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Two sets of LSGs were identified using BLAST: Caenorhabditis
elegans species-specific genes (SSGs, 1423), and Caenorhabditis
genus-specific genes (GSGs, 4539). The data contained in this
article show SSGs and GSGs have significant differences in
evolution and that most of them were formed by gene duplication
and integration of transposable elements (TEs). Subsequent
observation of temporal expression and protein function presents
that many SSGs and GSGs are expressed and that genes involved
with sex determination, specific stress, immune response, and
morphogenesis are most represented. The data are related to
research article “Genome-wide identification of lineage-specific
genes within Caenorhabditis elegans” in Journal of Genomics [1].
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More specific subject
area
Genomics
Type of data
 Table, figure, image

How data was acquired
 Download raw data online and analyze in silico using supercomputing blade systems

Data format
 Analyzed

Experimental factors
 Species of wild-type C. elegans N2 were cultured for a week, and subjected to a whole RNA extraction

Experimental features
 RT-PCR experiments were conducted with 16 pairs of unique primers to amplify target sequences

Data source location
 Wuhan, China

Data accessibility
 Data is available with this article
Value of the data
�T
he data in our study shows the genetic features of SSGs and GSGs and that their expression profiles at different
developmental stages.

�T
he data of the origin analysis of SSGs and GSGs indicated that gene duplication and exaptation from TEs mainly
generating these genes.

�T
he data derived from protein function prediction in silico suggests SSGs and GSGs may be involved in specific stress,
morphogenesis, and immune response, which indicates these genes might be relevant to some essential processes to
adapt extreme environment.
1. Data, materials and methods

1.1. Sequence data

The proteomes of 58 vertebrate and 21 invertebrate species, excluding nematode species, were
downloaded from Ensembl. The genomes and proteomes of nine Caenorhabditis species and 12 other
nematode species were downloaded from WormBase. The UniProtKB protein data were downloaded
from EBI (ftp://ftp.ebi.ac.uk/pub/databases/uniprot/knowledgebase/). All of the expression data (ESTs
and mRNAs) of Caenorhabditis elegans were downloaded from UCSC (http://hgdownload.cse.ucsc.edu/
downloads.html). The RNA-Seq data of C. elegans were obtained from EBI (http://www.ebi.ac.uk/ena/)
and NCBI (http://www.ncbi.nlm.nih.gov/sra/).
1.2. Homolog search

The two sets of lineage-specific genes (LSGs), namely SSGs and GSGs, within C. elegans were
identified through a pipeline (Fig. 1) based on a homolog search using BLAST [2] with an e-value cutoff
of 10�5 [3–6] and scoring matrices of Blossum62, Pam70, and Pam30. As the proteins are of different
sizes and scored by different matrices, we divided 26,150 C. elegans proteins into three sets: a set of
proteins that are less than 30 aa in length, a set between 30 and 70 aa, and a set more than 70 aa, for
BLASTP analyses. The details of our result regarding these LSGs are shown in Supplementary File 1.
1.3. Characterization of SSGs, GSGs, and ECs

The genetic feature information for the LSGs was downloaded from Ensembl using BIOMART
(http://www.ensembl.org/). We used Perl scripts to calculate the gene length, protein length, exon
number, and GC content. In addition, we determined the significant differences between SSGs, CTSGs,
and evolutionarily conserved genes (ECs) through one-way ANOVA. The gene length, protein length,
exon number, and GC content are provided in Table 1.

ftp://ftp.ebi.ac.uk/pub/databases/uniprot/knowledgebase/
http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html
http://www.ebi.ac.uk/ena/
http://www.ncbi.nlm.nih.gov/sra/
http://www.ensembl.org/
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Fig. 1. Procedure for identifying lineage-specific genes within C. elegans. BLASTP was primarily used in this pipeline with an e-
value less than 1e�5. C. elegans proteins were marked in orange, the proteins of species excluding C. elegans in green, and the
results of SSGs, GSGs, and ECs (evolutionarily conserved genes) in blue. “Hit” in this figure represents a C. elegans protein has
BLAST hits in BLASTP, whereas “No hit” represents a C. elegans protein without any hit.
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1.4. Origin analysis of LSGs

We downloaded the information about the genomic positions of TE sequences from the UCSC
Genome Browser, as well as that of paralogs from Ensembl, and compared their positions with that of
SSGs and GSGs to identify the LSGs containing TE sequences and the LSGs having homologs. If a
lineage-specific gene has a complete overlap with TEs, we consider it was generated by the
mechanism of exaptation from TEs; if it completely overlaps with paralogs, we consider it was from
gene duplication. The results are shown in Table 2.

However, for the retroposition, we referred to the previous study [7] and developed a sophisticated
pipeline to screen the chimeric genes: we mapped the C. elegans protein sequences onto its genome
using TBLASTN (E-valuer10�3) [8]. Then, we analyzed the TBLASTN results and aligned the best-
selected matches with each protein using GENEWISE [9]. Only proteins having multiple exons were
selected for subsequent analyses. In parallel, we extracted and merged adjacent homology matches
(distanceo40 bp) from the TBALSTN results, requiring the merged target sequences have significant
similarity with the query on amino acid level (430%) and more than 50 aa in length. After the above
steps, similarity searches of the merged sequences against the multi-exon proteins were conducted
using FASTA [10], and the closest matches were selected as candidate parental-retrogene proteins.
Then we verified the absence of introns from these putative retrogenes with 10,000 bp flanking
regions via GENEWISE, and screened out the sequences with scores over 35. We checked the match of
each parental-retrogene sequence, observing at least two introns were contained in the matching part
of the parental gene, and confirmed the alignment over 40%. After identification of the retrogenes,



Table 2
Categories of C. elegans LSGs.

