN used in this study, were particularly suit-
able for predicting the entire DVH. Its directionality was of
great relevance for predicting the sequential data, such as
DVH, a monotone decreasing sequence. And more impor-
tantly, compared to other models such as CNN, a great
reduction of the parameter number in RNN and its variants
indicated great potential in robust learning when applying
to small-size data. The equivalent uniform dose (EUD) was
the homogeneous dose inside an organ that has the same
radiobiological effect as the given arbitrary dose distribution
[34]. On the basis of our previous work, an EUD-based loss
function was introduced in this study. By considering biolog-
ical characters in different structures, the new method could
pay more attention to the key dosimetric features such as

maximum dose for the spinal cord and make the predicted
DVH of more clinical value.

Aiming to improve the DVH prediction accuracy for
NPC RT treatment planning, we proposed an improved
approach in this work, which trained every OAR separately
using a simplified GRU-RNN model with an equivalent
uniform dose- (EUD-) based loss function, and study the fea-
sibility of applying the proposed method to relatively small-
size patient data.

2. Materials and Method

2.1. Data Acquisition. 80 NPC volumetric modulated arc
therapy (VMAT) plans in recent two years with local IRB’s
approval were retrospectively and randomly selected for this
study. Of these original plans, 50 were randomly selected for
training and the remaining were used for testing. Following
the ICRU-83 report, radiation oncologists delineated the
gross tumor volume of the nasopharynx (GTVnx), the gross
tumor volume of the metastatic lymph node (GTVnd), the
clinical target volume (CTV), and the OARs in the planning
CT. A margin of 3mm was applied around the GTVnx,
GTVnd, and CTV to create the planning GTVnx (PGTVnx),
the planning GTVnd (PGTVnd), and the planning CTV
(PTV), respectively. All the original VMAT plans were cre-
ated using the Eclipse treatment planning system (V13.5,
Varian Medical Systems, USA) with ≥95% of PGTVnx
receiving the prescribed doses of 70Gy, ≥95% of PGTVnd
receiving 68Gy, and ≥95% of PTV receiving 60Gy. In this
work, the DVHs were resampled by volume bin in percentage
(1% in practice) rather than in absolute volume or dose
values, making the DVHs of equal length. The DVHs of the
nonmodulated beams were generated by a nine-field
conformal plan with multileaf collimators fitting to PTV
and normalizing 95% of PGTV dose to 70Gy. An example
of DVHs induced by nonmodulated beams and that of the
original plan from a patient’s spinal cord are shown in
Figure 1.

2.2. GRU-RNN. A single-layer GRU-RNN as shown in
Figure 2 was established using the PyTorch (Facebook,
US) framework for DVH prediction. Dv was the dose of
original plans at percent volume v as shown in Figure 1,
D′v was the predicted dose, and hv was the hidden state
at volume v. A dropout layer was inserted between GRU
and FC to randomly zero the parameters of hv with a prob-
ability of 0.5. The GRU was trained by the Adam optimizer
with the goal of minimizing the loss function by a learning
rate of 1e − 3.

2.3. Loss Function. The concept of equivalent uniform dose
(EUD) assumes that any two dose distributions are equiva-
lent if they cause the same radiobiological effect, which can
be calculated as follows [34]:

EUD = 〠
i=0

v ·Da
i

 !1/a

: ð1Þ
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Equation (2) shows that different dose values take differ-
ent weights in EUD calculation when a ≠ 1.

d EUDð Þ
d Dið Þ = EUDð Þ1−a ∗Da−1

i , ð2Þ

s Di, að Þ = Da−1
i

∑i=0D
a−1
i

: ð3Þ

sðaÞ represents the sensitivity of the dose value to the EUD
value. The loss function to be minimized in this study is
defined as equation (4) to meet the different dose require-
ments for different OARs. For example, for an OAR like the
spinal cord, the maximum dose is considered to have the

highest priority; therefore, the GRU-RNN model was indi-
vidually trained with k≫ 1.

f DVH′, DVH, k
� �

= 1
n
〠
n

p

〠
i=0

s Di, kð Þ Di′−Di

� �2
: ð4Þ

Here,DVH andDVH′ were the DVH of the original plan
and prediction. k was a positive integer and determined by
trial and error with the goal of accurately predicting both
EUD and maximum dose (only for serial OARs). The trial
and error results were shown, when 8 was used for the brain-
stem, 15 for the spinal cord, 3 and 2 for the left and right optic
nerves, respectively, and 1 for the chiasm, larynx, parotid
glands, and temporal lobes; the most accurate EUD results
(recommended by Allen Li et al. [35], a = 8was used for serial
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Figure 1: An example of DVHs generated by nonmodulated beams, B1, B2, B3,⋯, B9, with a gantry angle of 160, 200, 240, 280, 320, 0, 40, 80,
and 120 degrees and DVH of an original VMAT plan from a patient spinal cord.

