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Traction force microscopy by deep learning
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ABSTRACT Cells interact mechanically with their surroundings by exerting and sensing forces. Traction force microscopy
(TFM), purported to map cell-generated forces or stresses, represents an important tool that has powered the rapid advances
in mechanobiology. However, to solve the ill-posedmathematical problem, conventional TFM involved compromises in accuracy
and/or resolution. Here, we applied neural network-based deep learning as an alternative approach for TFM.Wemodified a neu-
ral network designed for image processing to predict the vector field of stress from displacements. Furthermore, we adapted a
mathematical model for cell migration to generate large sets of simulated stresses and displacements for training and testing the
neural network. We found that deep learning-based TFM yielded results that resemble those using conventional TFM but at a
higher accuracy than several conventional implementations tested. In addition, a trained neural network is appliable to a wide
range of conditions, including cell size, shape, substrate stiffness, and traction output. The performance of deep learning-based
TFM makes it an appealing alternative to conventional methods for characterizing mechanical interactions between adherent
cells and the environment.
SIGNIFICANCE Traction force microscopy has served as a fundamental driving force for mechanobiology. However, its
nature as an ill-posed inverse problem has raised serious challenges for conventional mathematical approaches. This
study, facilitated by large sets of simulated data, describes an alternative approach using deep learning for the calculation
of cell-generated stresses. By adapting a neural network architecture widely used for image processing for processing
mechanical activities, we show that deep learning is able to predict traction stresses with speed, accuracy, resolution, and
versatility.
INTRODUCTION

Mechanobiology examines the input and output of mechani-
cal forces by cells. Contractile forces generated by the actin-
myosin cytoskeleton are transmitted to the exterior environ-
ment via transmembrane proteins such as integrins (1).
Referred to as traction forces, these forces are located predom-
inantly near the cell periphery and directed toward the cell
center (2). Active forces are located primarily at maturing
focal adhesions near the front, whereas resistive forces are
located at mature focal adhesions near the rear (3,4).

In addition to propelling cell migration, traction forces
are believed to perform important functions such as orga-
nizing the extracellular matrix (5), probing mechanical
properties of the environment (6), and sensing the state of
the cell itself such as shape, size, and state of migration
(7,8). Adhesive cells are also keenly sensitive to mechanical
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forces transmitted via the surrounding matrix (9), fluid shear
(10), or cell-cell contact (11). These mechanical signals
elicit many profound responses to affect cell migration
(12), growth (13), and differentiation (14).

Methods formapping traction forces or stresses, referred to
as traction force microscopy (TFM (2,15–17)), represent a
fundamental tool for mechanobiology. TFM is commonly
performed by culturing cells on a substrate of elastic material
such as polyacrylamide, embedded with particle markers for
mapping force-induced displacements. Substrate displace-
ments then serve as the input for calculating the distribution
of forces or stresses based on linear elastic theory.

TFM based on elastic substrates such as polyacrylamide
is typically challenged by its mathematical nature as an
ill-posed inverse problem, in which a unique solution may
not exist and the results are prone to artifacts if one simply
tries to minimize the goodness of fit between predicted and
measured displacements (18). To mitigate the problems,
most conventional TFM approaches include a regularization
term in the fitting function to apply penalties to both devia-
tions from targeted values and complexity of the answer. As
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a result, it sacrifices some accuracy in exchange for reduced
artifacts or unrealistic features (2,18). Selecting the algo-
rithm and setting the parameter for regularization prove
nontrivial and require a delicate balance between high accu-
racy and minimal artifacts (19). A related challenge is that
both the forward calculation of displacements from stress
and inverse calculation of stress from displacements are
affected by singular elements in Green’s tensor that de-
scribes their relationships.

Neural network-based deep learning has been deployed as
a powerful method for solving ill-posed problems (20). It in-
volves the optimization of a pipeline of convolution/correla-
tion operations with the goal of transforming the input (e.g.,
substrate displacements) into targeted solution (e.g., the dis-
tribution of stresses (21)). As an approach fundamentally
different from conventional TFM, it avoids the challenge
of singularity during the prediction and typically invokes
regularization only during training while avoiding regulari-
zation altogether during prediction.

To deploy deep learning for TFM (DL-TFM), we have
adapted a widely used neural network architecture, U-Net,
designed originally for multiresolution segmentation of
biomedical images (22). The network consists of a single
end-to-end pipeline of encoding and decoding operations
to preserve features of different sizes. Several skip connec-
tions serve to concatenate the information at different stages
of the pipeline to balance the performance of global location
versus local context with a high efficiency (23). The success
of U-Net has prompted its applications in a wide range of
computer vision tasks beyond its original purpose.

Although a network architecture derived from U-Net has
been reported for TFM (24), the training process relied upon
a limited set of experimental data processed by convention
TFM, which thereby carried over the errors and limitations
of conventional TFM. To minimize the dependence on con-
ventional TFM and to provide large and precise data sets for
machine learning, we have applied a simulation model to
generate stresses and displacements that mimic the pattern
seen in cultured cells. In addition, we have replaced two-
dimensional (2D) convolutions in U-Net with three-dimen-
sional (3D) convolutions to reproduce the relationship
between stress and displacement fields according to the
linear elastic theory. We hereby report the performance of
DL-TFM with respect to its speed, accuracy, resolution,
and scalability, using several open-access implementations
of conventional TFM known as Fourier transform traction
cytometry (FTTC (15,25–27)) as the reference.
MATERIALS AND METHODS

Generation of simulated data for training and
testing the neural network

Simulated stress fields were generated by modifying our published model

for cell migration (28). This model has several major advantages for this
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purpose. First, its parameters describe local signals for protrusion or retrac-

tion, which are known to bear some correlation with traction forces and may

be reasonably used for generating a hypothetical stress distribution. Second,

it provides information around the entire cell circumstance, which allowed

us to simulate a complete stress field underneath a cell. Third, its high versa-

tility allows the generation of a wide variety of realistic-looking cell shapes

(28), which provided us with a large and diverse set of data for training and

testing.

