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Abstract

Background: Very little is known about manganese (Mn)-toxicity-responsive genes in citrus plants. Seedlings of
‘Xuegan’ (Citrus sinensis) and ‘Sour pummelo’ (Citrus grandis) were irrigated for 17 weeks with nutrient solution
containing 2 μM (control) or 600 μM (Mn-toxicity) MnSO4. The objectives of this study were to understand the
mechanisms of citrus Mn-tolerance and to identify differentially expressed genes, which might be involved in
Mn-tolerance.

Results: Under Mn-toxicity, the majority of Mn in seedlings was retained in the roots; C. sinensis seedlings
accumulated more Mn in roots and less Mn in shoots (leaves) than C. grandis ones and Mn concentration was
lower in Mn-toxicity C. sinensis leaves compared to Mn-toxicity C. grandis ones. Mn-toxicity affected C. grandis
seedling growth, leaf CO2 assimilation, total soluble concentration, phosphorus (P) and magenisum (Mg) more than
C. sinensis. Using cDNA-AFLP, we isolated 42 up-regulated and 80 down-regulated genes in Mn-toxicity C. grandis
leaves. They were grouped into the following functional categories: biological regulation and signal transduction,
carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, lipid metabolism, cell wall
metabolism, stress responses and cell transport. However, only 7 up-regulated and 8 down-regulated genes were
identified in Mn-toxicity C. sinensis ones. The responses of C. grandis leaves to Mn-toxicity might include following
several aspects: (1) accelerating leaf senescence; (2) activating the metabolic pathway related to ATPase synthesis
and reducing power production; (3) decreasing cell transport; (4) inhibiting protein and nucleic acid metabolisms;
(5) impairing the formation of cell wall; and (6) triggering multiple signal transduction pathways. We also identified
many new Mn-toxicity-responsive genes involved in biological and signal transduction, carbohydrate and protein
metabolisms, stress responses and cell transport.

Conclusions: Our results demonstrated that C. sinensis was more tolerant to Mn-toxicity than C. grandis, and that
Mn-toxicity affected gene expression far less in C. sinensis leaves. This might be associated with more Mn
accumulation in roots and less Mn accumulation in leaves of Mn-toxicity C. sinensis seedlings than those of C.
grandis seedlings. Our findings increase our understanding of the molecular mechanisms involved in the responses
of plants to Mn-toxicity.
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Background
Manganese (Mn), which is the twelfth abundant element
and the third most common element in the Earth’s crust,
is absorbed mainly as Mn2+ by plant roots [1]. Mn, an
essential trace element for the normal growth and devel-
opment of higher plant, is involved in many biochemical
processes. With decreasing pH, the amount of exchange-
able Mn (mainly Mn2+ form) increases in the soil solution
[2]. Like other heavy metals, however, Mn is harmful to
most of the plants when present in excess [3,4]. After
aluminum (Al), Mn-toxicity is probably the most impor-
tant factor limiting plant productivity in acidic soils, which
comprise up to 50% of the world’s potentially arable lands
[5]. Furthermore, the acidity of the soils is gradually in-
creasing due to rapid industrialization, the emission of
acidic gases and consequently acid deposition [6].
Disturbance of plant metabolism by Mn-toxicity happens

in multiple ways. Toxic effects of Mn on plants include in-
hibition of growth, transpiration and photosynthesis [4,7-9],
apoplastic deposition of oxidized Mn and phenolics [10,11],
induction of oxidative stress through direct generation of
reactive oxygen species (ROS) [3,12-16], interfering with
the absorption, translocation, and use of other mineral
elements [4,15,17,18], impairment of leaf structure and
chloroplast ultrastructure [18,19], alteration of hor-
mone balances [18,20,21], modification of enzyme (i.e.
ribulose-1,5-bisphosphate carboxylase/oxygenase [7,8], Mn-
dependent superoxide dismutase [22], oxalate oxidase [23],
indole-acetic acid oxidase [20], glycosy transferase [24],
IAA-amino acid hydrolases [25], phenylalanine ammonia-
lyase [26], phosphoenolpyruvate carboxykinase [27] and
Mn-peroxidase [10]) activities, and affecting carbohy-
drate, amino acid, protein and nucleic acid metabolisms
[4,8,10,13,14,17,18,28].
To deal with heavy metal stresses, plants have evolved a

considerable degree of developmental plasticity, including
adaptive responses via cascades of molecular networks
[29]. Increasing evidence shows that plant responses to
heavy metal stresses is associated with changes in the ex-
pression profiles of genes involved in a broad spectrum of
physiological, biochemical and cellular processes including
carbohydrate and energy metabolism, photosynthesis, pro-
tein biosynthesis and degradation, nucleic acid metabo-
lism, signal transduction, transcriptional regulation, cell
transport and stress responses [30,31]. However, limited
data are available on the differential expression of genes in
response to Mn-toxicity in plants.
Techniques for gene expression analyses in plants have

been widely explored. cDNA-amplified fragment length
polymorphism (cDNA-AFLP), which does not require
prior sequence information, is an efficient, sensitive, and
reproducible technology for the discovery and identifica-
tion of genes based on their polymorphism or differen-
tial expression patterns [32]. This technique is a robust
and high-throughput tool for analysis of genome-wide
gene expression fluctuation induced by a specific stress
and is also a useful tool for the isolation of novel genes
[30,31,33].
Citrus belongs to evergreen subtropical fruit trees and is

cultivated in humid and subhumid of tropical, subtropical,
and temperate regions of the world mainly on acidic soils.
Although the effects of Mn-toxicity on citrus chloroplast
ultrastructure, CO2 assimilation, carbohydrates, photosyn-
thetic electron transport and antioxidant systems have
been investigated [8,19], very little is known about Mn-
toxicity-responsive genes in citrus plants. In this study,
we investigated the effects of Mn-toxicity on growth, leaf
CO2 assimilation, leaf concentrations of malondialdehyde
(MDA), chlorophyll (Chl) and total soluble protein, root,
stem and leaf concentration of Mn, leaf phosphorus (P)
and magnesium (Mg) concentrations, and expression of
leaf genes revealed by cDNA-AFLP in Citrus grandis and
Citrus sinensis seedlings having different Mn-tolerance.
The objectives of this study were to understand the mecha-
nisms of citrus Mn-tolerance and to identify differentially
expressed genes, which might be involved in Mn-tolerance.

Results
Plant growth, root, stem and leaf Mn concentration, and
leaf Mg and P concentrations
For C. grandis, Mn-toxicity decreased root, shoot and
whole plant (root + shoot) dry weight (DW), and increased
the ratio of root DW to shoot DW. However, Mn-toxicity
did not significantly affect root, shoot and whole plant DW
in C. sinensis seedlings except for increased ratio of root
DW to shoot DW. Root DW, whole plant DW and the ra-
tio of root DW to shoot DW were higher in C. sinensis
seedlings than in C. grandis ones or similar between two
species, except that shoot DW was lower in the former at
the 2 μM Mn treatment (Figure 1). In addition, a few C.
grandis leaves from the minority of Mn-toxicity plants be-
came interveinal chlorosis or necrotic blotching of foliage,
while no visible symptoms occurred in Mn-toxicity C.
sinensis leaves (Additional file 1).
As shown in Figure 2, Mn-toxicity increased root, stem

and leaf Mn concentration, Mn distribution in roots, Mn
uptake per plant and per root DW, and decreased Mn dis-
tribution in stems and leaves. Under control condition, all
these parameters did not significantly differ between C.
grandis and C. sinensis seedlings. When exposed to Mn-
toxicity, stem Mn concentration, Mn uptake per plant and
Mn distribution in roots were higher in C. sinensis seedlings
than in C. grandis ones, while leaf Mn concentration and
Mn distribution in leaves were lower in the former than in
the latter.
Mn-toxicity decreased P and Mg concentrations in C.

grandis leaves, but did not significantly affect them in C.
sinensis leaves (Figure 3).
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Figure 1 Effects of Mn-toxicity on growth of Citrus grandis and C. sinensis seedlings. (A-C) Root, shoot and root + shoot DW. (D) Ratio of
root DW to shoot DW. Bars represent means ± SE (n = 10). Different letters above the bars indicate a significant difference at P < 0.05.
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Leaf total soluble protein, MDA and Chl concentrations
and gas exchange
Total soluble protein concentration was decreased by
Mn-toxicity in C. grandis leaves, but was not signifi-
cantly affected in C. sinensis ones (Figure 4A). As shown
in Figure 4B, Mn-toxicity did not significantly affect leaf
concentration of MDA.
Mn-toxicity decreased CO2 assimilation (Figure 5A),

transpiration (Figure 5B) and stomatal conductance
(Figure 5C) in leaves of C. grandis and C. sinensis, espe-
cially in the former. Mn-toxicity increased intercellular
CO2 concentration in C. grandis leaves, but did not sig-
nificantly affect it in C. sinensis leaves (Figure 5D). Mn-
toxicity did not significantly affect leaf concentrations of
Chl a+b, Chl a and Chl b, and the ratio of Chl a to Chl b
in the two citrus species (Figure 5E-H).