Mechanism of Formation of C. elegans LSGs N

SSGs GSGs

Exaptation from TEs 374 (26.28%) 1588 (34.99%)
Gene duplication 355 (24.95%) 2527 (55.67%)
Exaptation from TEs and gene duplication 107 (7.52%) 887 (19.54%)
Total 622 (43.71%) 3228 (71.12%)

Table 1
Characteristics of SSGs, GSGs, and ECs.

Gene size (nt),
mean7SE

Exon number,
mean7SE

Protein size (aa),
mean7SE

GC content,
mean7SE

Transcripts,
%

SSGs 1057.39730.22 142.4773.02 3.1270.06 37.8470.15 32.04
GSGs 1828.92737.48 282.2172.97 4.4570.04 36.9370.06 58.69
ECs 4744.42741.00 500.4373.80 7.4570.04 37.0770.03 80.97
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Fig. 2. The proportion of LSGs expressed in different developmental stages. The vertical axis represents the proportion of genes
with read supports, whereas, the abscissa axis represents the different developmental stages.
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they were compared to the gene positions of the annotated genes on WormBase. We defined an
annotated gene with a specific amount of overlap (coding sequence450 bp) with a retrogene as a
chimeric gene. If the overlap exceeded 90 bp, the chimeric genes were considered maybe as false
positives derived from the parental genes or their flanking regions. Then we aligned the recruited
coding sequences of retrogenes to their parental genes with extending 10,000 bp flanking regions to
ensure the reliability of these chimeric genes. The complete information regarding retrogenes and
chimeric genes identified is shown in Supplementary File 2.



Fig. 3. Results of RT-PCR. The first column represents the trans2k DNA Marker, and the other columns represent the 16 LSGs of
WBGene00007393, WBGene00018297, WBGene00077563, WBGene00017986, WBGene00013778, WBGene00045297,
WBGene00015229, WBGene00013713, WBGene00044080, WBGene00009308, WBGene00008603, WBGene00003764,
WBGene00015821, WBGene00015597, WBGene00021289, and WBGene00002117, respectively.
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1.5. Transcriptional analysis

Cleaned by SeqClean (https://sourceforge.net/projects/seqclean/), the 381,408 transcript sequences
were mapped to the C. elegans genome using BLAT [11] with the default parameters. Then the
following criteria were imposed to obtain high-quality and clearly mapped transcripts: mapping
lengthZ150 bp, identityZ98%, coverage within mappingZ97%, and coverage within whole
transcriptZ75%. When a transcript was mapped to multiple genomic loci, we discarded the
ambiguous ones (difference in BLAT scoreso2%) and attained the best matches from the rest.
Furthermore, the genomic positions of the LSGs were compared with the mapped positions of ESTs
and full-length cDNAs. A gene that overlapped by more than 100 bp with the ESTs was considered
likely to be expressed. We then determined the significant differences between SSGs, CTSGs, and ECs
through a t-test.

To further analyze the expression profile, we downloaded the RNA-Seq data from different embryo
stages, including 1-cell, 2-cell, 4-cell, 28-cell, early, and late embryos with the accession codes
SRX004864, SRX092477, SRX092371, SRX085219, SRX092479, and SRX004865, respectively [12].
Simultaneously, we downloaded information for the larva stages, including L1 larva, L2 larva, L3 larva,
L4 larva, and L4 male larva with the accession codes SRX004867, SRX001872, SRX001875, SRX001874,
and SRX004868, respectively [12]. Additionally, we downloaded the adult stages, including young
adult, adult hermaphrodite, and adult male with the accession codes SRX001873, SRX191947, and
SRX191950, respectively [12,13]. After downloading, the TopHat [14] and HTSeq [15] software
programs were used to map all of the reads per time point independently back to the C. elegans
genome and to then calculate the read number per gene. Moreover, the expression levels of LSGs were
normalized to reads per kilobase per million mapped reads, which is known as the RPKM method.
With the RPKM, we compared the number of expressed SSGs and GSGs at each developmental stage
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to observe their overall expression levels. After screening out the SSGs and GSGs expressed only at the
larva and adult stages, we examined the possible motifs contained in their proteins using
InterProScan. The complete information regarding SSGs and GSGs, including the RPKM values, is
shown in Supplementary Files 3 and 4. To compare the number of expressed SSGs and GSGs, we
calculated the proportion of expressed genes at each developmental stage and gain the result in Fig. 2.
InterProScan results for the predicted functions are provided in Supplementary File 5.

1.6. Functional assignment and categorization of SSGs and GSGs

We downloaded the current developmental and functional descriptions of C. elegans from
WormBase (http://www.wormbase.org/). Based on the descriptions, functional assignments of some
SSGs and GSGs were obtained and clustered into different categories. A table summarizing the gene
numbers of each class description of SSGs and GSGs is provided in Supplementary File 6. In addition, a
table of the gene class descriptions of SSGs and GSGs is provided in Supplementary File 7. For the LSGs
without annotations, we employed the ProtFun 2.2 server (http://www.cbs.dtu.dk/services/ProtFun/)
to predict their cellular roles and gene ontology categories. The functions of LSGs predicted using
ProtFun are provided in Supplementary File 8.

1.7. RT-PCR experiments

The total RNA from a mixed-stage population of wild-type C. elegans N2, which was washed three
times with an M9 buffer solution, was isolated using a Trizol Reagent kit (Invitrogen, Carlsbad, CA,
USA). We then treated the RNA with Recombinant DNase I (TaKaRa, Japan) to eliminate genome
pollution before reverse transcription. Simultaneously, we designed 16 pairs of unique primers to
amplify the target sequences and then conducted RT-PCR experiments with a subset of the LSGs
identified in our study. Gel image is shown in Fig. 3 and the primer information of RT-PCR is located in
Supplementary File 9.
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