The model implemented the mechanism of local excitation-global inhibi-

tion (29) for controlling the protrusion and retraction activities. Protrusion

signals were local, represented by a value specific to each location around

the cell periphery, whereas retraction signals were global, represented by a

single location-independent value. The periphery extended outward if the

local excitation signal exceeded the global retraction signal and retracted in-

ward if the oppositewas true. The global retraction signalwas proportional to

the total protrusion signals around the cell under the assumption that local

protrusions generate retraction signals that propagated rapidly as a negative

feedback to suppress competing protrusive activities elsewhere. Protrusion

signals, on the other hand, were generated locally and stochastically with

the level governed by diffusion and decay. A positive feedback loop

increased the probability of its generation at locations where the level was

high. Implementation of these simple rules led to a highly versatile ‘‘autom-

aton’’ capable of creating a wide range of shapes mimicking various cell

types (28). In addition, simultaneous extension and retraction at opposite

ends led to migration with the characteristics of persistent random walk.

Because traction forceswere known to colocalizewith focal adhesions, near

the front for active propulsion and near the rear for passive resistance (3), we

assumed that the magnitude of traction stress was proportional to the absolute

value of net signals, calculated as protrusion signal subtracted by retraction

signal, such that strongpositive signals to extend at the front or negative signals

to retract at the rearwere correlatedwith strong traction stresses. Stress vectors

were placed at a random distance from cell periphery following Poisson distri-

bution and in a direction toward the cell center. Simulated cells whose stresses

were balanced to<10% were selected for training or testing.

Substrate displacements were calculated from traction stresses based on a

Poisson ratio of 0.45, using Boussinesq’s equations for deriving the Green’s

tensor (2), which was applied via a set of 2D convolution operations fol-

lowed by elementwise additions to generate displacement vectors. The cen-

tral element of Green’s tensor, which in theory equals infinity due to its

inverse dependence on the distance from the source of stress (15), was esti-

mated empirically based on minimizing the error of FTTC (15). This was

justified for the current study because the performance of DL-TFM was

to be compared against that of FTTC. We assigned a range of testing values

to the central element for generating the corresponding displacement fields

from a known stress field. FTTC was then applied to the displacement fields

to obtain calculated stress fields. The central value that yielded the smallest

normalized root mean-squared error (RMSE) between calculated stress

field and the known ground truth was used for calculating the displacement

for training and testing DL-TFM.

Three similar sets of simulated cells were generated for training neural

networks for field sizes of 104 � 104, 160 � 160, and 256 � 256 pixels.

Displacements were generated using a Poisson ratio of 0.45 and substrate

Young’s modulus of 10, 6.5, and 4.1 N/pixel for the respective field size.

The decreasing Young’s moduli were designed to generate a similar size

of displacement relative to the size of the field. Stress vectors were normal-

ized for an average magnitude of 1 N/pixel within the cell. From the stress

field of 160 � 160 pixels, the corresponding stress fields for other sizes

were generated by nearest-neighbor interpolation before recalculating the

respective displacements. Predicted stress values, as provided by the activa-

tions of the output regression layer of the neural network, were scaled by a

factor that equals Young’s modulus of the substrate in Pascals divided by

the Young’s modulus for the training set in Newtons/pixel2 to obtain the

predicted stress field in Pascals.

For testing the performance of trained neural networks, simulated cells

were generated in the same manner as for the training set but with a
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maximal stress magnitude of 6000 Pa on a substrate with a Young’s

modulus of 10,670 Pa, which represented typical values in our experiments

with NIH 3T3 cells. Simulated noise of displacements was created using a

Gaussian random number generator. The magnitude of the noise was

measured from experimental displacement fields by calculating the SD of

displacements within a 20 � 20-pixel moving window that scanned across

the entire field including regions far away from the cell. The minimal SD

was used as the magnitude of noise.
TFM

MATLAB (The MathWorks, Natick, MA) version 2020b was used for

both FTTC and DL-TFM. Three implementations of FTTC were tested,

an ImageJ plugin (26) and two open-source MATLAB programs ((15,27)

https://github.com/DanuserLab/TFM/tree/master/software and https://

github.com/CellMicroMechanics/Easy-to-use_TFM_package). Because

the two MATLAB programs showed a similar accuracy better than the Im-

ageJ plugin, the MATLAB program named reg_fourier_TFM.m in https://

github.com/DanuserLab/TFM/tree/master/software was used for generating

the FTTC data in this study.

Displacements and stresses were represented as 2D vectors, which must

be represented by two numbers at each location. Therefore, we applied 3D

tensors to represent these vector fields, using two separate planes along the z

axis for holding x and y components. The tensors were of a size of S � S �
2, where S ˛ {104, 160, 256} specified the size of a square field, whereas

the third dimension held x and y components of the stress or displacement

vectors. U-Net was constructed layer by layer from scratch, using 3D

convolution for all the convolution operations (Fig. S1). 3D convolution

proved to be essential for TFM because the generation of displacements

from stresses, as described by Boussinesq’s equations, involved linear com-

binations of stresses along both x and y directions, placed on separate planes

of the z axis. In contrast, 2D convolution as applied typically to independent

color channels creates only linear combinations within the same plane.