Identification of differentially expressed genes
by cDNA-AFLP
A total of 256 selective primer combinations were used
for the cDNA-AFLP analysis in order to identify the
genes responsive to Mn-toxicity in the leaves of two cit-
rus species differing in Mn-tolerance (Figure 6). For C.
grandis leaves, a total of 16–37 (an average of 21.4) clear
and unambiguous transcript-derived fragments (TDFs)
were detected with each premier combination, which
resulted in approximately 5490 TDFs, ranging from 100–
750 bp. A total of 223 differentially expressed and repro-
ducible TDFs were recovered from the silver-stained
cDNA-AFLP gels based on their presence, absence or dif-
ference in the levels of expression. All these TDFs were
re-amplified, ligated and sequenced, and 213 cDNA frag-
ments produced useable sequence data. TDF sequences
were compared with those present in the GenBank data-
base (Additional file 2). Of the 213 TDF sequences, 99
TDFs showed significant homology to genes encoding
known or putative proteins, and 23 TDFs were homolo-
gous to genes encoding uncharacterized proteins, hypo-
thetical proteins or unknown proteins. The remaining 91
TDFs did not show homology to any nucleotide or amino
sequence in the public databases. Of these 122 matched
TDFs, 42 (34.4%) TDFs increased and 80 (65.6%) de-
creased in response to Mn-toxicity. According to the bio-
logical functional properties, these TDFs were classified
into the following functional categories: biological regula-
tion and signal transduction (18.9%), carbohydrate and en-
ergy metabolism (10.7%), nucleic acid metabolism (4.1%),
protein metabolism (17.2%), lipid metabolism (0.8%), cell
wall metabolism (8.2%), stress responses (10.7%), cell
transport (6.6%), other and unknown biological processes
(23.0%) (Additional file 2, Figure 7B).
For C. sinensis leaves, a total of 16–37 (an average of

21.3) clear and unambiguous TDFs were obtained with
each premier pair, which yield approximately 5450 TDFs,
ranging from 100–750 bp. A total of 20 differentially
expressed and reproducible TDFs were isolated from the
silver-stained cDNA-AFLP gels. All these TDFs were se-
quenced, and produced readable sequences (Additional
file 3). Of the 20 TDFs, 12 TDFs were homologous to
genes encoding known or putative proteins, and three
TDFs belonged to genes encoding hypothetical proteins.
The remaining five TDFs had no database matches.
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Figure 2 Effects of Mn-toxicity on root, stem and leaf Mn concentration, Mn uptake and Mn distribution. (A-C) Root, stem and leaf Mn
concentration. (D) Mn uptake per plant. (E-G) Mn distribution in roots, stems and leaves. (H) Mn uptake per root DW. Bars represent means ± SE
(n = 4). Different letters above the bars indicate a significant difference at P < 0.05.
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Among the 15 matched TDFs, seven (46.7%) TDFs were
up-regulated and eight (53.3%) was down-regulated by
Mn-toxicity. These TDFs were involved in biological regula-
tion and signal transduction (33.3%), carbohydrate and en-
ergy metabolism (13.3%), nucleic acid metabolism (13.3%),
protein metabolism (6.7%), cell transport (6.7%), other and
unknown biological processes (26.7%) (Additional file 3,
Figure 7A).

qRT-PCR analysis of some Mn-toxicity-responsive genes
To validate the cDNA-AFLP expression patterns, 15 TDFs
from C. grandis leaves and one TDF from C. sinensis ones
were selected for qRT-PCR analysis. The expression levels
of all these TDFs except for two TDFs (TDFs # 232–1 and
160–6) matched well with the expression profiles ob-
served with cDNA-AFLP (Figure 8). The discrepancy in
expression patterns for two TDFs between qRT-PCR and
cDNA-AFLP analysis might be due to gene family com-
plexity. Nevertheless, the cDNA-AFLP technique allowed
us to isolate the differentially expressed genes under Mn-
toxicity.

Discussion
C. sinensis is more tolerant to Mn-toxicity than C. grandis
As shown in Figures 1 and 2A-C, 600 μM Mn treatment
greatly inhibited C. grandis plant growth, especially the
shoots and increased the concentration of Mn in roots,
stems and leaves, and foliar Mn concentration for 600 μM
Mn treatment was far more than the sufficiency range of
25–200 mg kg-1 DW for sweet orange (C. sinensis) leaves
[34]. Based on these results, plants that received 600 μM
Mn are considered Mn-excess (Mn-toxicity). Mn-toxicity-
induced decrease in plant DW and increase in root DW/
shoot DW ratio (Figure 1) agree with the previous results
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Figure 3 Effects of Mn-toxicity on P (A) and Mg (B) concentrations
in leaves. Bars represent means ± SE (n = 4). Different letters above
the bars indicate a significant difference at P < 0.05.
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Figure 4 Effects of Mn-toxicity on total soluble protein (A) and
MDA (B) concentrations in leaves. Bars represent means ± SE (n =
4). Different letters above the bars indicate a significant difference at
P < 0.05.
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obtained on C. grandis [8] and with the view that Mn-
toxicity affects plant tops more than root systems [4]. Mn-
toxicity, however, had no influence on the ratio of root DW
to shoot DW in lucerne (Medicago sativa) plants, despite
Mn-toxicity depressed growth of shoots and roots [35].
Our results showed that Mn-toxicity C. grandis plants

had decreased root, shoot and root + shoot DW, and in-
creased ratio of root DW to shoot DW, while Mn-toxicity
did not significantly affect C. sinensis growth except for in-
creased root DW/shoot DW ratio (Figure 1), meaning that
C. sinensis is more tolerant to Mn-toxicity than C. grandis.
This is also supported by our data that the gas exchange
in C. grandis leaves was affected by Mn-toxicity far more
than in C. sinensis ones (Figure 5A-D), and that Mn-
toxicity decreased total soluble protein, P and Mg concen-
trations only in C. grandis leaves (Figures 3 and 4A). Like
that of previous workers [8,36,37], the observed lower
CO2 assimilation in Mn-toxicity leaves of C. grandis and
C. sinensis was primarily caused by non-stomatal factors
because the decreases in both CO2 assimilation and sto-
matal conductance was accompanied by unchanged or in-
creased intercellular CO2 assimilation (Figure 5A, C and
D). It is noteworthy that the reduction in CO2 assimilation
in leaves of Mn-toxicity plants could not attributed to
photo-oxidative damage and decreased Chl, because there
were no significant differences in leaf concentrations of
MDA (a marker of peroxidative damage), Chl a+b, Chl a
and Chl b (Figures 4B and 5E-G) between control and
Mn-toxicity leaves. Similar results have been obtained on
C. grandis [8].
Under Mn-toxicity, the majority of Mn in C. sinensis