GRU GRU GRU

FC FC FC

Dv-Δv, B1,B2,…,B9

D’v-Δv, VMAT D’v+Δv, VMATD’v, VMAT

hv-Δv

hv-Δv hv

Dv

hv+Δv

hv-Δv hv+Δv

hv

hv

Dv+Δv, B1,B2,…,B9Dv, B1,B2,…,B9

hv = [hv,1’ hv,2’ hv,3’..., hv,18]

𝜏
𝜎

𝜎
×

×

×

+

…

hv,1

hv,2

hv,17

hv,18

GRU

1-

FC

𝜎 Sigmoid 𝜏 Tanh

D’v, VMAT

Figure 2: Architecture of the GRU-RNN model. In the practical experiments, Δv was 1% OAR volume.
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organs including the brainstem, spinal cord, optic nerves, and
chiasm and a = 1 was used for parallel organs including the
parotids, larynx, and temporal lobes in EUD calculation) were
obtained. A flowchart of the dosimetric information of non-
modulated beam-driven DVH prediction is shown in Figure 3.

2.4. Model Evaluation. μ ± σ was calculated to evaluate the
GRU-RNN performance:

δi =Di′−Di, ð5Þ

μ = 1
n
〠
n

i=1
δi, ð6Þ

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ δi − μð Þ2

n

r
, ð7Þ

where i represents a testing patient and n is the number of
testing patients, Di ′ denotes the predicted EUD or maximum
dose, and Di denotes the result of the original plan. The
results were also compared to those obtained by our previous
work [13] to demonstrate the improvements of the new pro-
posed method in this study. Wilcoxon signed-rank tests were
employed to compare the prediction error, δi=1,2,⋯,30 , among
the 30 testing patients between the proposed method and the
previous one. Differences were considered statistically signif-
icant at p < 0:05.

3. Results

Two randomly selected testing patients’ DVH prediction
results are demonstrated in Figure 4. Though obvious differ-
ences could be seen in the deposited dose between two
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Figure 4: Comparisons between DVHs of predictions and original plans from two testing patients. Dash line: predicted DVHs; solid line:
original plans’ DVHs; Lt: left side; Rt: right side.
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Figure 3: The flowchart showed the dosimetric information of nonmodulated beam-driven DVH prediction.
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patients especially at the optic nerves and chiasm, the pre-
dicted DVHs of the two patients were still very close to the
original plans.

The correlations of the EUD and maximum dose results
between the predictions and the original plans for the 30 test
patients are plotted in Figure 5. The results of linear least
squares regression showed that the predicted EUD results
and maximum dose results of the proposed method in this
study were both in good agreement with the original plans
with correlation coefficient r = 0:976 (Figure 5(a)) and
0.968 (Figure 5(c)), respectively. The prediction results
obtained following our previous work [13] are also demon-
strated in Figures 5(b) and 5(d), and the coefficient r values

were 0.957 (Figure 5(a)) and 0.946 (Figure 5(c)). The pro-
posed method in this study has better consistency between
the predicted results and those of original plans, which could
be seen in the scatter plots and the coefficient r results
quantitatively.

Table 1 provides a summary (μ ± σ) and a comparison
(p value) over the prediction error (δi=1,2,⋯,30) of the EUD
results and maximum dose results in the 30 testing patients.
The μ ± σ results showed σ decreased by the proposed
method in almost all the OARs except for temporal lobes
for both maximum doses and EUDs. The patient-wise Wil-
coxon signed-rank tests results over δi between the proposed
and the previous method [12] showed that the proposed
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Figure 5: The correlations of the EUD (a, c) and maximum dose (b, d) results between the predictions and the original plans for the 30 test
patients.
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method could significantly improve the EUD prediction
accuracy of the brainstem, spinal cord, and temporal lobes
with p value < 0.01.

The differences between results of the original plans and
the predictions obtained by the proposed method (Prop) as
well as the previous method (Prev) were expressed with a
boxplot in Figure 6. The bottom and top of each box were
the 25th and 75th percentiles of the differences, respectively.
The distance between the bottom and top of each box was the
interquartile difference range, and the lines in the middle of
each box were the median differences. The whiskers were
lines extending above and below each box. Whiskers went
from the end of the interquartile range to the largest differ-
ence. Differences beyond the whisker length were marked
as outliers, which were more than 1.5 times the interquartile
range away from the bottom or top of the box. The proposed
method in this study as shown in Figure 6, compared to the
previous method in both maximum doses and EUDs, had
the median differences closer to 0, smaller interquartile dif-
ferences, and less outliers indicating better prediction accu-
racy and better reliability.