Testing with 2D convolution showed that it failed to reach the same accu-

racy as yielded by 3D convolution despite the convergence during training.

Training was conducted using the optimization algorithm of stochastic

gradient descent with momentum for 50–100 epochs until the RMSE

reached below three. Minibatch size was 30 for images of 104 � 104, 20

for 160 � 160, and 13 for 256 � 256; the reduction in size was compelled

by the limited memory size of the graphics processing unit. Proper training

rates were important for the balance between the stability of convergence

and the speed of learning. The training rate was set initially at 6 � 10�4

to decrease by a factor of 0.7943 every 10 epochs such that the rate dropped

by 10 folds over 100 epochs. The L2 regularization factor for training, de-

signed to prevent overfitting by balancing the goodness of fit against the

complexity of kernel weights, was set at 5 � 10�4. Other hyperparameters

were left as default values implemented in MATLAB, including the forward

loss function based on half mean-squared error.

Using a Dell Precision E5450 laptop computer (Round Rock, TX) with an

Intel Xeon E-2176MCPU (Santa Clara, CA) running at 2.70 GHz, 32 GB of

random-access memory, and an NVIDA Quadro P2000 GPU (Santa Clara,

CA), the training process took up to 24 h for fields of 256 � 256 pixels

and 7.5 h for fields of 104� 104 pixels (Table S1). MATLAB codes for con-

structing, training, and deploying theU-Net neural network have been posted

on GitHub (https://github.com/yuliwang8177/DL-TFM). Training and

testing data sets were disseminated separately via Box due to the large size

(https://cmu.box.com/s/n34hbfopwa3r6rftvtfn4ckc403hk43d).
Substrate preparation and cell culture

Polyacrylamide substrates were prepared by mixing 8% acrylamide (Bio-

Rad Laboratories, Hercules, CA), 0.1% bis-acrylamide (Bio-Rad Labora-

tories), and 0.2 mm fluorescent beads at a dilution of 1:1000 (Molecular

Probes, Carlsbad, CA). After adding a photoinitiator, lithium phenyl-
2,4,6-trimethylbenzoylphosphinate (Allevi, Philadelphia, PA) at a concen-

tration of 1 mg/mL, an aliquot of 25 mL was pipetted onto a large #1 cover-

slip pretreated with 0.3% (v/v) bind-silane in 95% ethanol (Cytiva,

Marlborough, MA) for bonding with polyacrylamide. A coverslip 22 mm

in diameter coated with activated gelatin was placed on top to allow the

transfer of gelatin to the surface of thin gel (7). The mixture was exposed

to 365 nm UV for 3 min under a tabletop UV lamp with two 15 W tubes

(UVP, Jena, Germany). The top coverslip was then gently removed with

a pair of fine tweezers. Young’s modulus of the gel was measured as

10,670 Pa using a custom-designed light-weight flat punch. The substrate

was sterilized with 260 nm UV for 20 min before use. NIH 3T3 cells

were maintained in Dulbecco’s modified Eagle’s medium supplemented

with 10% donor bovine serum in an incubator with 5% CO2 at 37
�C and

were plated on polyacrylamide substrate overnight before TFM

measurements.
Transfection of cells for the expression
of GFP-Zyxin

GFP-zyxin plasmids were kindly provided by Dr. Juergen Wehland (Helm-

holtz Centre for Infection Research, Braunschweig, Germany). NIH 3T3

cells were cultured to reach 90% confluency on 60-mm tissue culture dishes

and transfected with 2 mg of the plasmid using an Amaxa Nucleofector and

Kit R (Lonza, Walkersville, MD), following the manufacturer’s recommen-

ded protocol. Transfected cells were plated on gelatin-coated polyacryl-

amide substrates for TFM measurements.
Measurement of substrate displacements

To measure substrate displacements caused by traction forces, isolated NIH

3T3 cells were identified, and images of fluorescent beads were recorded

with a Nikon Eclipse Ti microscope equipped with a dry 40�/N.A. 0.75

PlanFluor phase-contrast objective lens before and after removing the

cell by adding 1 mL of 0.25% Trypsin-EDTA (Thermo Fisher Scientific,

Waltham, MA) to the culture chamber. Images were captured with a Photo-

metrics Prime 95B CMOS camera with 1200 � 1200 camera pixels (Tuc-

son, AZ). At the magnification used, each camera pixel represented an

area of 0.275 � 0.275 mm2.

Bead images were cropped to a size of 728 � 728 camera pixels, with

the cell positioned near the center surrounded by a margin such that bead

displacements dissipated to near zero around the edge. Pairs of bead im-

ages before and after cell removal were analyzed with iterative particle

image velocimetry to obtain the displacement field, using an open-access

plugin for ImageJ (26). The particle image velocimetry program was

configured to generate a displacement vector every 7 � 7 pixels. To obtain

tightly packed vectors as input for DL-TFM, the sparse vector field was

compacted by 7� along x and y directions to generate fields of 104 �
104 modeling pixels. Thus, each modeling pixel equaled 7 � 7 camera

pixels covering an area of 1.925 � 1.925 mm2. The 7� scaling factor

was estimated based on a measured surface bead density of 18,900 5

3050 beads over a field of 1200 � 1200 camera pixels or one bead per

area of 8.7 � 8.7 pixels.