and C. grandis plants was retained in the roots (Figure 2E),
as previously found for C. grandis [8], lucerne [35] and
Douglas fir [38]. However, in rice exposed to Mn-toxicity,
Mn was predominantly accumulated in leaves compared
with roots [39]. The tolerance of plants to Mn is associated
not only with low Mn uptake, but also with relatively little
Mn translocation from roots to shoots [40,41]. Our results
showed that under Mn-toxicity, C. sinensis plants accumu-
lated more Mn in roots and less Mn in shoots than C.
grandis ones, and that the concentration of Mn was lower
in Mn-toxicity C. sinensis leaves than in C. grandis ones
(Figure 2). This might contribute to the Mn-tolerance of
C. sinensis. We isolated 122 differentially expressed TDFs
from Mn-toxicity C. grandis leaves, which belong to differ-
ent functional categories (Additional file 2 and Figure 7B),
meaning that Mn-toxicity affected different physiological
and biochemical pathways. In contrast, we only identified
15 differentially expressed TDFs from Mn-toxicity C.
sinensis leaves (Additional file 3 and Figure 7A). Obviously,
the transcript profile was less affected by Mn-toxicity in C.
sinensis leaves compared to C. grandis ones, which may be
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Figure 5 Effects of Mn-toxicity on gas exchange and Chl of Citrus grandis and C. sinensis leaves. (A-D) Leaf CO2 assimilation, transpiration,
stomatal conductance and intercellular CO2 concentration. (E-G) Leaf concentrations of Chl a + b, Chl a and Chl b. (H) Leaf ratio of Chl a/b. Bars
represent means ± SE (n = 4 or 5 ). Different letters above the bars indicate a significant difference at P < 0.05.
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associated with the less Mn accumulation in Mn-toxicity
C. sinensis leaves (Figure 2C and G). These data also sup-
port above inference that C. sinensis is more tolerant to
Mn-toxicity than C. grandis.

Genes involved in biological regulation and
signal transduction
Protein phosphorylation, a versatile post-translational
modification (PTM), is involved in almost all plant signal
pathways and plays important roles in regulation of abi-
otic stress responses [42]. Phosphorylation and dephos-
phorylation of a protein often serve as an “on-and-off”
switch in the regulation of cellular activities. For optimal
regulation, kinases and phosphatases must strike a bal-
ance in any given cell [43]. As shown in Additional file
2, Mn-toxicity decreased the expression levels of genes
involved in phosphorylation [leucine-rich receptor-like
protein kinase (TDF #066-4), probable receptor-like pro-
tein kinase (TDF #104-5), Ser/Thr protein kinase isolog
(TDF #170-1), VH1-interacting kinase (TDF #199-1),
calcium-dependent protein kinase 1-like (TDF #165-2)
and OBP3-responsive gene 1 (TDF #238-1) genes] and
dephosphorylation [protein phosphatase 2a, regulatory
subunit, putative (TDF #044–1)] except for increased ex-
pression of a mitogen-activated protein kinase 1 (MAPK
1, TDF #089–1) gene in C. grandis leaves. This means
that the balance between phosphorylation and dephos-
phorylation was upset and phosphorylation of some pro-
teins might be impaired in Mn-toxicity C. grandis ones.
MAPK cascades are important signal modules that
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Figure 6 cDNA-AFLP profiles using one EcoR I selective primer and eight Mes I selective primers. One EcoR I selective primer: EcoR I-AC;
Eight Mes I selective primers: Mes I-AC, AG, AT, AA, CC, CG, CT and CA; 1: Control leaves of Citrus grandis; 2: Mn-toxicity leaves of C. grandis;
3: Control leaves of C. sinensis; 4: Mn-toxicity leaves of C. sinenis; Arrows indicate differentially expressed TDFs.
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convert signals generated at the receptors/sensors to ap-
propriate cellular responses [44]. Increasing evidence
demonstrates the role of MAPK signal in different heavy
metal stresses for different plant species [45]. The ob-
served higher expression level of MAPK 1 (TDF #089–
1) in Mn-toxicity leaves agrees with the previous reports
that excess copper (Cu), cadmium (Cd) and mercury
(Hg) led to the activation of a novel MAPK gene
OsMSRMK2 from Japonica-type rice [46], and that
MAPK pathways were activated by excess Cu and Cd in
M. sativa seedlings [47]. Thus, MAPK cascade might play
a role in the responses of plants to Mn-toxicity. In contrast
to C. grandis, VH1-interacting kinase (TDF #199a) gene in
C. sinensis leaves was induced by Mn-toxicity (Additional
file 3).
MAPKs are able to phosphorylate different substrates

in different cellular compartments, including transcription
factors (TFs) in the nucleus [29]. Thus, genes related to
TFs might be affected in Mn-toxicity C. grandis leaves due
to altered expression level of MAPK 1 (TDF #089-1) gene
(Additional file 2). As expected, Mn-toxicity increased the
expression levels of genes encoding TF jumonji domain-
containing protein (TDF #09-2) and Myb family transcrip-
tion factor (TDF #232-1), and decreased the expression
levels of genes encoding TF ILR3 (TDF #105-2), C3H4
type zinc finger protein (TDF #156-2), putative TF (TDF
#045-2) and DNA-binding storekeeper protein-related
transcriptional regulator (TDF #131-1) in C. grandis leaves
(Additional file 2). Jumonji C (jmjC) domain-containing
proteins have been shown to function as demethylases
and to involve in chromatin structure and gene expression
[48]. Recently, Govind et al. [49] showed that two Jumonji
TFs (Jumonji like TF and TF jumonji domain-containing
protein) and other genes (Lea5, HSP20 and HSP70) were
induced in drought-stressed peanut (Arachis hypogaea)
plants, which agrees with our results that Mn-toxicity
C. grandis leaves had higher mRNA levels of gene encod-
ing TF jumonji domain-containing protein (TDF #09-2,
Additional file 2). They also found that silencing of
Jumonji (JMJC) made the transgenic tobacco (Nicotiana
benthamiana) plants more tolerant to drought, while
down-regulation of HSP70 resulted in susceptibility [49].
Rampey et al. [50] reported that ilr3-1 Arabidopsis seedlings
were less sensitive than wild type to Mn-toxicity. ILR3 is a
basic helix–loop–helix type TF, which seems to regulate
metal homeostasis in part through the action of putative
Fe/Mn CCC1-like (VIT1-like) transporters. Therefore,
the down-regulation of ILR3 in Mn-toxicity C. grandis
leaves might be an adaptive response. Like C. grandis, the
expression of DNA-binding storekeeper protein-related
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transcriptional regulator (TDF #131a) was inhibited in C.
sinensis leaves. ILR3 (TDF #105b), however, was up-
regulated in Mn-toxicity C. sinensis leaves (Additional file
3).
Calcium (Ca) is a secondary messenger and has been

suggested to participate in heavy metal signal [29]. Indeed,
Ca concentration in runner bean (Phaseolus coccineus)
cells greatly increased in response to Cd stress [51]. Ca
may interact with calmodulin to propagate the signal
and ultimately to regulate downstream genes involved
in heavy metal transport, metabolism, and tolerance [52].
In this study, Mn-toxicity decreased the expression levels
of Ca-dependent protein kinase 1-like (TDF #165-2),
calmodulin-binding transcription activator 5 (TDF# 102)
and Ca2+-binding protein (TDF #186-2) genes in C. grandis
leaves, and increased the expression levels of Ca-binding
EF-hand domain-containing protein (TDF #153-3) gene in
C. grandis leaves and calmodulin-binding transcription ac-
tivator 5 (TDF #100b) in C. sinensis ones (Additional file 2
and Additional file 3). Thus, genes related to Ca2+ signal
might be involved in response to Mn-toxicity. Busov et al.
[53] characterized a 5NG4 gene from juvenile loblolly pine
shoots, which was highly and specifically induced by auxin
prior to adventitious root formation. Toxicity of Mn, on
the other hand, led to auxin deficiency caused by activation
of indole-acetic acid oxidase under excess Mn [20]. This
supports our data that auxin-induced protein 5NG4 gene
(TDF #233a) was down-regulated in C. sinensis leaves
(Additional file 3). Similarly, the transcript abundance of
auxin-response factor (TDF #111-2) in C. grandis leaves
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synthase subunit alpha (TDF #01-1; A), glycoside hydrolase family 28 protein (TDF #043-1; B), anthranilate phosphoribosyltransferase-like protein
(TDF #063-1; C), ATP synthase subunit alpha (Atp 1; TDF #065-1; D), monodehydroascorbate reductase (TDF #098-1; E), xylem cysteine proteinase
2 (TDF #098-2; F), catalase (TDF #103-2; G), peroxidase 42 (TDF #104-1; H), NADP-dependent alkenal double bond reductase P2 (TDF #130-2; I),
DNA polymerase phi subunit (TDF #139-1; J), regulator of Vps4 activity in the MVB pathway protein (TDF #160-6; K), glutathione S-transferase
Tau2 (TDF #227-1; L), Myb family transcription factor (TDF #232-1; M), cell wall-associated hydrolase (TDF #242-1; N), ABC transporter family
protein (TDF #248-1; O) in C. grandis leaves and Atp1 (TDF #065a; P) in C. sinensis leaves. Bars represent means ± SE (n = 3). Different letters
above the bars indicate a significant difference at P < 0.05.
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also decreased in response to Mn toxicity (Additional
file 2). However, Mn-toxicity increased 5NG4 mRNA level
in C. grandis ones (TDF #233-1, Additional file 2).
Transducin/WD-40 repeat-containing protein is a G pro-

