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Genomic islands (GIs) are chunks of genomic fragments that are acquired from nongenealogical organisms through horizontal
gene transfer (HGT). Current researches on studying donor-recipient relationships for HGT are limited at a gene level. As more
GIs have been identified and verified, the way of studying donor-recipient relationships can be better modeled by using GIs rather
than individual genes. In this paper, we report the development of a computational framework for detecting origins of GIs. The
main idea of our computational framework is to identify GIs in a query genome, search candidate genomes that contain genomic
regions similar to those GIs in the query genome by BLAST search, and then filter out some candidate genomes if those similar
genomic regions are also alien (detected by GI detection tools). We have applied our framework in finding the GI origins for
Mycobacterium tuberculosis H37Rv, Herminiimonas arsenicoxydans, and three Thermoanaerobacter species. The predicted results
were used to establish the donor-recipient network relationships and visualized by Gephi. Our studies have shown that donor
genomes detected by our computational approach were mainly consistent with previous studies. Our framework was implemented
with Perl and executed on Windows operating system.

1. Introduction

Genomic islands (GIs) are clusters of foreign genes acquired
from nongenealogical organisms through horizontal gene
transfer (HGT). Previous studies have elucidated some HGT
mechanisms, including (i) transformation [1], (ii) conjuga-
tion [2], (iii) transduction [3], and (iv) gene transfer agent [4].
The occurrences of HGT make considerable contribution to
genome evolution, which is especially evident in pathogenic
organisms [5] or antibiotic resistant organisms [6, 7]. Such
quantum-leap evolution can cause drastic changes to species,
especially in bacteria, and shape the world where humans
live [8–10]. Therefore, it is practically significant to explore
origins of GIs (i.e., donors of GIs). Besides, the occurrence
of HGT between highly divergent organisms has great
impact on phylogenetics, which can disclose the evolutionary
relationship of organisms. The acquired GIs or biological
features may contaminate the correctness of phylogenetic
realtions. Therefore, exploring the origin donor of GIs can
also contribute to the analysis of genealogical phylogenetics.

Some previous research works of constructing donor-
recipient network based on individual genes have been
carried out [11, 12], where the network is composed of a
set of vertices (i.e., organisms) and edges, which connect
vertices and reveal the occurrences of HGT between organ-
isms. By studying the visualized networks, the researchers
could uncover the hidden mechanisms of HGT such as
genomic biases or barriers [13], DNA repair bypasses [12],
and eukaryotes origins and evolutions [11]. While using
individual genes for studying donor-recipient network can
reveal the mechanisms of HGT to some degree, a HGT event
usually occurs in a cluster of sequential genes instead of
single genes separately. Therefore, it may not truly reflect
the donor-recipient networks accurately if using single-gene-
based analysis.

Available GI detection tools these days make it possible
to generate donor-recipient network based on GIs. Current
GI prediction tools can be grouped into three categories:
(1) sequence composition based approach, (2) comparative
genome analysis approach, and (3) integrative approach.
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The sequence composition approach aims to identify some
special signatures in the query genome. The most represen-
tative signatures include G + C content, dinucleotide biases,
codon usage, mobility genes (including transposases and
integrases), and tRNA genes [14, 15]. Related tools using
this kind of approach include AlienHunter [16], Centroid
[17], GIDetector [18], GIHunter [19], PAI IDA [20], and
SIGI-HMM [21]. Comparative genome approach uses the
phylogenetically close species as reference genomes and
identifies subsequences that are unique in the query genomes
and treats them to be GIs. The implemented programs of
this approach include IslandPick [22] andMobilomeFINDER
[23]. The integrative approach uses the prediction results of
the above programs to obtain census GIs. Tools of using such
approaches include EGID [24] and IslandViewer [25]. The
availability of these GI tools, thus, provides us with a chance
to study donor-recipient relationship through GIs.

In this paper, we propose using GIs to trace the origins
of GIs and study donor-recipient networks across organisms.
Tomake our donor-recipient networksmeaningful, wemodel
edges asweighted, which can be represented by the number of
GIs that a donor genome contributes to a recipient genome. In
a previous study, it was hypothesized that if a HGT happened
between two organisms, a series of subsequent directional
transfers should be very likely to arise [26]. Therefore, it is
reasonable to hypothesize that if two nongenealogical organ-
isms harbor more occurrences of HGT, the more confident
donor-recipient relationship is between them.