4. Discussion

In this study, we proposed an improved approach, which
trained every OAR separately with a simplified GRU-RNN
model and an equivalent uniform dose- (EUD-) based loss
function. As shown in Figure 5, the new proposed method
in this study improved the consistency of EUD results and
maximum dose results between the predictions and original
plans. For parallel OARs such as the larynx, parotid glands,
and temporal lobes, the k values in equation (4) were set to
1.0, making the sðDi, kÞ term ineffective. The improved pre-

diction accuracy in these OARs indicated that training differ-
ent OARs separately was helpful. In our preliminary trials, we
had also trained the GRU-RNN with k = 1 for the brainstem
and spinal cord, the EUD results of μ ± σ were 0:76 ± 2:94Gy
and 0:29 ± 2:03Gy, and the maximum dose results of μ ± σ
were 0:58 ± 3:16Gy and 0:69 ± 2:37Gy. The results showed
the sðDi, kÞ term was able to improve the prediction accuracy
of EUD and maximum dose. Excellent agreements in both
EUD values and maximum doses between the predictions
and original plans obtained by the new proposedmethod indi-
cated the application prospect in a physically and biologically
related (or a mixture of both) model for treatment planning.

The GRU-RNN models were trained from only 50 DVH
samples, which could reasonably be considered relatively
small-size data. The excellent agreements of the results
between the predictions and original plans fully demon-
strated the feasibility of applying the proposed method to
small-size patient data. As mentioned above, RNN and its
variants, such as GRU-RNN in this study, are particularly
suitable for predicting the entire DVH rather than only fixed
amount of interesting points. Compared to CNN and other
models, its directionality was of great relevance for predicting
the sequential data, such as DVH, a monotone decreasing
sequence. In this study, we trained different OARs separately
and focused the training attention on the interpatient varia-
tions in deposited dose with no need of figuring out the dif-
ferent OARs. Decreasing the training difficulty allowed the
usage of a further simplified model, a single-layer GRU-
RNN in this study, which was of great significance in small-
size sample training. In addition, due to the greatly reduced
complexity of the modeling task, the training time is less than
100 seconds for every OAR with a computer equipped with
i7-4770K CPU, Geforce GTX Titan GPU, and 16GBmemory.

Table 1: A summary (μ ± σ over δ) and a comparison (patient-wise p value over δ) of prediction accuracy in maximum doses and EUDs for
the 30 test patients. Prop was the results obtained by the proposed method, and Prev was the results obtained by the previous method.

OARs δ μ ± σ (Gy) p value
Prop Prev Prop vs. Prev

Brainstem
Dmax 0:34 ± 3:22 −0:27 ± 4:23 0.16

EUD 0:64 ± 2:61 −1:24 ± 3:11 <0.01

Spinal cord
Dmax 0:58 ± 2:29 0:79 ± 3:23 0.29

EUD 0:10 ± 1:96 −0:62 ± 2:20 <0.01

Optic chiasm
Dmax −0:33 ± 6:18 −0:50 ± 6:02 0.57

EUD 0:089 ± 4:58 0:27 ± 5:27 0.51

Optic nerves Lt
Dmax 0:68 ± 4:13 −0:52 ± 6:11 0.27

EUD 0:50 ± 3:13 −0:32 ± 4:65 0.43

Optic nerves Rt
Dmax 1:23 ± 4:70 0:02 ± 7:46 0.37

EUD 1:22 ± 3:71 0:26 ± 5:20 0.41

Larynx EUD −0:66 ± 3:46 −1:48 ± 5:59 0.22

Parotids Lt EUD 0:64 ± 2:32 0:12 ± 2:80 0.13

Parotids Rt EUD 0:24 ± 2:47 0:07 ± 2:14 0.37

Temporal lobes Lt EUD 0:17 ± 0:92 0:69 ± 0:84 <0.01
Temporal lobes Rt EUD 0:32 ± 1:07 0:73 ± 0:98 <0.01
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Different k values of 3.0 and 1.6 for optic nerves seem
unreasonable and illogical due to the similar size, the sym-
metrical distribution, and the same biological characteristics
in left\right optic nerves. A possible reason might be that
the small size of the samples was not enough to represent
the broader cases. In other words, the proposed method in
this study might be a possible way to backtrack the value of
“a” in equation (1) with the results of the existing plan data,
but the values in this study seem too data-dependent to be
repeated.

5. Conclusion

The accuracy of DVH prediction achieved in different OARs
showed the great improvements compared to the previous
works [12, 13] and the potential of this approach being
extended to other disease sites. More importantly, the
effectiveness and robustness showed by the simplified and
well-trained GRU-RNN models trained from relatively

small-size DVH samples fully demonstrated the feasibility
of applying the proposed method to small-size patient data.
In addition, excellent agreements in both EUD values and
maximum doses between the predictions and original plans
indicated the application prospect in a physical and biologi-
cally related (or a mixture of both) model for treatment
planning.

Data Availability

All datasets generated for this study are included in the
article.

Ethical Approval

The studies involving human participants were reviewed and
approved by IRB, CAMS Shenzhen Cancer Hospital.
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