tein involved in a wide range of functions that include sig-
nal transduction, transcription and stress-tolerant function.
It was up-regulated by excess Cu in germinating rice seeds
[54,55], but was down-regulated by Mn-toxicity in C.
grandis leaves (TDF #085-3, Additional file 2).
VQ motif-containing proteins play important roles in

plant growth, development and defense responses. Loss-
of function mutants and/or overexpression lines for the
VQ genes are altered in seed size, tolerance to abiotic
stress, or resistance to pathogen infection [56,57]. Liu et al.
[56] reported that transgenic Arabidopsis plants overex-
pressing the AtARVQ1, a gene encoding a plant-specific
VQ motif-containing protein, were more resistant to
arsenate stress. Recently, Cheng et al. [58] showed that
plant VQ motif-containing proteins played critical roles
in the network of WRKY-mediated gene expression. We
found that under Mn-toxicity, the expression level of
VQ genes (TDF #061-2) was decreased in C. grandis,
which is in agreement with the previous report that
AtARVQ1 expression was strongly down-regulated by
arsenate stress [56].
Zhang et al. [59] observed that A. thaliana Fes1A

could prevent cytosolic HSP70 degradation. Thus, the ob-
served lower mRNA level of HSP70 nucleotide exchange
factor fes1 (TDF #235-2, Additional file 2) in Mn-toxicity
C. grandis leaves agrees with the results that the expres-
sion levels of HSP70 (TDF #237-6) and stromal 70 kDa
heat shock-related protein, chloroplastic-like gene (TDF
#156-1) in C. grandis ones decreased in response to Mn-
toxicity (Additional file 2). Similar result has been obtained
on B-deficient C. sinensis roots [60].
Phosphatidylinositol (PtdIns) 4-kinase catalyzes the

phosphorylation of PtdIns in the D-4 position of the in-
ositol ring. This is the committed step in the synthetic
pathway leading to PtdIns 4,5-bisphosphate (PtdIns 4,5-
P2). Apart from this function in signal transduction, both
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PtdIns 4-P and PtdIns 4,5-P2 appear to have other cellu-
lar functions (such as regulating cytoskeletal architecture,
acting as enzyme effectors, or acting as components of ves-
icular fusion [61]. We found that the expression level of
PtdIns 4-kinase type 2-beta (TDF #099-2) in C. grandis
leaves decreased in response to Mn-toxicity (Additional
file 2), which disagrees with Mn-stimulated PtdIns 4-
kinase from Dunaliella parva [62].
Based on these results above mentioned, we conclude

that the responses of citrus plants to Mn-toxicity might
be regulated in multiple signal pathways.

Genes involved in carbohydrate and energy metabolism
Thirteen genes in C. grandis leaves and two genes in C.
sinensis ones related to carbohydrate and energy meta-
bolism were altered under Mn-toxicity (Additional file 2
and Additional file 3, Figure 7). ATP synthase is an im-
portant enzyme that provides energy for the cell to use
through the synthesis of ATP. Hamilton et al. [63] showed
that exposure of wheat to Al increased mitochondrial
F1F0-ATPase activity only in the Al-tolerant wheat variety,
and concluded that the Al-induced increase in ATP syn-
thase activity was an adaptive response involved in Al
tolerance. Similar to Al-toxicity, Mn-toxicity increased
the expression levels of synthase subunit alpha (Atp 1)
in C. grandis (TDF #065-1) and C. sinensis (TDF #65a)
leaves and ATP synthase subunit alpha (TDF #01-1) in
C. grandis leaves (Additional file 2 and Additional file 3).
Aconitate hydrolyase (AH) involved in glycolysis catalyses
the interconversion of citrate and isocitrate, via a cis-
aconitate. Our finding that the expression of AH 2 (TDF
#116-1, Additional file 2) was induced in Mn-toxicity C.
grandis leaves means that its activity was enhanced by
Mn-toxicity, which is in agreement with the previous re-
port that AH was up-regulated by Cd stress [64]. In
addition, Mn-toxicity also increased the expression levels
of NADPH-ferrihemoprotein reductase (TDF #178-1) and
cytochrome (Cyt) c biogenesis orf256 (TDF #236-1) genes
related to respiration in C. grandis leaves (Additional
file 2). Overall, the metabolic pathways related to ATP
synthesis and reducing power production might be acti-
vated in Mn-stressed leaves to yield more energy needed to
meet the high-energy demand of stressed cell. By contrast,
the mRNA level of gene encoding 2-phospho-D-glycerate
hydrolase (also known as enolase, TDF #244-1), an essen-
tial and ubiquitous glycolytic enzyme responsible for the
catalysis of the conversion of 2-phosphoglycerate (2-PG) to
phosphoenolpyruvate (PEP), was down-regulated in Mn-
toxicity C. grandis leaves (Additional file 2). This agrees
with the previous report that the abundance of enolase in
Agrostis stolonifera leaves was decreased after 10 d of heat
stress [65]. Ferreira et al. in Populus euphratica leaves ob-
served that the level of enolase was transiently increased
after 30 h of heat stress, followed by a decrease after 54 h
of heat stress [66]. However, other studies showed that leaf
enolase was induced in various plants by different abiotic
stresses, such as water stress in maize [67], cold stress in
tobacco [68], salt stress in ice plant (Mesembryanfhemum
crysfallinum) [69] and Cd-stress in Phytolacca americana
[70]. Like to enolase, the expression level of gene encoding
Cyt P450 (TDF #197-1), an enzyme typically catalyzing the
reaction: RH + O2 + NADPH + H+ → ROH + H2O +
NADP+, was reduced in Mn-toxicity C. grandis leaves
(Additional file 2), which might contribute to maintaining
NADPH homeostasis by decreasing its utilization. How-
ever, the expression of Cyt P450, family 96, subfamily A,
polypeptide 9 (TDF #029a) gene in C. sinsnsis leaves
was induced by Mn-toxicity (Additional file 3), which is
in agreement with the report that at least 5 of the 29 Cyt
P450s were induced in Arabidopsis by abiotic and biotic
stress including Alternaria brassicicola or Alternaria
alternata, paraquat, rose bengal, UV-C stress, heavy metal
stress (CuSO4), mechanical wounding, drought, high salin-
ity, low temperature or hormones [71]. Transgenic tobacco
and potato plants expressing Cyt P450 tolerated better oxi-
dative stress after herbicide treatment [72]. Therefore, the
observed higher mRNA level of Cyt P450, family 96, sub-
family A, polypeptide 9 might be advantegous to Mn-
toxicity tolerance of C. sinensis plants.
Thioredoxins (Trxs) are small proteins, which are

involved in the cell redox regulation. Trx m, a chloro-
plastic protein, preferentially activates NADP-malate de-
hydrogenase (NADP-MDH), a key enzyme involved in
carbon fixation and sugar biosynthesis during photosyn-
thesis. Historically the m-type Trxs were so named because
they were able to activate NADP-MDH [73]. The activity
of NADP-MDH might be down-regulated in Mn-toxicity
C. grandis leaves due to lower mRNA levels of Trx m
(TDF #058-2) and Trx m4 (TDF #085-2) (Additional file 2).
Evidence shows that Trx m1, m2, and m4 could act as anti-
oxidants, i.e. possibly by serving as hydrogen donors for a
Trx-dependent peroxidase [74].
Trehalose-6-phosphate synthase (TPS) is a key enzyme