In this study, we would also like to check whether donor-
recipient relationship is random or biased. Previous studies
have shown that HGT is not a random event but of prefer-
ences to occur [13]. It has been found thatHGToccurs among
organisms which share similar factors such as genome size,
genome G/C composition, carbon utilization, and oxygen
tolerance [27].The paper is organized as follows. In Section 2,
we will describe the dataset and our computational frame-
work in detail (it is freely available for noncommercial use
at http://www5.esu.edu/cpsc/bioinfo/software/GIDonor). In
Section 3, wewill illustrate the usage of computational frame-
work on three case studies and discuss our predicted results
with visualized networks. Finally, we draw a conclusion in
Section 4 and discuss our possible future work.

2. Materials and Methods

2.1. Data Acquisition. GenBank [28], an open-access reso-
urce which is established and maintained by the National
Center of Biotechnology Information (NCBI), houses all
publicly available biological sequences such as genomic
sequences and protein sequences. To trace GI donors, we
collected all available prokaryotic nucleotide sequences from
GenBank, which covered 162 million sequences with 150
billion nucleotides bases in total.

GenBank provides different data formats for feeding diff-
erent programs. For local based BLAST [29] search in our
framework, a preformatted format was used. This format is
small in terms of size, so that it is convenient to download,
and it can also be transformed into FASTA format. For
AlienHunter [16], used for GI detection in our framework,

we used FASTA format.More specifically, we fedAlienHunter
with FASTA nucleic acid files with the extension of “.fna.”

2.2. Computational Framework. Essentially, our framework
relies on two kinds of bioinformatics tools, sequence simi-
larity search tool and GI prediction tool. We used BLAST as
the sequence similarity tool since it is accurate and efficient
in terms of computing time. We used sequence composition
based GI tools for predicting GIs in our framework because
this kind of approach can be applied to any query genome
sequence.

By integrating multiple bioinformatics tools, our frame-
work can process sequenced genomic data automatically
and obtain final predicted donor organisms. The framework
consists of five steps (also shown in Figure 1), including

(i) obtaining GIs in a query genome with SIGI-HMM;
(ii) collecting initial candidate donor genomes by BLAST;
(iii) predicting complete GI lists in candidate donor

genomes using AlienHunter;
(iv) obtaining final donor genomes through overlapping;
(v) visualizing donor-recipient relationships.

Each step of our computational framework will be described
in the following subsections.

2.2.1. Obtaining GIs in a Query Genome with SIGI-HMM.
SIGI-HMM [21], an open-source program, is based on
genome composition analysis and is available for local instal-
lation, as well as web GUI on IslandViewer [25]. SIGI-HMM
first analyzes the codon usage of each gene, provides the
score for each gene based on the codon usage, and thus can
find alien genes based on codon usage scores. Because SIGI-
HMM produces the highest precision rate, guaranteeing the
predicted GIs to be true GIs [22], we adopted it as the GI
prediction tool in query genomes.

Because IslandViewer has provided predicted GIs by the
program of SIGI-HMM,we took advantage of it and obtained
predicted GIs for any query genome from IslandViewer. In
order to automatically collect GIs provided by IslandViewer,
we developed a Perl script to send out query genome
information to IslandViewer’s server and extract GI ranges
from the IslandViewer server.

2.2.2. Collecting Initial Candidate Donor Genomes by BLAST.
BLAST is extensively used in sequence similarity measure-
ment due to its efficient computation, high accuracy, and the
availability of cross-platforms. Therefore, BLAST was incor-
porated into the framework for searching initial candidate
donor genomes, which should contain genomic fragments
similar to GI sequence in the query genomes. In BLAST,
the cutoff value 𝑒 is used to evaluate the similarity between
genome sequences. In this study, we set 𝑒 value of 10−20 as the
cutoff to find our candidate donors.

BLAST itself is a suite of multiple programs. In this study,
we used blastn for nucleotide sequence search. The BLAST
output contains information of genome sequence alignments,
alignment score, and 𝑒 values, and such information can be
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Figure 1: A schematic view of our computational framework for
predicting the origins of GIs.

processed systematically through open source of Bioperl [30].
Therefore, we wrote a Perl script that uses Bioperl modules to
extract relevant information from BLAST outputs.