To measure and correct the residual alignment errors, a 9 � 9 median fil-

ter was applied to displacements over the area at least 35 pixels away from

the edge of the cell. The average of filtered displacement vectors was taken

as the residual alignment error and was subtracted from all the displacement

vectors. Other defects of the displacement field often manifested as singular

vectors that stood out against an otherwise slowly changing field. These de-

fects were identified based on the ratio between the fields after convolving

with a Laplace kernel and with a kernel that calculates the average of the

immediate neighbors. Pixels with a ratio R3.5 were identified as defective

and were replaced with the average displacement of surrounding pixels.

This threshold was determined based on the maximal ratio that appeared

in simulated defect-free displacement fields.
Biophysical Journal 120, 3079–3090, August 3, 2021 3081

https://github.com/DanuserLab/TFM/tree/master/software
https://github.com/CellMicroMechanics/Easy-to-use_TFM_package
https://github.com/CellMicroMechanics/Easy-to-use_TFM_package
https://github.com/DanuserLab/TFM/tree/master/software
https://github.com/DanuserLab/TFM/tree/master/software
https://github.com/yuliwang8177/DL-TFM
https://cmu.box.com/s/n34hbfopwa3r6rftvtfn4ckc403hk43d


Wang and Lin
Statistical analysis

TFM was tested with 17 simulated cells of amoeboid or mesenchymal

shapes, 16 simulated developing neurons, 10 simulated keratocytes, and

14 experimental NIH 3T3 cells. For simulated cells, the accuracy of TFM

was assessed by comparing predicted stress field against the known ground

truth field, using normalized RMSE defined as follows:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X��V � Vgt

��2�
r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X��Vgt

��2�
r

; (1)

where Vgt is ground truth stress vectors, and V is the corresponding pre-

dicted stress vectors. The summation was carried out over all the modeling

pixels within the border of a cell. Normalized RMSE was then averaged

over testing cells within the group. Two-tailed t-test for paired samples

was used for determining the statistical significance between two measure-

ments. Because ground truth stress fields were not available for experi-

mental measurements, predicted stress fields of experimental cells were

assessed by comparing measured displacements against displacements

calculated from the predicted stress field, using an equation similar to

that shown in Eq. 1.
RESULTS

Construction and training of a modified U-Net for
TFM

Vector fields of stress or displacement were represented as
tensors of [x, y, v], where x and y were positions in a field
of S � S modeling pixels (to be distinguished from camera
a

c d

b
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pixels), and v ˛ {1, 2} represented the two orthogonal vec-
tor components. S ˛ {104, 160, 256} represented the size of
three fields with the corresponding neural network. The
original architecture of U-Net (22) was modified for pro-
cessing the vector field of stresses and displacements by re-
placing 2D convolution operations with 3D convolution as
required to create linear combinations of x and y compo-
nents of stress vectors for generating the displacements in
an elastic network (2). The resulting neural network archi-
tecture contained a total of 51 layers with three encoding
levels for progressively decreasing the resolution and four
decoding levels for restoring the resolution and three
concatenation skip connections for combining the activa-
tions from corresponding encoding and decoding layers to
preserve the spatial resolution ((22); Fig. S1, downward ver-
tical arrows represent skip connections).

To overcome the challenge of obtaining large and precise
data sets for training, we adapted a computational model for
cell migration to generate 184 simulated amoeboid or
mesenchymal cells (Fig. 1, a–c; (28)). To enhance radial
symmetry of the neural network, each image was augmented
by rotating seven times at 45� each. The training set also
included 81 radial patterns of stress vectors spaced one pixel
apart for the enhancement of resolution and radial symmetry
(Fig. 1 d). Although the training process took hours to finish,
the prediction of traction stress took 31–136 ms per field de-
pending on the size (Table S1).
FIGURE 1 An example of stress and displace-

ment fields for training the neural network. Heat

map (a) and vector plot (b) show the traction stress

field. Color scale is in the unit of Newtons/pixel2.

Displacements (c) are calculated assuming a Pois-

son ratio of 0.45 and Young’s modulus of 10 N/

pixel2. Lengths of displacement vectors in pixels

are enlarged five times (c). Segmented lines indi-

cate cell border. To enhance radial symmetry and

resolution of the neural network, the training

set also includes radial patterns of stress vectors

spaced one pixel apart (d). Bar, 5 N/pixel2.



Deep learning traction force microscopy
Testing DL-TFM and FTTC with simulated stress
and displacement fields

To test if the trained neural network was able to generate
correct predictions under conditions mimicking those for
experiments, we placed simulated cells on a hypothetical
substrate of 10,670 Pa as measured for polyacrylamide sub-
strates of 8% acrylamide and 0.1% bis-acrylamide, in which
they exerted a maximal stress of 6000 Pa representative of
NIH 3T3 cells. Heat maps and vector plots of predicted
and ground truth stress fields showed a strong qualitative
resemblance (Fig. 2, a, b, f, and g). Quantitative assessments
were based on normalized RMSE, defined as the RMSE be-
tween predicted and ground truth stress, divided by the root
mean-squared magnitude of traction stress within the cell
border. This approach allowed better comparison of cells
with different magnitudes of traction stress while avoiding
the dominance of error estimation by very small stresses
that occupied most of the cell area.

The normalized RMSE averaged over 17 simulated
testing cells was 10.8 5 0.8% without adding noise.
Imposing noise on displacement vectors at a magnitude
comparable to that in experimental data increased the
average normalized RMSE to 16.65 0.68% without visible
changes to predicted stress vectors (Figs. 2, c and h, and
3 a). The main effect of noise was an increase in small back-
ground vectors (Fig. 2 h).