for synthesizing trehalose, which plays an important role
in abiotic stress tolerance of plants [75]. The observed
lower level of TPS (TDF #013-3) in Mn-xicity C. grandis
leaves (Additional file 2) indicates that Mn-toxicity might
decrease leaf concentration of trehalose, thus lowering the
stress tolerance.
ATP sulfurylase (ATPS) activity were enhanced by sul-

phur (S) deprivation and reduced after resupply of SO4
2–

[76]. Heiss et al. [77] reported that Cd stress strongly in-
creased the expression levels of ATPS and 5’-adenylysulfate
reductase in roots and leaves of 6-week-old Brassica juncea,
accompanied by enhanced cysteine concentration in roots
and leaves, and concluded that roots and leaves responded
to Cd stress with a coordinative up-regulation of several S
assimilation enzymes to meet an increased demand for
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cysteine during phytochelatin synthesis. However, the ex-
pression of ATPS (TDF #168-1) was down-regulated in
Mn-toxicity C. grandis leaves (Additional file 2).
UDP-glycosyltransferases (UGTs), which glycosylate a

broad array of aglycones, including plant hormones, all
major classes of plant secondary metabolites, and xeno-
biotics such as herbicides, play an important role for the
stabilization, enhancement of water solubility and de-
toxification of natural products [78]. Cytokinins can be
glucosylated to form O-glucosides and N-glucosides. The
glycoconjugates are inactive and are considered to play a
role in hormonal homeostasis. Hou et al. [79] showed that
UGT76C1 and UGT76C2 (two members of group H)
recognized all cytokinins and glucosylated them at the
N7 and N9 positions. Veselov et al. [21] reported that Cd
stress sharply lowered the concentration of cytokinin
in wheat roots and shoots caused by elevated activity
of cytokinin oxidase. Obviously, the down-regulation of
UDP-glycosyltransferase 76F1-like (one member of group
H, TDF #185-4) gene in Mn-toxicity C. grandis leaves
(Additional file 2) is advantageous to cytokinin homeosta-
sis under Mn-toxicity if leaf concentration of cytokinin de-
creased in response to Mn-toxicity.

Genes involved in nucleic acid metabolism
Evidence shows that heavy metals inhibit plant nucleic
acid metabolism [80,81]. As expected, the expression levels
of genes encoding THO complex, subunit 5 (TDF #134-2),
DNA polymerase phi subunit (TDF #139-1), histone H4
(TDF #165-1), DNA (cytosine-5)- methyltransferase DRM
2-like (TDF #200-1) and luc7-like protein 3-like (TDF #
200-2) in C. grandis leaves (Additional file 2) and genes
encoding THO complex, subunit 5 (TDF #134b) and his-
tone H4 (TDF #165a) in C. sinensis ones (Additional file 3)
decreased in response to Mn-toxicity, indicating that leaf
nucleic acid metabolism might be impaired by Mn-toxicity.

Genes involved in protein metabolism
Mn-toxicity has been demonstrated to affect protein me-
tabolism in plants [12]. We found that the expression
levels of three ribosomal genes encoding ribosomal pro-
tein S3 (TDF #06-1), ribosomal protein S8 (TDF #097-1)
and 60S ribosomal protein L2, mitochondrial-like (TDF #
134-1), which are involved in mature ribosome assembly
and translation processes, were down-regulated in Mn-
toxicity C. grandis leaves (Additional file 2), while only one
ribosomal gene encoding 60S ribosomal protein L2, mito
chondrial-like (TDF #134a) in C. sinensis leaves was down-
regulated by Mn-toxicity (Additional file 3). This indicates
that the biosynthesis of protein in Mn-toxicity C. grandis
leaves might be impaired more severe than in Mn-toxicity
C. sinensis ones, which is in agreement with our data that
Mn-toxicity decreased the concentration of total soluble
protein in C. grandis leaves, but did not affect its concentra-
tion in C. sinensis ones (Figure 4A). However, the expres-
sion of 30S ribosomal protein S13 gene (TDF #140-1) was
induced in Mn-toxicity C. grandis leaves (Additional file 2).
Translational control of protein synthesis depends on

numerous eukaryotic initiation factors (eIFs). Our finding
that the expression of gene encoding similar to translation
initiation factor IF2 (TDF #011-2) was down-regulated in
Mn-toxicity C. grandis leaves (Additional file 2) agrees
with our previous report that the abundances of eIF4B1,
eIF3 subunit and eIF3G1 in C. sinensis roots decreased
in response to B-deficiency [60]. However, salt and heavy
metal induced the accumulation of rice eIF5A-1 and
eIF5A-2 mRNAs in rice cells [82]. Elongation factors
whose expressions have been demonstrated to correlate to
the high rate of protein synthesis in developing plant tis-
sues [83] facilitate translational elongation, from the for-
mation of the first peptide bond to the formation of the
last one in the ribosome. Guo et al. [84] isolated a transla-
tion elongation factor 2-like protein gene from a cold de-
fective Arabidopsis mutant, los 1–1. The los1-1 mutant
plants were impaired in protein synthesis under cold
stress. We found that the expression level of one gene
encoding translation elongation factor-1 alpha, partial
(TDF #181-2) in C. grandis leaves decreased in response
to Mn-toxicity (Additional file 2), which agrees with the
previous results obtained on drought-stressed soybean
nodules [85], anoxia maize roots [86], and B-deficient
roots of C. sinensis [60], Brassica napus [87] and Lupinus
albus [88]. However, the abundances of chloroplast trans-
lational elongation factor Tu and elongation factor P in
rice leaves increased in response to Cd stress [89]. Thus, it
appears that the influence of abiotic stress on translation
elongation factors depends on plant species and kinds of
stresses. In addition, the expression level of gene encoding
tetratricopeptide repeat-containing protein (TDF #090-1)
involved in protein synthesis was down-regulated in Mn-
toxicity C. grandis leaves (Additional file 2). These results
further demonstrate that protein biosynthesis is impaired
in Mn-toxicity C. grandis leaves.
Mn-toxicity increased the expression levels of genes

encoding ATP-dependent Clp protease (TDF #245-1),
cysteine proteinase (TDF #044-2) and xylem cysteine
proteinase 2 (TDF #098-2) in C. grandis leaves (Add-
itional file 2). This indicates that the hydrolysis of
some proteins might be up-regulated in Mn-toxicity
leaves, thus decreasing leaf concentration of total sol-
uble protein. This is also supported by our data that
Mn-toxicity leaves had lower concentration of total
soluble protein (Figure 4A). However, the expression
levels of genes encoding carboxyl-terminal peptidase
(TDF #104-6), papain family cysteine protease (TDF
#107-1), cathepsin B-like cysteine proteinase like pro-
tein (TDF #233-3) and α/β-hydrolase-like protein
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(TDF #221-1) decreased in response to Mn-toxicity
(Additional file 2).
Like other PTMS (such as phosphorylation), ubiquiti-

nation, which serves as a versatile PTM, plays a key role
in regulating plant response to abiotic stresses [90]. The
up-regulation of genes encoding MND1-interacting pro-
tein 1 (TDF #148-1) and ubiquitin-conjugating enzyme
E2 10 (TDF #240-1) in Mn-toxicity C. grandis leaves
(Additional file 2) might be an adaptive response to Mn-
toxicity. However, the expression levels of ubiquitin-
correlative genes such as ubiquitin-protein ligase (TDF #
03-2) and BTB and MATH domain-containing protein
(TDF #138-2) in C. grandis leaves decreased in response
to Mn-toxicity (Additional file 2), meaning that the
ubiquitination of some proteins might be impaired in
Mn-toxicity C. grandis leaves.
Three genes [chorismate synthase (TDF #247-1), cysta-

thionine β-synthase (CBS) domain-containing protein (TDF
#216-3) and 2-oxoglutarate (2OG) and Fe(II)-dependent
oxygenase-like protein (TDF #061-3) ] involved in amino
acid metabolism was down-regulated in Mn-toxicity C.
grandis leaves (Additional file 2). This means that the bio-
synthesis of amino acids might be impaired in Mn-toxicity
C. grandis leaves. Chorismate synthase catalyzes the last of
the seven steps in the shikimate pathway which is used in
prokaryotes, fungi and plants for the biosynthesis of
aromatic amino acids [91]. CBS catalyzes the first step
of the transsulfuration pathway from homocysteine to
cystathionine. Jung et al. [92] observed that CBSX2 dir-
ectly modulated Trx in chloroplasts, which affected the
level of H2O2 and, consequently, the expression of the
genes involved in secondary cell-wall thickening, conclud-
ing that CBSX2 protein played a critical role in thickening
of the secondary cell walls of the endothecium during an-
ther dehiscence in Arabidopsis. Transgenic tobacco plants
overexpressing OsCBSX4 isolated from rice displayed en-
hanced tolerance to salinity, heavy metal, and oxidative
stress [93]. This observed lower expression level of gene
encoding CBS domain-containing protein (TDF #216-3) in
C. grandis leaves (Additional file 2) disagrees with our pre-
vious data that the abundance of CBS family protein in C.
sinensis roots increased in response to B-deficiency [60].