2.2.3. Predicting Complete GI Lists in Candidate Donor
Genomes Using AlienHunter. The initial candidate donor
genomes obtained by BLAST search may contain some false
positive donors (i.e., the genome fragments similar to those
GIs in the query genome are also transferred from donor
genomes); thus a filtering process should be conducted to
remove such false positives and obtain final donor genomes.
Theoretically, the final candidates should possess a charac-
teristic; that is, the detected similar genomic fragments from
BLAST should be original (in other words, they are not GIs)
in the corresponding hosts. In order to check whether such
genomic fragments are original or not, we must use GI tools
to check whether they are GIs or not. We incorporated a GI

tool AlienHunter [16] in our framework to extract a complete
list of GIs for all initial candidate donor genomes.

We chose the AlienHunter tool in this step because
previous assessment study on available GI tools [22] had
shown that AlienHunter possesses the highest recall rate,
compared with other sequence compositions including SIGI-
HMM, IslandPath [31], PAI IDA [20], and Centroid [17]. In
other words, AlienHunter can predict the most complete lists
of GIs in any candidate donor genome. This is very crucial
because we can filter out more initial candidate donors and
guarantee the final identified donors to true donors. In that
sense, our prediction framework for finding donors of GIs is
very conservative.

2.2.4. Obtaining Final Donor Genomes through Overlapping.
Final donor genomes were obtained by filtering out initial
candidate genomes (obtained from Section 2.2.2), where
genomic fragments similar to recipients of GIs were also
predicted as GIs from Section 2.2.3.

More formally, let a set ∑{𝐺, 𝑆, 𝐺󸀠} represent the infor-
mation from previous steps, where 𝐺 denotes the set of GIs
of a query genome obtained from SIGI-HMM, 𝑆 denotes the
set of initial candidate donor genomes obtained from BLAST,
and 𝐺󸀠 denotes the set of GIs on initial candidate genomes
predicted from AlienHunter. Furthermore, for each of them,

(i) 𝐺 = {𝑔
𝑖

| 𝑖 ≥ 0},
(ii) 𝑆 = {𝑠

(𝑖,𝑗)

| 𝑖, 𝑗 ≥ 0},

(iii) 𝐺󸀠 = {𝑔󸀠
𝜇

(𝑖,𝑗)

| 𝑖, 𝑗, 𝜇 ≥ 0},

where 𝑔
𝑖

denotes the 𝑖th GI in query genome, 𝑠
(𝑖,𝑗)

denotes the
𝑗th initial candidate donor for potentially donating 𝑖thGI (𝑔

𝑖

)
on query genome, and 𝑔󸀠

𝜇

(𝑖,𝑗) denotes 𝑢th GI for a candidate
donor (𝑠

(𝑖,𝑗)

). The overlapping operation is illustrated in
Figure 2 in detail. This process was implemented in Perl
script.

2.2.5. Visualizing Donor-Recipient Relationships. For any
given query genome, a list of final candidate donor genomes
can be obtained by running the previous steps in our
framework. In order to quantitatively visualize the number
of donations from donors, we intended to produce a donor-
recipient weighted network, where nodes denote donors and
the recipient and the weights corresponding to edges are
the number of HGT occurrences (i.e., quantified by the
GI transfers) between two organisms. By looking at heavy
weighted edges in networks, we can easily recommend highly
potential donors.

Gephi [32] is an open-source tool for network analysis
and visualization. The network from Gephi can be either
directed or undirected. It was implemented with JAVA, and
hence it is platform-independent. Therefore, we utilized it to
generate the donor-recipient network in our framework.

3. Results

We have applied our computational framework on three
bacterial cases, including donor prediction ofMycobacterium
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Figure 2: A schematic illustration of overlapping results. The circles represent genomes, with the top middle one denoting a query genome
and the rest ones denoting initial candidate donor genomes. The GI set in query genome, 𝐺, includes {g1, g2, g3}, the initial candidate donor
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}. Only those candidate donor genomes whose similar subsequences are not GIs are

predicted to be donors. Otherwise, the candidates are predicted as recipients. For instance, the initial candidate donor s
(1,1) is labeled as

recipient because g1 is similar to g󸀠2
(1,1), a member of GI set, 𝐺󸀠, of s

(1,1). The initial candidate donor s
(1,2) is labeled as donor because the g1’s

similar subsequence (the sequence was not labeled but was highlighed and connected to g1 with a dashed line) does not overlap with any
member in the GI set, 𝐺󸀠, of s

(1,2). In this example, s
(1,2) and s

(2,1) are predicted to be final donor genomes for the query genome.

tuberculosis H37Rv, Herminiimonas arsenicoxydans, and a
HGTnetwork establishment of three species inThermoanaer-
obacter (T. pseudethanolicus ATCC 33223, T. tengcongensis,
and 𝑇. strain X514). The possible HGT mechanisms of these
species had been studied previously, and thus our predicted
results could be investigated by comparing previous studies.