As a comparison, we applied an open-access implementa-
tion of FTTC to the same data set (15). We first used simu-
lated data to determine the optimal value of L2
regularization parameter l. The method used was similar
FIGURE 2 Traction stress fields of a simulated cell as predicted by DL-TFM (

to provide an overview (a–e). The fields are 104� 104 pixels in size. Vector plots

DL-TFM, when applied to displacement fields without (b and g) or with (c and h

ground truth (a and f). However, small noise vectors appear in the background (g)

vectors (h). Heat maps (d and e) and vector plots (i and j) of stress field gene

qualitatively similar to those of ground truth (a and f). FTTC is performed wit

and 3.5 � 10�10 after adding noise to displacements (e and j). Color scales for
to the L-curve criterion but based on the difference between
predicted and ground truth stress fields ((18); Fig. S2). The
value of l was determined as 1.6 � 10�10 for noise-free dis-
placements and 3.5 � 10�10 after imposing noise.

With optimal l, the FTTC algorithm tested also generated
stress fields that appeared qualitatively similar to the ground
truth and to the prediction of DL-TFM with a slightly higher
background (Fig. 2, d and i). The average normalized
RMSE for FTTC was 14.1 5 0.22% for noise-free data
and 21.5 5 1.56% after imposing noise to displacement
vectors (Fig. 3 a), both significantly above the correspond-
ing normalized RMSE for DL-TFM. Interestingly, using
predicted traction fields for reconstituting substrate dis-
placements, we found that the FTTC algorithm tested
showed a significantly smaller normalized RMSE than
DL-TFM relative to ground truth displacements (Fig. 3 a,
rightmost bars). The heat map of normalized errors for
DL-TFM-predicted traction stresses showed that most
prominent errors were located away from the cell perimeter
and at the shoulder of stress peaks (Fig. 3 d), whereas errors
from FTTC predictions were scattered more randomly
across the cell (Fig. 3 f). In contrast, errors of reconstituted
displacements showed similar patterns between DL-TFM
and FTTC predictions (Fig. 3, h–k), with large errors
concentrated near the cell center where stress vectors
converge. The higher displacement errors for DL-TFM
than FTTC came from the presence of low-level noise
throughout the cell (Fig. 3, h and i), in addition to large er-
rors near the cell center when noise was imposed on dis-
placements (Fig. 3 i).
b, c, g, and h) or FTTC (d, e, i, and j). Magnitudes are rendered as heat maps

of the top left region of the cell are enlarged to provide a detailed view (f–j).

) imposed noise, yields stress fields qualitatively indistinguishable from the

, which becomemore pronounced upon the addition of noise to displacement

rated by FTTC without (d and i) or with imposed noise (e and j) are also

h a regularization parameter l of 1.6 � 10�10 for noise-free data (d and i)

stress heap maps are in the unit of Pascals. Bar, 4000 Pa (d).
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FIGURE 3 Normalized RMSE for DL-TFM and FTTC when applied to

simulated cells with shapes of generic amoeboid or mesenchymal cells.

Average normalized RMSE of traction fields predicted by DL-TFM or
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Indicative of a high inherent resolution for both DL-TFM
and FTTC, we noticed the preservation of pulses and closely
spaced pairs of stress vectors in the predictions of simulated
cells. Using a testing matrix of stress vectors in which adja-
cent stress vectors were separated by a single null pixel, we
found that the pattern was well resolved for both DL-TFM
and FTTC, with or without imposing noise to displacement
vectors (Fig. 4, b–e). Compared with DL-TFM, FTTC
showed more noise spikes on the background for data of
high noise (Fig. 4, c and e). However, when the contrast
of stress against the background was dropped from 100 to
20%, FTTC showed a better preservation of stress magni-
tude and resolution than DL-TFM (Fig. 4, g–j). Together,
these results suggested that the limiting factor for TFM res-
olution was not the algorithm itself but conditions such as
the density of beads on the substrate and the quality of
images.
Scalability of DL-TFM

Scalability determines if a trained neural network is able to
work under a range of imaging or mechanical conditions. To
test the performance at different magnifications, we resized
simulated cells and their displacement fields by a factor
0.8� or 1.25� using bilinear interpolation while maintain-
ing a field size of 160 � 160 pixels (Fig. 5 a). Application
of DL-TFM to resized displacement fields generated pre-
dicted traction fields that matched the resized ground truth
with a normalized RMSE <20% without noise and <25%
with noise (Fig. 5 a). In a second test, stress fields
of 160 � 160 pixels were resampled to 104 � 104 or
FTTC from 17 simulated cells are shown without (blue bars, left side) or

with noise imposed on displacement vectors (orange bars, left side). L2 reg-

ularization of FTTC is performed with l ¼ 1.6 � 10�10 for noise-free data

and 3.5 � 10�10 for noise-imposed data. Predicted displacements are then

calculated from predicted traction fields without (blue bars, right side) or

with imposed noise (orange bars, right side) and compared with the orig-

inal displacements. As judged by the normalized RMSE of predicted trac-

tion fields relative to the ground truth (left side), DL-TFM shows a higher

accuracy than FTTC. However, FTTC generates predicted displacements

fields of smaller normalized RMSE than DL-TFM, regardless of the noise

(right side). Error bars represent SDs. *p > 0.05, **0.01 < p < 0.02,

***p < 0.001. All other adjacent pairs of normalized RMSE are signifi-

cantly different with p < 0.001. The distribution of error is visualized by

rendering the magnitude of error normalized with the magnitude of ground

truth, for traction fields predicted with DL-TFM (d and e) or FTTC (f and g;

color scale unitless) and for displacement fields reconstituted from pre-

dicted traction stress of DL-TFM (h and i) or FTTC (j and k; color scale

unitless). Simulated displacements are used without (d, f, h, and j) or

with (e, g, i, and k) imposed noise. Ground truth traction stresses are shown

as a heat map (b; color scale in Pascals) or vector field (c) (bar, 4000 Pa).