Genes involved in lipid metabolism
Lecithin-cholesterol acyltransferase (LCAT) catalyzes
the transacylation of acyl groups from phospholipids to
sterols in mammals and yeast. Sterol acylation is an es-
sential process of sterol homeostasis in eukaryotic cells.
In Arabidopsis, phospholipid sterol acyltransferase 1
(PSAT1), which displays homology with the mammalian
LCAT, catalyzes a phospholipid-dependent (acyl-CoA-
independent) formation of sterol esters [94]. Recent work
with Arabidopsis showed that sterol ester concentration
decreased in leaves of psat1-1 or psat1-2 mutants
accompanied by an early leaf senescence phenotype,
suggesting a major contribution of the PSAT1 in
maintaining both free sterol homeostasis in plant cell
membranes and leaf viability during developmental aging
[95]. The up-regulation of lecithin-cholesterol
acyltransferase-like 1 (TDF #153-2, Additional file 2) in
Mn-toxicity C. grandis leaves might enhance the leaf con-
centration of sterol ester, thus preventing leaf senescence.

Genes involved in cell wall metabolism
Our results showed that the expression levels of genes
[α-1, 2-fucosyltransferase (TDF #037-3), caffeic acid O-
methyltransferase (TDF #080-1), O-fucosyltransferase
family protein (TDF #069-8), cellulose synthase-like protein
(TDF #044-4), protein SAH7 (TDF #05-1), 4-coumarate-
CoA ligase 3 (TDF #151-1) and CBS domain-containing
protein (TDF #216-3)] involved in cell wall biosynthesis
were down-regulated in Mn-toxicity C. grandis leaves
(Additional file 2). In addition, the mRNA levels of gene
encoding glycoside hydrolase family 28 protein (TDF #0
43-1), which catalyze the hydrolytic cleavage of the pectin
and gene encoding cell wall-associated hydrolase (TDF #2
42-1) were up-regulated in Mn-toxicity C. grandis leaves
(Additional file 2). Therefore, the formation of cell wall
might be impaired in Mn-toxicity leaves. However, the ex-
pression of gene encoding protein trichome birefringence-
like 39 (TDF #158-3) was induced in Mn-toxicity C.
grandis leaves (Additional file 2).

Genes involved in stress responses
Mn-toxicity has been demonstrated to stimulate ROS
production in plants [12,14,16]. Since Mn-toxicity did
not affect the concentration of MDA in citrus leaves
(Figure 4B), some protective antioxidant enzymes should
be up-regulated to meet the increased requirement for
scavenging ROS. Our results showed that the expression
of gene encoding catalase (CAT, TDF #103-2), an enzyme
involved in scavenging H2O2, was induced in Mn-toxicity
C. grandis leaves (Additional file 2), which agrees with the
previous report that Mn-toxicity C. grandis leaves had in-
creased specific activity of CAT and similar leaf area-based
activity of CAT [8]. Besides ROS scavenger enzymes, this
detoxification mechanism also involves “house-keeping”
enzymes. The family of Nudix hydrolases (NUDXs), which
catalyze the hydrolytic breakdown of nucleoside diphos-
phates linked to some other moieties such as a phosphate,
sugar or nucleoside, are one of these “house-keeping”
enzyme families [96]. Ogawa et al. [97] showed that
AtNUDX19, a chloroplastic AtNUDX, played an import-
ant role in modulation of the NADH and/or NADPH
pools through the hydrolysis of NAD(P)H to reduced nico-
tinamide mononucleotide (NMNH) in Arabidopsis chloro-
plasts. Transgenic Arabidopsis plants overexpressing AtN
UDX2 and AtNUDX7 displayed enhanced tolerance to
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oxidative stress, resulting from the maintenance of NAD+

and ATP levels by nucleotide recycling of free ADP-ribose
molecules [98]. The higher expression level of NUDX19
(TDF #160-1) in C. grandis leaves (Additional file 2) agrees
with the previous reports that the abundance of NUDX
homolog 3 in C. sinensis roots increased in response to B-
deficiency [60] and Chrysanthemum lavandulifolium
ClNUDX1, ClNUDX3, ClNUDX7 and ClNUDX8 were
induced by salt, drought, heat, and cold stresses [99]. How-
ever, the expression levels of genes encoding monodehy-
droascorbate reductase (MDAR, TDF #098-1), peroxidase
42 (TDF #104-1), glutathione S-transferase (GST) Tau2
(TDF #227-1), NADP-dependent alkenal double bond re-
ductase P2 (TDF #130-2), Trx m (TDF #058-2), TRx m4,
chloroplastic-like (TDF #085-2), and CBS domain-con
taining protein (TDF #216-3) related to oxidative defense
in C. grandis leaves decreased in response to Mn-toxicity
(Additional file 2). It is noteworthy that Mn-toxicity C.
grandis leaves had higher specific activity of MDAR and
leaf area-based activity of MDAR compared with controls
[8]. The discrepancy between the expression level of
MDAR and the activity of the corresponding enzyme indi-
cates that PTMs might affect MDAR activity.
Senescence is a genetically programmed decline in vari-

ous cellular processes and involves in the hydrolysis of
macromolecules such as proteins and lipids. It is governed
by the developmental age and is induced or enhanced by
biotic and abiotic stresses. Generally in plants the term
senescence and programmed cell death (PCD) denote the
processes that initiate the programmed death of individual
cell. The senescence can be considered as one of the ex-
amples for PCD. As expected, the expression level of one
gene encoding for putative senescence-associated protein
(TDF #164-4) was up-regulated by Mn-toxicity in the
less Mn-tolerant C. grandis leaves (Additional file 2).
This agrees with the previous report that the gene was
highly differentially expressed only in the heat-sensitive
fescue (Festuca sp.) genotype at 44°C [100]. In addition, the
expression levels of apoptosis linked genes [xylem cysteine
proteinase 2 (TDF #098-2), cysteine proteinase (TDF #
044-2) and ALG2-interacting protein X (TDF #054-1)
genes] were enhanced in Mn-toxicity C. grandis leaves
(Additional file 2). Thus, it is reasonable to assume that the
Mn-toxicity sensitive C. grandis plants were under great
stress and leaf senescence was accelerated, which might
contribute to plant survival by using more metabolites
through glycolysis, and protein and lipid degradation. As
shown in Figure 9, the Mn-toxicity-induced senescence in
C. grandis leaves was a very complicated process.
HSPs/chaperones have been demonstrated to play a

key role in protecting plants against heavy metal stress
[64]. The observed lower expression levels of genes encod-
ing heat shock protein-related, partial (TDF #158-2), heat
shock protein 60-3A (TDF #160-5), HSP70 (TDF #237-6)
and stromal 70 kDa heat shock-related protein, chloroplas
tic-likes (TDF #156-1) in Mn-toxicity C. grandis leaves
(Additional file 2) indicate decreased protein synthesis in
these leaves, as indicated by decreased leaf concentration of
total soluble proteins (Figure 4A). This is similar to the pre-
vious report that the abundance of HSP70 was enhanced in
leaves of high Cd-accumulating soybean cultivar, but was
lowered in low Cd-accumulating one [101].
One crucial adaptive mechanism of plants to P-deficiency

is the immediate cleavage of phosphate (Pi) from phosphor-
ylated substrates. Phosphoethanolamine/phosphocholine
phosphatase (PPsPase) may release Pi from organic to
maintain Pi homeostasis of plant cells [102]. The down-
regulation of PPsPase, putative gene (TDF #198-1) in C.
grandis leaves (Additional file 2) might decrease the release
of Pi from phosphorylated substrates, thus lowering leaf P
concentration (Figure 3A). This agrees with the previous re-
port that Mn-toxicity decreased P concentration in tea
leaves [17].