3.1. Predicted Donors of Mycobacterium tuberculosis H37Rv.
Mycobacterium tuberculosis (M. tuberculosis) is a bacterial
species that causes most cases of tuberculosis (TB) [33].
M. tuberculosis H37Rv is the best characterized strain of
M. tuberculosis and had been sequenced and analyzed bio-
logically [34]. Previous work that combined genome-wide
parametric analysis showed thatM. tuberculosis encompassed
48 GIs, which consist of 4.5% of the genome (199 kb), and
include 256 genes [35, 36]. Through applying our framework
in M. tuberculosis H37Rv, we hope to reveal the origins of
GIs and provide a complete list of GI donors to substantially
enrich the information of mycobacterial pathogenicity.

Figure 3 displays all predicted final candidate donors
from our framework, where species with the same genus have
been dyed with the same colors and positioned next to each
other for better visualization. As shown in Figure 3, the pre-
dicted donor genus which contributed the most is Gordonia,
followed by Nocardia and Rhodococcus in descending rank.
The network met the power law degree. The number of GIs,
in which each genus of donors contributed to the recipient
H37Rv, has been summarized in Figure 4.

When comparing our predicted donors of H37Rv’s GIs
with the predicted potential donors from previous studies
[35], we found that there are a lot ofmatching predictions. For

instance, three donors with the highest donations, including
Gordonia, Nocardia, and Rhodococcus, were also detected as
their potential origins of GIs (Figures 3 and 4). Besides, we
also incorporated Bradyrhizobium and Corynebacterium into
our final candidate donors. All of those were also present in
previous studies. In addition, our framework has detected
a new potential donor, Bifidobacterium animalis, which has
not been reported in previous studies. We strongly believe
in this as one of the high potential donors since B. animalis
resides in the body of most mammals including humans,
which may interact with M. tuberculosis and transfer genes
toM. tuberculosis.

3.2. Predicted Donors of Herminiimonas arsenicoxydans.
Herminiimonas arsenicoxydans (H. arsenicoxydans) is an
arsenite-oxidizing bacterium that belongs to heterotrophic
Betaproteobacterium [37]. It was isolated from heavy-
contaminated sludge with arsenic and other heavy metals
from industrial wastewater treatment plants. Under aerobic
conditions, it can oxidize arsenite to arsenate and produce
at least two arsenate reductases. It was revealed to be able
to resist against numerous heavy metals such as Se, Mn, Cr,
Cd, Sb, and Ni. All of those competences enable its widely
ecological usage in arsenical polluted environment [37]. A
better understanding of H. arsenicoxydans can be beneficial
for arsenical polluted remediation.

Our predicted donors of H. arsenicoxydans are shown
in Figures 5 and 6. Like previous network, species of the
same genus have the same colors, and they are placed next
to each other in the network. As we can see in the network
of Figure 5, Janthinobacterium Marseille (J. Marseille) is
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Figure 3: The network of predictedMycobacterium tuberculosis H37Rv’s donors. The undirected network demonstrates all candidate donor
genomes ofMycobacterium tuberculosisH37Rv.The weight of each edge denotes the number of donated GIs. Each color represents one genus
of species.
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Figure 4: The predicted donors of Mycobacterium tuberculosis
H37Rv. The candidate donors were grouped as genus, and the
number of donated GIs was represented by the length of bars.

a highly frequent donor (the occurrence of HGTs is 11 times).
Actually, J. Marseille belongs to the order Burkholderiales,
which has been reported to be the major gene donation
source for H. arsenicoxydans [12]. Both our predicted results

and previous studies strongly indicate that this is the donor
for H. arsenicoxydans. We also notice that the number
contributed by the genus of Ralstonia is 16 times, which is
also very significant. These findings strongly indicate that
species in the Burkholderiales order are major contributors
to GIs found in H. arsenicoxydans. Another noticeable GIs
contributor was from the Pseudomonadales order (Figures 5
and 6), which was also consistent with previous study [12].
Therefore, we can conclude that the origins of GIs in the
genome of H. arsenicoxydans are from Burkholderiales and
Pseudomonadales.

