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A B S T R A C T   

China’s agricultural development has entered a period of transition, and improving the cultivated 
land use efficiency (CLUE) is of great significance for guaranteeing national food security. Based 
on the province panel data in China from 2000 to 2021, this research calculates the cultivated 
land use efficiency, and uses the Dagum-Gini coefficient, Kernel density estimation, and Markov 
chain to conduct an in-depth analysis of CLUE’s regional variations and distribution dynamics in 
three food functional areas (TFA) of China. The study results showed that the trend of CLUE was 
characterized by “increasing levels and decreasing absolute differences,” not only in the whole 
country but also in the TFA. The inter-regional variation among TFA is gradually narrowing, and 
the cross-group degree of inter-regional variation is on the rise. The upward probability of CLUE 
was more effective than the probability of a transitionary change, and the mutual influence of 
CLUE between neighboring cities would lead to spatial convergence in the level of CLUE in the 
long term. Therefore, improving CLUE in China’s TFA should not only grasp the regional dif-
ferences in CLUE but also actively utilize the spatial spillover effects among functional regions to 
realize the cross-regional synergistic development of cropland utilization efficiency in China.   

1. Introduction 

Cultivated land, as a crucial factor in stabilizing food production, stands at the forefront of ensuring food security in China. 
However, the inefficient problem using of cultivated land is becoming increasingly severe in rapidly urbanizing and industrializing 
China. To scientifically plan cultivated land resources and increase grain production, the State Council of China divided 31 provinces 
into 13 main producing areas (MPA), seven main marketing areas (MMA), and 11 balanced production-marketing areas (BPMA) in 
2001 [1]. For different food functional areas, the government put forward additional requirements. The MPA should continue to focus 
on food production [2]. The BPMA should continue to maintain basic self-sufficiency in food. The MMA should improve food 
self-sufficiency while ensuring the scope of grain cultivation. Under the impetus of many national policy instruments, China’s CLUE 
has increased, providing a material basis for guaranteeing the supply of agricultural products. However, simply ensuring no reduction 
in area is still not enough to achieve the goal of increased production. Although China has had good grain harvests for nearly two 
decades, it is essential to note that significant grain crops’ potential productivity is already high. Therefore, we should focus more on 
improving the CLUE to ensure the food supply. 

The essence of CLUE is the economic and social benefits obtained from agricultural production in terms of cultivated area units. It 
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has the capability to directly indicate the allocation of various production factors in agricultural activities [3], providing a more precise 
and objective assessment of the sustainable development status of cultivated land utilization. Improving the CLUE is the best way to 
achieve increased food production and ensure food security when food security is facing severe challenges in China. By reviewing 
existing literature, it becomes evident that various scholars have investigated the spatiotemporal evolution characteristics and 
distributional variances of CLUE from a multidimensional research perspective. A literature survey highlights the analyses conducted 
by different scholars on the distribution differences in CLUE [4,5] and their exploration of the spatiotemporal evolution of CLUE from a 
multidimensional standpoint [6,7]. By analyzing the distributional characteristics at the provincial level, the researchers identified 
clear spatial disparities among Chinese provinces [8–10]. The spatial and temporal patterns of subdivided regions such as the 
Northeast [11], the Yellow River Basin [12,13], and the Yangtze River Economic Belt [14–16] have also been the focus of scholars’ 
discussions [17]. Xiao et al. analyzed regional differences in CLUE at the level of individual provinces [18–20]. Some scholars have also 
explored the CLUE in MPA [21–24]. In general, there are obvious differences in the trend of CLUE over time and spatial distribution in 
different regions. The spatiotemporal features of CLUE are intricately linked to various elements, including the geographic environ-
ment, regional economic progress, and policy orientation. Exploring the differences in CLUE in different regions provides an important 
reference for regional agricultural development strategies. Although existing studies have made important contributions to the CLUE, 
fewer investigations have delved into CLUE from the TFA standpoint. The synchronized advancement of distinct food functional areas 
can contribute to achieving comprehensive national food security. By fully utilizing the advantages of each region, it ensures the 
stability of China’s food supply and improves China’s food security. This study aims to further complement and deepen this research 
area to fill the gaps in existing research. For the measurement of CLUE, the two most common methods currently used in the academic 
community are Data Envelopment Analysis [25–27] and the utilization of Stochastic Frontier Analysis [28–30]. While the SFA method 
is extensively utilized for measuring CLUE, it is more suitable when the study environment is more complex and the influence of 
external random factors is significant. Given the dataset and research objectives of this study, the DEA method allows for a more direct 
and explicit comparison of CLUE between provinces. Traditional DEA models, such as the BBC and CCR models, are employed for the 
efficient evaluation of units of the same type using multiple inputs and multiple outputs. Nevertheless, measuring their efficiency 
becomes somewhat inaccurate in the presence of non-zero slack in inputs or outputs. To address these issues, Tone [31] constructed the 
super-efficient SBM model [32–36]. This model effectively addresses the issue of all DMU efficiencies being 1, which complicates the 
differentiation between efficient DMUs. Hence, this approach is selected for measurement in the present study. 