Genes involved in cell transport
Eight genes in C. grandis leaves and one gene in C. sinensis
ones were regulated by Mn-toxicity (Additional file 2 and
Additional file 3, Figure 7). We found that the expression of
citrus sucrose transporter 1 (TDF #073-1, Additional file 2)
was induced in Mn-toxicity C. grandis leaves, which is in
agreement with the previous report that the gene strongly
expressed in source, sugar exporting organs [103], because
Mn-toxicity increased or did not affect the concentra-
tions of non-structural carbohydrates in C. grandis leaves
[8]. The up-regulation of citrus sucrose transporter1 might
be helpful to decrease sugar accumulation in Mn-toxicity
leaves, which might in turn lead to feedback suppression
of CO2 assimilation [104].
One of strategies of plants to deal with heavy metals is

to transport them out of the cells, thereby removing them
from the cytosol. Kim et al. [105] observed that transgenic
A. thaliana plants overexpressing the ABC transporter
AtPDR8 were more resistant to Cd or lead (Pb) and dis-
played lower Cd concentration in roots and shoots than
wild-type plants, while AtPDR8 RNAi transgenic plants
and T-DNA insertion lines were more sensitive to Cd or
Pb and had higher Cd concentration, concluding that the
ABC transporter AtPDR8 is a Cd extrusion pump confer-
ring heavy metal resistance. The down-regulation of genes
encoding ABC-transporter-like protein (TDF #208-1) and
ABC transporter family protein (TDF #248-1) in C.
grandis leaves (Additional file 2) indicates that the extru-
sion of Mn from leaves might be lessened in response to
Mn-toxicity, which might be one of the causes that Mn-
toxicity C. grandis leaves accumulated more Mn than C.
sinensis ones (Figure 2G).
Evidence has shown that CorA-like proteins may repre-

sent the major transport systems in eukaryotes such as



Figure 9 The potential regulatory network of Mn-toxicity-induced senescene in Citrus grandis leaves. AAM: Amino acid metabolism; ALG2:
Apoptosis linked gene 2 (ALG2)-interacting protein X; CBSDP: Cystathionine β-synthase (CBS) domain-containing protein; GST: Glutathione
S-transferase; MAPK: mitogen-activated protein kinase; NAM: Nucleic acid metabolism; PCD: Programmed cell death; Pn: Photosynthesis; ROS:
Reactive oxygen; SAP: Senescence-associated protein; ↑: Up-regulation; ↓: Down-regulation.
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yeast, animals, and plants [106,107]. The down-regulation
of Mg transporter CorA-like protein gene in Mn-toxicity C.
grandis (TDF #234-2, Additional file 2) and C. sinensis
(TDF #234b, Additional file 3) leaves might reduce Mg
transport, hence decreasing leaf Mg concentration. This
agrees with the previous report that Mn-toxicity decreased
leaf concentration of Mg [17]. Interestingly, Mg concen-
tration was decreased by Mn-toxicity only in C. grandis
leaves, but was not significantly affected in C. sinensis
leaves (Figure 3B). This means that leaf Mg concentra-
tion is also regulated by other factors.
Plant cyclic nucleotide gated channels (CNGCs), which

comprise a large gene family in Arabidopsis, have been
proposed to be involved in multiple plant physiological
processes including plant growth and heavy metal toxicity
tolerance [108]. Evidence suggests that CNGCs paly a role
in heavy metal homeostasis, for example, in tobacco, over-
expression of tobacco CNGC (NtCBP4) led to hypersensi-
tivity to Pb [109]. However, Sunkar et al. [110] showed
that transgenic tobacco plants overexpressing a truncated
NtCBP4 exhibited improved tolerance to Pb2+ and de-
creased uptake of this metal ion. We found that the ex-
pression of cyclic nucleotide gated channel 9 gene (TDF #
216-2) was down-regulated in Mn-toxicity C. grandis
leaves (Additional file 2), suggesting that the gene might
be involved in the response to Mn-toxicity.
Our results showed that the expression of gene encod-
ing protease inhibitor/seed storage/lipid transfer protein
(LTP) family protein (TDF #242-2) was down-regulated
in Mn-toxicity C. grandis leaves (Additional file 2), indi-
cating that the exchange of lipids between membranes
might be decreased.

Conclusions
Our results clearly demonstrated that C. sinensis was
more tolerant to Mn-toxicity than C. grandis. Under
Mn-toxicity, C. sinensis plants accumulated more Mn in
roots and less Mn in shoots (leaves) than C. grandis
ones, and that the leaf concentration of Mn was lower in
the former. This might contribute to the Mn-tolerance
of C. sinensis. In this study, we first used the cDNA-
AFLP technique to compare the mRNA levels of genes
from control and Mn-toxicity leaves of two citrus spe-
cies differing in Mn-tolerance. In Mn-toxicity C. grandis
leaves, 42 up-regulated and 80 down-regulated genes
were isolated, while only seven up-regulated and eight
down-regulated genes were identified in Mn-toxicity C.
sinensis ones. Obviously, Mn-toxicity affected gene ex-
pression far less in C. sinensis leaves than in C. grandis
ones, which might be associated with less leaf Mn con-
centration in Mn-toxicity C. grandis leaves. cDNA-AFLP
analysis suggests that the responses of C. grandis leaves
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to Mn-toxicity might include following several aspects:
(1) accelerating leaf senescence; (2) activating the meta-
bolic pathway related to ATPase synthesis and reducing
power production; (3) decreasing cell transport; (4) in-
hibiting protein and nucleic acid metabolisms; (5) im-
pairing the formation of cell wall; and (6) triggering
multiple signal transduction pathways. We also identi-
fied many new Mn-toxicity-responsive genes involved in
biological and signal transduction (i.e. VH1-interacting
kinase, OBP3-responsive gene 1, transcription factor IL),
carbohydrate metabolism (i.e. NADPH-ferrihemoprotein
reductase, trehalose-6-phosphate synthase), protein me-
tabolism (i.e. MND1-interacting protein 1, chorismate
synthase), stress responses (i. e. Nudix hydrolase 19,
ALG2-interacting protein X) and cell transport (i.e. cyc-
lic nucleotide gated channel 9). Further studies will elu-
cidate the roles of these genes in response to Mn-
toxicity, which will help me to design Mn-tolerant trans-
genic crops.

Methods
Plant culture, Mn treatments and sampling
The study was conducted from April to December, 2012
at Fujian Agriculture and Forestry University (FAFU).
Plant culture, Mn treatments, and sampling were per-
formed according to Li et al. [8]. Briefly, 6-week-old
seedlings of ‘Xuegan’ (Citrus sinensis) and ‘Sour pum-
melo’ (Citrus grandis) were transplanted to 6 L pots
containing sand. Seedlings, two per pot, were grown in a
greenhouse under natural photoperiod at FAFU. Each
pot was supplied with 500 mL of nutrient solution every
two day. The nutrient solution contained the following
macronutrients (in mM): KNO3, 1.25; Ca(NO3)2, 1; (NH4)
H2PO4, 0.25; MgSO4, 0.5; and micronutrients (in μM):
H3BO3, 10; ZnCl2, 2; CuSO4, 0.5; (NH4)6Mo7O24, 0.065;
MnSO4, 2; Fe-EDTA, 20. Eight weeks after transplanting,
each pot was supplied every other day until dripping with
nutrient solution (approximately 500 mL) containing 2 μM
(control) or 600 μM (Mn-toxicity) MnSO4 for 17 weeks.
At the end of the experiment, fully expanded leaves from
different replicates and treatments were used for all the
measurements. Leaves were collected at noon under full
sun and immediately frozen in liquid nitrogen and were
stored at −80°C until extraction.