3.3. Predicted Donors of Thermoanaerobacter. Thermoanaer-
obacter is a genus that contains a cluster of thermophilic
and anaerobic bacteria distributed in high-temperature sur-
roundings like springs.They can absorb heat from surround-
ings as their source of energy to drive their metabolism
[38]. Therefore, it will be particularly interesting to study the
adaptability of thermophile, examine the evolution path, and
ultimately uncover the origins of such special features.
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Figure 5: The network of predicted Herminiimonas arsenicoxydans’ donors. The undirected network demonstrates all candidate donor
genomes of Herminiimonas arsenicoxydans. The weight of each edge denotes the number of donated GIs. Each color represents one genus of
species.
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Figure 6: The predicted donors of Herminiimonas arsenicoxydans.
The candidate donors were grouped as genus, and the number of
donated GIs was represented by the length of bars.

A simplified directed network of donor-recipient
relationship has been generated in previous work [12].
The directed network was focused on three members

of Thermoanaerobacter, including T. pseudethanolicus
strain ATCC33223, T. tengcongensis, and T. strain X514.
We extended the previous network with more predicted
donors as shown in Figures 7 and 8. As you can see, our
directed network has expanded previously studied network
on a basically consistent condition [12]. For instance,
we predicted one GI in T. strain X514 that originally
belongs to Clostridium thermocellum ATCC 27405. This
is consistent with their predicted result even though they
considered it as a mediator, which played an agent role in
the transfer. We also detected seven GI transfers between T.
pseudethanolicus strain ATCC33223 and T. strain X514 and
one GI transfer from T. pseudethanolicus strain ATCC33223
to T. tengcongensis MB4. Most noticeably, T. brockii finnii
Ako-1 was present as the donor for all three query genomes
as shown in Figure 5. We hypothesize that T. brockii finnii
Ako-1 interacts with these threeThermoanaerobacter species
and may contribute heat-resistant related genes to these
species.

4. Conclusions and Discussion

HGT has provided organisms apportunities to obtain special
features from foreign organisms. In order to reveal genetic
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Figure 7: A directed network of donor-recipient relationship based on T. pseudethanolicus strain ATCC33223, T. tengcongensisMB4, and T.
strain X514. The directed network demonstrates the GI’s transfer direction. The weight of each edge denotes the number of occurrences of
HGT.
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T. thermosaccharolyticum DSM 571

T. brockii finnii Ako-1
T. italicus Ab9

T. mathranii mathranii A3
T. pseudethanolicus ATCC 33223

Thermacetogenium phaeum DSM 12270
Thermococcus CL1

T. tengcongensis MB4
T. strain X514
T. pseudethanolicus strain ATCC 33223

Figure 8: The predicted donors of Thermoanaerobacter. The chart
consists of three recipients which have been labeled with different
colorful bars. Each bar represents the number of donated GIs from
one specific donor for a corresponding recipient.

sources of HGT, we have developed a computational frame-
work for identifying origins of HGT through predicted GIs.
The predicted results in this study were consistent with
previous studies, strongly indicating the correctness of our

computational framework overall. In addition, our frame-
work has also discovered some new donors not reported
in previous studies, and further investigation of these new
discoved donors indicates that they are possible donors in the
biological and evolutionary perspective.

While there is no standard benchmark to measure the
accuracy of our framework, it should be noted that the
accuracy of our framework depends on the performance
of other prediction tools. On the one hand, the selection
of cutoff value used in BLAST will affect our prediction
results. On the other hand, we adopted sequence composition
analysis tools, which is generally applicable to any sequenced
query genome, but the prediction is not themost accurate one
when compared to comparative genome analysis GI tools.
Furthermore, the computation time for finding GIs for a
genome is very expensive. For instance, a genome with a
typic genome size will take about one hour to complete the
entire process of GI search.Thus, for a query genome, it could
generate dozens of initial candidate donor genomes, and thus
it takes about a day and night to complete the whole process.

In this study, we just studied three query genomes, for
the purpose of testing the correctness of our computa-
tional framework. In the next stage, we will use a cluster
of computers or superpower computers, to predict HGT
donors for all sequenced bacterial and archaea genomes
using our framework. We will build a large-scale donor-
recipient network based on all the results. We believe that
such kind of networks will reveal a panoramic view of gene
transfer information across microbial organisms and provide
some insights into evolutionary biologists to study genome
evolution.
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