From the actual situation, there are differences between land factor inputs, output levels, and CLUE in TFA? Is the story of CLUE 
higher in the main production areas that bear more national food security tasks? What are the characteristics and changing trends of 
CLUE in different functional areas? Clarifying the above question is vital to achieving the targeted development of CLUE in TFA. As a 
result, after explaining the importance of exploring the regional differences in CLUE, the super-efficient SBM model is employed to 
assess the CLUE of 30 provinces in China from 2000 to 2021. Following that, an in-depth analysis of regional disparities in CLUE among 
Three Food Functional Areas (TFA) in China, along with an examination of the sources of these differences and the dynamic evolution 
of their future development, is conducted using Dagum’s Gini coefficient, Kernel estimation, and Markov chain. Ultimately, the study 
consolidates key findings and proposes specific policy recommendations and future research directions based on these outcomes. 

The potential contributions of this study are as follows: First, the study thoroughly investigates CLUE within China’s TFA. Past 
research efforts may have predominantly concentrated on the national-level assessment of CLUE, paying less attention to the differ-
ences among various functional areas. Through this detailed study, the paper is expected to uncover the characteristics as well as 
sources of differences in these regions. This will provide a more precise basis for formulating differentiated agricultural policies [37]. 
Second, it provides strategic recommendations for synergistic development among SFA. In addition to examining the current status of 
CLUE, this study places emphasis on forecasting future development trends and identifying potential opportunities for synergy. By 
identifying the interactions between different functional areas and the mutual impacts of CLUE, this paper provides valuable insights 
for the development of cross-regional collaboration and resource-sharing strategies. This has important practical implications for 
balancing regional development, promoting resource complementarity among functional areas, and enhancing food security. 

2. Materials and methods 

2.1. Research area 

Following the reform and opening up, notable transformations have occurred in the landscape of food production, with a gradual 
northward shift in the center of gravity. To scientifically plan the national cultivated land resources [38] and guarantee the safe 
production of food, the country has proposed food functional areas, and 31 provinces in China were divided into MPA, MMA, and 

Table 1 
Food functional areas in China.  

Food functional areas Provinces 

MPA（13） Hunan, Heilongjiang, Shandong, Sichuan, Jilin, Jiangsu, Liaoning, Jiangxi, Inner Mongolia, Hebei, 
Henan, Anhui, Hubei 

MMA（7） Beijing, Guangdong, Tianjin, Fujian, Shanghai, 
Hainan, Zhejiang 

BPMA（11） Shanxi, Shaanxi, Ningxia, Qinghai, Xinjiang, Gansu, Guangxi, Tibet, Guizhou, Chongqing, Yunnan  
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BPMA [39]. The delineation is shown in Table 1. 
The MPA mainly refers to those areas with rich natural resources and superior cultivated land endowment, which have a favorable 

impact on agricultural production. They are mainly located in northeast, north, central, and east China [40]. The MMA refers to those 
areas with weak cultivated land resources, poor natural conditions, and less agricultural land, mainly in some coastal and economically 
developed areas. The BPMA refers to those provinces between the MPA and the MMA [1], which have better natural conditions and 
richer agricultural resources. Although their contribution to China’s grain production is limited, they can meet their production and 
consumption needs and roughly achieve balanced production and marketing. 

2.2. Indicators selection 

To better measure the CLUE in each province, combined with the research of scholars such as Bing Kuang and Haibin Han [21,33], 
this paper selects the indicator data from input and output perspectives. Firstly, six input factors are selected. Grain acreage represents 
land input, agricultural workers represent labor input (Utilizing the available data, the count of agricultural workers in this study is 
determined by the formula: the number of people engaged in agriculture, forestry, and fisheries multiplied by the total value of 
agricultural production, divided by the total value of agricultural, forestry, and fisheries production.), total powers of agriculture 
machinery represent agricultural machinery input, consumption of chemical fertilizer by pure represents fertilizer input, consumption 
of agricultural plastic film represents agricultural film input, consumption of pesticide use represents pesticide input. Secondly, rural 
output value and total grain production are selected to represent two output factors. Indicators selection as in Table 2. 

2.3. Research methods 

This study is dedicated to exploring the current status, regional differences, and dynamic evolution in CLUE of TFA. Therefore, four 
methods are selected to investigate the problem in depth. 