Measurements of root and shoot DW and determination
of Mn, Mg and P
Ten plants per treatment from different pots were har-
vested and divided into their parts (roots, and shoots). The
plant parts were then dried at 70°C for 48 h and the DW
mesured.
Root, stem and leaf Mn concentration and leaf Mg con-

centration were assayed by inductively coupled plasma
(ICP) emission spectrometry after microwave digestion
with HNO3 [111]. Leaf P concentration was measured
according to Ames [112]. There were four replicates per
treatment (one leaf per replicate, one leaf per plant).

Determination of Chl, total soluble protein and MDA
in leaves
Leaf Chl a+b, Chl a and Chl b were assayed according to
Lichtenthaler [113]. Briefly, 2 frozen leaf discs (0.608 cm2

in size) were extracted with 8 mL of 80% (v/v) acetone for
24 h in the dark. The extracts were determined using Libra
S22 ultraviolet–visible spectrophotometer (Biochrom Ltd.,
Cambridge, UK). Leaf total soluble protein was extracted
with 50 mM Na2HPO4-KH2PO4 (pH 7.0) and 5% (w/v) in-
soluble polyvinylpolypyrrolidone (PVPP), and determined
according to Bradford [114] using bovine serum albumin
(BSA) as standard. Extraction and determination of leaf
MDA was performed according to Hodges et al. [115].
There were four replicates per treatment (one leaf per rep-
licate, one leaf per plant).

Leaf gas exchange measurements
Measurements were made with a CIARS-2 portable pho-
tosynthesis system (PP systems, Herts, UK) at ambient
CO2 concentration under a controlled light intensity of
1000 μmol m-2 s-1 between 9:30 and 10:30 on a clear day.
During measurements, leaf temperature and vapor pres-
sure deficit (VPD) were 26.9 ± 1.1°C and 2.0 ± 0.1 kPa, re-
spectively. There were five replicates per treatment (one
leaf per replicate, one leaf per plant).

RNA preparation and cDNA synthesis
Total RNA was extracted from 200–300 mg of the fro-
zen leaves using Recalcirtant Plant Total RNA Extrac-
tion Kit (Centrifugal column type, Bioteke Corporation,
China) according to manufacturer’s instructions. The in-
tegrity and quantity of total RNA was detected by 1%
(w/v) agarose gel electrophoresis and spectrophotometer
at 260 nm. First-strand cDNA was synthesized from 2
μg of total RNA using RevertAid™ First Strand cDNA
Synthesis Kit (Thermo Scientific, Massachusetts, USA).
Second cDNA strand was performed with Escherichia
coli RNase H, E. coli DNA Ploymerase I and T4 DNA
Polymerase (TaKaRa, China), and stoped with 0.25 M
EDTA (pH 8.0) and 10% sodium dodecyl sulfate (SDS).
The resulting double-stranded cDNA was purified using
equal volume of phenol : chloroform : isoamyl alcohol
(25 : 24 : 1). Five μL was checked using agarose gel elec-
trophoresis in order to observe an expected smear be-
tween 100 bp and 1000 bp.

cDNA-AFLP analysis
The cDNA-AFLP-based transcript profiling procedure was
performed as described by Cao et al. [116] with some mod-
ifications. Double-stranded cDNA (600 ng) was digested
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with restriction enzymes: 5 U each of EcoR I (Thermo Sci-
entific, Massachusetts, USA; 3 h at 37°C) and Mse I (Tru1I,
Thermo Scientific, Massachusetts, USA; 3 h at 65°C). The
resulting restricted fragments were ligated to adaptors
(EcoR I, 0.2 μM forward primer: 5’- CTCGTAGACTG
CGTACC-3’ and reverse primer: 3’- CATCTGACGCAT
GGTTAAP −5’; Mse I, 2 μM forward primer: 5’-GACG
ATGAGTCCTGAG-3’ and reverse primer: 3’-TACTCAG
GACTCATP-5’) with T4-DNA ligase (Thermo Scientific,
Massachusetts, USA) for 10–16 h at 16°C. Prior to ligation,
the two adaptors were heated at 94°C for 3 min, followed
by 65°C for 10 min, 37°C for 10 min and 25°C for 10 min.
The resulting ligated products were pre-amplified with the
corresponding preamplification premiers: EcoR I, 5’-GA
CTGCGATCCAATTC-3’ and Mse I, 5’-GATGAGTCCT
GAGTAA-3’. From a 100-fold dilution of the pre-amplified
samples, a 5 μL diluted sample was used for the selective
amplification using 256 combinations of the following
primers: 16 derivatives of EcoR I primers 5’-GACTGC
GATCCAATTCEE-3’ and 16 derivatives of Mse I primers
5’-GATGAGTCCTGAGTAAMM-3’; where EE and MM
represent AA, AT, AC, AG, TA, TC, TT, TG, CA, CT, CG,
CC, GA, GC, GT and GG. The selective amplification
products were separated on a 6% (w/v) polyacrylamide gel
run at 50 W for 2.5 h. The gels were silver stained as de-
scribed by Bassam et al. [117] to visualize the cDNA bands.
Samples for cDNA-AFLP analysis were run in two repli-
cates at least.
The TDFs of interests were selected based on their

presence, absence or differential intensity and cut out
with a scalpel, and incubated in 50 μL of dd H2O for
30 min in a boiling water bath, then centrifuged at 10000
revolutions per min at room temperature (Eppendorf
5418R, Hamburg, Germany). The supernatant was stored
at −20°C for re-amplification. The eluted DNA was re-
amplified by PCR using the same primer combinations.
The re-amplified products representing the Mn-toxicity-
responsive TDFs were checked on 1% (w/v) agarose gels,
each band is isolated and eluted using DNA Agarose Gel
Recovery Kit (Solarbio, China). Before being sequenced by
BGI Technology Corporation (Shenzhen, China), these
TDFs fragments were ligated to pGEM-T EASY vector
according to usage information of pGEMW-T Easy Vector
System I (Promega, USA), then transduced into E. coli
(DH5α) competent cells using Ampicillin as the selecting
agent. All sequences were input into the VecScreen (http://
www.ncbi.nlm.nih.gov/tools/vecscreen/) to identify and re-
move all of the vector sequence. Homology of TDFs’ se-
quences was analyzed using the BLASTX and BLASTN
searching engines (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
Their functional categories were assigned based on
the analysis of information reported for each sequence by
The Gene Ontology (http://www.geneontology.org/) and
Uniprot (http://www.uniprot.org/).
Quantitative RT-PCR (qRT-PCR) analysis
Total RNA was isolated from the frozen leaves of con-
trol and Mn-excess plants by TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). About 2.0 μg total RNA was used
for first-strand cDNA synthesis using the RevertAid™
First-Strand cDNA Synthesis Kit (Thermo Scientific,
Massachusetts, USA) following the manufacturer’s in-
structions. The resulting cDNA was diluted to 100 μL
using Tris-EDTA buffer (10 mM Tris, 50 mM NaCl,
1 mM EDTA, pH 7.8). Specific primers were designed from
the sequences of 15 singleton TDFs using Primer Primier
Version 5.0 (PREMIER Biosoft International, CA, USA).
The sequences of the F and R primers used are given in
Additional file 4. qRT-PCR was performed using a SYBRW

Premix Ex TaqTM (Tli RNaseH Plus, Takara Bio, Inc,
Otsu, Shiga, Japan) with the Step One Plus Real-Time
System (Applied Biosystems, California, USA) in an Eco
Real-Time PCR System (Illumina, USA ). The cycling
conditions were 30 s at 95°C, followed by 40 cycles of
95°C for 5 s, 60°C for 15 s. Samples for qRT-PCR were
run in 3 biological replicates with 3 technical replicates.
Relative gene expression was calculated using ddCt algo-
rithm. For the normalization of gene expression, citrus
actin (GU911361.1) gene was used as an internal standard
and the leaves from control plants were used as reference
sample, which was set to 1.
Experimental design and statistical analysis
There were 20 pots (40 seedlings) per treatment in a com-
pletely randomized design. Experiments were performed
with 2–10 replicates. Results represented the mean ± SE.
Statistical analyses of data were carried out by ANOVA
tests. Means were separated by the least significant differ-
ence (LSD) test at P < 0.05 level.
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