Traction stresses show a lower error when predicted with DL-TFM (d

and e) than with FTTC (f and g). In contrast, displacements show a lower

error when reconstituted with traction stresses predicted with FTTC (j

and k) than with DL-TFM (h and i). Errors of reconstituted displacements

are concentrated at the cell center, where traction vectors converge. DL-

TFM shows a higher background error of displacements throughout the

cell (h and i, light blue background).



FIGURE 4 Resolution test for DL-TFM and FTTC at 100% (a–e) or 20% (f–j) contrast. The testing pattern consists of arrays of pulse stresses separated by

one pixel between adjacent pulses. Heat maps of ground truth (a and f) and stress fields predicted by DL-TFM (b, c, g, and h) and FTTC (d, e, i, and j) indicate

that even at a low contrast (g and i), both DL-TFM (g) and FTTC (i) are able to resolve at least part of the stress pulses when there is no noise. However, DL-

TFM shows a decrease in stress magnitude (g). Adding noise to the displacements at low contrast abolished the resolution for both DL-TFM (h) and FTTC (j),

whereas prominent noise artifacts appeared in the background predicted by FTTC (e and j). FTTC is performed with a regularization parameter l ¼ 1.6 �
10�10 for noise-free displacements and 3.5 � 10�10 for displacements with a noise of 7.65 � 10�3 modeling pixels. Color bars show the scale for stress in

Pascals.

Deep learning traction force microscopy
256 � 256 pixels while maintaining the size of the cell rela-
tive to the size of the field. The normalized RMSE of pre-
dicted traction fields was %20% without noise and <30%
with noise, relative to resampled ground truth (Fig. 5 c).
Although these tests were affected by the accuracy of inter-
polation, the results supported the notion that a trained neu-
ral network for DL-TFM is applicable to a range of cell
sizes, imaging resolutions, or magnifications. We have
also verified that the predictions were unaffected by the po-
sition of the cell relative to the center of the field (Fig. S3).

We then tested the scalability of DL-TFM under different
mechanical conditions by first rescaling traction stresses of
simulated cells for different maximal magnitudes between
1000 and 8000 Pa (Fig. 5 d). Normalized RMSE remained
below20%without imposednoise but increasedprogressively
with decreasing maximal stress in the presence of noise as the
noise became more prominent relative to the decreasing dis-
placements. Similarly, the average normalized RMSE re-
mained low for Young’s moduli over a range of 2500–
40,000 Pa without noise (Fig. 5 b) but increased with Young’s
modulus in the presence of noise, which became prominent
relative to the small displacements on stiff substrates.

Finally, we tested the applicability of neural networks
trained with simulated amoeboid and mesenchymal cells
to other cell shapes, including the wedge shape of kerato-
cytes and spiky shape of developing neurons, which were
generated by adjusting parameters of the simulation model
(28). Predicted stress fields remained qualitatively indistin-
guishable from the ground truth when rendered as either
heat maps or vector plots (Fig. 6). The average normalized
RMSE was similar to the values for simulated amoeboid and
mesenchymal cells at 8.1 5 0.76% for simulated kerato-
cytes without noise and 14.2 5 2.0% with added noise
and 10.9 5 2.2% for simulated neurons without noise and
19.2 5 4.7% with added noise (Fig. 6 i), indicating that
the accuracy was unaffected by the differences in cell shape
and stress distribution. The FTTC algorithm tested also
showed similar normalized RMSE for simulated mesen-
chymal cells (Fig. 3), keratocytes, and neurons (Fig. 6 i) un-
der noise-free conditions. However, the error became
prominent after imposing noise (Fig. 6 i). Although this
was in part because of the lower traction stress and substrate
displacements for simulated keratocytes and neurons than
mesenchymal cells, the smaller error of DL-TFM for the
same input data suggested that FTTC was more prone to
noise than DL-TFM. Together, these tests suggested that
DL-TFM is applicable to a wide range of cells and experi-
mental conditions.
Application of DL-TFM to experimental data

We applied DL-TFM to experimental displacements ob-
tained with NIH 3T3 cells on polyacrylamide substrates
of 8% acrylamide and 0.1% bis-acrylamide (Young’s
modulus ¼ 10,670 Pa). Displacement field was first cor-
rected for residual misalignments of beads and then for de-
fects that stood out as singular vectors against the
surrounding by replacing them with the average of sur-
rounding displacements (see Materials and methods).

Lacking ground truth, the accuracy of TFM was assessed
based on normalized RMSE between measured displace-
ments and displacements calculated from the predicted
Biophysical Journal 120, 3079–3090, August 3, 2021 3085
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FIGURE 5 Scalability of DL-TFM for different spatial and mechanical

conditions. Starting with a simulated cell in an area of 160 � 160 pixels,

the size of the cell and its displacement field are resized by either 1.25�
or 0.8� using bilinear interpolation without (a, blue bars) or with (a, or-

ange bars) imposing noise. Application of DL-TFM to the resized displace-

ment fields yields predicted stress fields that agree with resized stress field.

Similarly, when an area of 160 � 160 pixels with a simulated cell is re-

sampled by bilinear interpolation to 104 � 104 or 256 � 256 pixels (c),

application of DL-TFM to resampled displacement fields yields predicted

stress fields that agree with resampled stress fields without (c, blue bars)

or with (c, orange bars) imposed noise. To test the scalability of mechanical

conditions, simulated cells in an area of 160 � 160 pixels is placed on sub-

strates with Young’s moduli of 2500–40,000 Pa to generate displacements

of different magnitudes (b). Application of DL-TFM to these displacement

fields without noise generates stress fields that agree with the ground truth

(b, blue bars). Imposing noise on the displacement field leads to unaccept-

able results for the very stiff substrate of 40,000 Pa (b, tall orange bar)

because of its very small displacements. Other substrates yield acceptable

results (b, the first four orange bars) based on a threshold of 40%. Finally,

stress field, generated by a simulated cell on a substrate of 160� 160 pixels

with a Young’s modulus of 10,670 Pa, is rescaled such that the maximal

traction stress is 1000, 2000, 4000, or 8000 Pa (d). DL-TFM generates a

predicted stress field that agrees with the corresponding rescaled stress field

in the absence of noise (d, blue bars). Adding noise to the displacement

field did not affect the validity of the predicted stress field based on a

threshold of 40%, except for the weakest stress (d, first orange bar). Error

bars represent SDs.
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stress field. Heat maps and vector plots of stress fields gener-
ated by DL-TFM and FTTC showed qualitatively similar
patterns (Fig. 7, a and b). The average normalized RMSE
from 14 NIH 3T3 cells was 27.7 5 7.2% for DL-TFM
and 36.8 5 12.4% for FTTC (0.01 < p < 0.02), using
l ¼ 1 � 10�9 as the L2 regularization parameter for
FTTC after testing with a range of l values. Heat maps
3086 Biophysical Journal 120, 3079–3090, August 3, 2021
of normalized RMSE between predicted and measured
displacement fields showed that the region of error was
located typically in the area where backward-pointing
stresses transitioned into forward-pointing stresses for
both DL-TFM and FTTC (Fig. 7, e–h). Although these com-
parisons based on measured and predicted displacements
suggested a similar accuracy between DL-TFM and the
FTTC algorithm tested, the results with simulated cells
pointed to the possibility that traction fields obtained with
DL-TFM may have a high accuracy (Fig. 3).

We further compared the distribution of predicted traction
stress and focal adhesions (Fig. 8). Although all the promi-
nent focal adhesions, as seen in the image of GFP-zyxin
(Fig. 8 b), were identified as sites of strong traction stress
(Fig. 8 c), the relationship between the size of focal adhesion
and magnitude of traction stress was known to be nonlinear
(3,4). In addition, some sites of strong traction stress ap-
peared to be at a short distance away from the cell border,
which possibly reflected traction forces exerted by fine ex-
tensions such as filopodia or retraction fibers not easily
visible in low-magnification images.
DISCUSSION

TFM is characterized mathematically as an ill-posed inverse
problem (18), in which multiple solutions may meet the ac-
curacy requirement while showing various degrees of arti-
facts. Although different methods have been developed for
TFM, they followed related linear algebraic approaches, in
conjunction with regularization to address the ill-posed na-
ture (18). As a result, they face the common challenge of
balancing between the accuracy of fit and the minimization
of artifacts, with no definitive way to define the optimal reg-
ularization method or the regularization parameter l (19).

Deep learning has emerged as an appealing general
approach for solving ill-posed inverse problems (20).
Although deep learning also applies regularization, it typi-
cally takes place only during the training stage (21) to pre-
vent overfitting by balancing the goodness of fit for the
training data against the complexity of weights in the neural
network. As a result, deep learning avoids much of the com-
promises of regularization that happens at the prediction
stage of conventional TFM. A second challenge for
FTTC, and to a lesser extent for DL-TFM, is the presence
of singular elements in Green’s tensor. It affects FTTC
directly during the prediction but DL-TFM only during
the generation of training data, which supports the possibil-
ity that a well-trained network for DL-TFM can generate
more accurate predictions than FTTC.

Successful applications of deep learning hinge on two
major requirements, a network architecture compatible
with the problem and the availability of a sizeable and reli-
able training data set. The deployment of U-Net, which was
used widely for segmenting 2D images while preserving im-
age quality, required important modifications to properly
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FIGURE 6 Applications of DL-TFM to simulated cells with shapes

resembling keratocytes (a–d) or developing neurons (e–h). The same model

that created simulated amoeboid or mesenchymal cells are able to generate

Deep learning traction force microscopy
reproduce the relationship between vector fields of stress
and displacement. First, the vector nature of stress and
displacement requires the use of two z-planes for represen-
tation. Second, linear elastic theory indicates that these
planes cannot be processed independent of each other using
2D convolution, as for channels in a color image. Instead,
3D convolution is required to generate the required linear
combinations that describe the relationship between stress
and displacements.

Although the deployment of DL-TFM has been reported
(24), the use of experimental data solved by conventional
methods for training had two major drawbacks. Not only
was it tedious to collect sufficient training data required
for the performance of a neural network, the limitations of
conventional TFM as addressed above also made it difficult
to obtain precise training data. As a result, the performance
of DL-TFM trained with data generated by conventional
TFM is unlikely to surpass the performance of conventional
TFM.

To obtain a large, precise training data set, we have adapt-
ed a simulation model for cell migration to generate unlim-
ited pairs of stress and displacement fields that mimicked
the pattern seen in amoeboid or mesenchymal cells (28).
Although such simulation inevitably involved simplifica-
tions, the similarity of predictions generated by DL-TFM
and by the conventional approach of FTTC argued for the
validity and effectiveness of this approach.

Simulated data also allowed rigorous tests of DL-TFM
under a wide range of conditions. We found that DL-TFM
yielded smaller errors for stress prediction than the FTTC
algorithms tested but cannot rule out the possibility that
an improved implementation of FTTC or other conventional
TFM methods may out-perform DL-TFM in accuracy
(30,31). The accuracy of DL-TFM likely has to do with its
optimization-driven approach that tunes tens of millions of
network weights, guided by pattern recognition, to mini-
mize the deviation between prediction and ground truth.
Although deep learning lacked the analytical clarity of con-
ventional TFM, its unique approach also circumvented the
direct impact of singularity and regularization as seen in
conventional approaches.

Interestingly, traction predictions with FTTC showed a
sizeable error even under noise-free conditions, which
required a nonzero regularization factor for mitigation.
simulated keratocytes and neurons after adjusting the parameters. Ground

truth stress fields are shown as heat maps (b and f) and vector plots (a

and e). Application of DL-TFM to displacement fields generates predicted

stress fields (c, d, g, and h) that are qualitatively similar to the ground truth

(a, b, e, and f). Quantitative comparison of normalized RMSEwith 10 simu-

lated keratocytes and 16 simulated neurons without (i, blue bars) or with

imposed noise to displacements (i, orange bars) suggests that DL-TFM

yields more accurate predictions than FTTC, particularly after imposing

noise (i, orange bars). Error bars indicate SDs. All pairwise comparison be-

tween DL-TFM and FTTC are statistically significant (p < 0.001). Scale

bar, 4000 Pa (a, c, e, and g).
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FIGURE 7 Traction stresses of two NIH 3T3 cells plated on polyacrylamide substrates of 10,670 Pa. The displacement field is analyzed with DL-TFM (a,

c, e, g, i, and k) or FTTC with l¼ 1� 10�9 for L2 regularization (b, d, f, h, j, and l). Heat maps show stress fields predicted by DL-TFM (a and c) or FTTC (b

and d) and the distribution of normalized RMSE between back-calculated and measured displacements for DL-TFM (e and g) and FTTC (f and h). Enlarged

views of stress vectors show strong similarities near the front between DL-TFM (i) and FTTC (j). Differences between stress predictions generated by DL-

TFM (k) and FTTC (l) are visible in the central region where large normalized RMSE are located, although their patterns remain qualitatively similar. The

coordinates of vector plots serve as the guide for locating the corresponding regions in other images. Scale bar, 20 mm (a–h) or 4000 Pa (i–l).

Wang and Lin
The error likely originated from the approximation of the
singular element at the center of Green’s tensor. In addition,
the calculation of traction stress in FTTC does not exactly
represent the reciprocal of this approximation, which may
leave some errors in the prediction. We were also intrigued
by the observation that FTTC was more accurate than DL-
TFM in recreating substrate displacements of simulated
data, which may be related to the differential impact of
the ill-posed nature of TFM on DL-TFM and FTTC.
FTTC also showed a better preservation of stress magnitude
and resolution when the stress field had a very low contrast.
However, because traction forces are predominantly
concentrated at focal adhesions, such low-contrast condi-
tions arise only rarely in TFM.

Although DL-TFM understandably showed a slower
speed than FTTC, the execution time remained well
within 1 s for fields of up to 256 � 256 pixels using a
commonly available computer. In addition, although DL-
TFM required hours to train a neural network, well-trained
networks proved applicable to a wide range of conditions,
3088 Biophysical Journal 120, 3079–3090, August 3, 2021
including cell size and shape, stress magnitude, image
magnification, and substrate stiffnesses. Thus, DL-TFM
may serve as a versatile alternative to conventional TFM.
In addition, DL-TFM provides an independent approach
whenever the prediction of conventional TFM is in doubt.
Finally, the testing data set and strategy for the present
study may prove valuable for the rigorous assessment of
other TFM methods, whereas simulation may represent
an appealing general approach for generating ‘‘big data’’
for machine learning, thereby avoiding the time-consuming
collection of real-life data.
CONCLUSIONS

To address the challenge of TFM as an ill-posed inverse
problem, we hereby introduced a new approach based on
deep learning, which, when combined with large data sets
generated by simulation, circumvented much of the chal-
lenges of conventional TFM. DL-TFM generated predic-
tions qualitatively similar to those of the conventional



FIGURE 8 Relationship between traction stress predicted by DL-TFM (c

and d) and focal adhesions imaged with transfected GFP-zyxin (b). Phase-

contrast image (a) shows an NIH 3T3 fibroblast transfected with GFP-zyxin

to label focal adhesions (b). Application of DL-TFM reveals a number of

sites of strong stress, as shown in the heat map (c; color scale indicates

stress in Pascals) and vector plot (d). Note that although all the prominent

focal adhesions show prominent traction activities, the correlation between

traction stress and focal adhesion size or intensity is not linear. Some trac-

tion stresses appear to colocalize with nascent focal adhesions (b and c; red

arrows), whereas other strong stresses are at a distance from the cell edge

(c; yellow arrow), possibly reflecting small adhesive extensions such as

retraction fibers or filopodia. Scale bar, 20 mm (a) or 4000 Pa (d).

Deep learning traction force microscopy
FTTC approach but at a higher accuracy than several imple-
mentations of FTTC tested using simulated testing data.
DL-TFM also showed robust performances with regard to
varying cell size, shape, magnification, substrate stiffness,
stress magnitude, and stress pattern. We concluded that
DL-TFM is a reliable and more accurate alternative to at
least some of the conventional TFM methods for predicting
cellular traction stress under a wide range of conditions.
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