2.3.1. Super-SBM model 
The super-efficient SBM model, an extension of data envelopment analysis (DEA), is employed to evaluate variations in the relative 

efficiency of decision-making units, such as provinces, operating under identical conditions. The model measures the CLUE by 
calculating the ratio of inputs to outputs to determine the efficiency value for each province. The model can be expressed as: 

ρ=min
1
m

∑m
i=1

xi
xi0

1
s

∑s

k=1

yk
yk0

; s.t. xi ≥
∑n

j=1,∕=0
λjxj, ∀i; yk ≤

∑n

j=1,∕=0
λjyj,∀k; xi ≥ xi0, 0 ≤ yk ≤ yk0, λj ≥ 0,

∑n

j=1,∕=0
λj = 1,∀i, j, k, (1)  

in equation (2), with each province serving as an individual decision-making unit. 
m is the input (land, labor, machinery, agricultural film, pesticide and fertilizer inputs) for each province, s is the output, and xi, yk 

is the slack input and output variables. 

2.3.2. Dagum–Gini Coefficient 
The Dagum Gini coefficient serves as an indicator of inequality in income or wealth distribution, with a scale from 0 (representing 

perfect equality) to 1 (representing perfect inequality). In this study, we use it to analyze the unequal distribution of CLUE across TFA. 
A higher value of this coefficient signifies increased inequality in CLUE among regions, while a low value indicates a higher degree of 
parity. The Dagum Gini coefficient provides insights into the variations within, between, and across regions. Specific formula setting 
as: 

G=

∑k

j=1

∑k

h=1

∑nj

i=1

∑nh

i=1

⃒
⃒yji-yhr

⃒
⃒

2n2y
, (2)  

in equation (2), G represents the overall Gini coefficient of CLUE in China; k is the number of functional zones, with k = 3 in this 
formula; j and h represent different provinces, cities, and autonomous regions within the functional zones; nj(nh) is the number of 

Table 2 
Indicators selection.  

Indicator Type Indicators Description of Indicators 

Input land input grain acreage（104ha） 
agricultural film input consumption of agricultural plastic film（t） 
labor input agricultural workers（104 people） 
fertilizer input consumption of chemical fertilizer by pure（104t） 
machinery input total powers of agriculture machinery（104kw） 
pesticide input consumption of pesticide use（t） 

Output economic benefits output agricultural output value（108yuan） 
social benefits output total grain production（104t）  
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provinces within the j(h) functional zone; yji(yhr) is the CLUE of the i(r) province, city, or autonomous region within the j(h) functional 
zone; y is the national average of CLUE. 

Dagum–Gini Coefficient for all regions (G) is decomposed into three components: intra-regional variation (Gw), inter-regional 
variation ((Gnb), and trans-variation density (Gt). The formulas and relationships are as follows: 

G=Gw + Gnb + Gt, (3) 

See Dagum [41] et al. for specific formulas. 

2.3.3. Kernel density estimation 
The Kernel density estimation method is used to analyze the distribution and dynamics of cropland utilization efficiency. This 

approach addresses the shortcomings of the two methods described above, which effectively depicts the distribution of CLUE by 
constructing a kernel density curve, thus visualizing the trend and distribution pattern of the data over time, and we are able to 
understand the inter-regional differences and temporal evolution from another perspective. 

2.3.4. Markov chain 
The Markov chain analysis method offers insights into the long-term evolution and potential future scenarios of CLUE. Unlike the 

Kernel density estimation approach, which analyzes distribution patterns and dynamics, the Markov chain method predicts future 
changes in CLUE, aiding in the development of future projections and policy decisions. It focuses on the dynamic behaviors of variable 
distributions and their progression over time. By categorizing CLUE into N distinct classes, a transition probability matrix P of size N*N 
is constructed. This matrix, with Pij representing the likelihood of transitioning from class i at time t-1 to class j at time t, uncovers the 
dynamic progression trends of CLUE within the TFA, offering a comprehensive view of its evolutionary patterns. 

2.4. Data sources 

This text has collected agricultural input-output data from 30 provinces in China from 2000 to 2021, excluding Hong Kong, Macao, 
and Taiwan regions. Additionally, considering the model’s sensitivity to outliers, data from the Tibet region has been temporarily 
removed. The data used in the study all come from the “China Statistical Yearbook” and the “China Rural Statistical Yearbook”. In 
addition, the money-type data covered in the text are all based on the 1978 base period and have been made constant using the 
corresponding price indices. 

3. Results 

3.1. Process results 

The MaxDEA software is utilized for the analysis of the CLUE of China (The formula is shown in equation (1)), covering the period 
from 2000 to 2021. The findings are presented in Table 3. 

From the results of China’s CLUE measurement, the efficiency from 2001 to 2021 ranges from 0.903 to 1.027 (Table 3), and 
cultivated land resources are effectively utilized, with a relatively high level of overall efficiency. However, it is important to note the 
fact that CLUE declines from 1.027 in 2000 to 0.963 in 2021, a decrease of 6.26%. Specifically, the changes in China’s CLUE are mainly 
divided into four periods (Fig. 1). The first stage is the period of substantial decline (2000–2003), in which the CLUE is in a stage of 
substantial decline. Since the 21st century, China’s industrialization and urbanization have accelerated, and significant encroachment 
on farmland has led to a substantial reduction in the extent of cultivated land. In addition, Jixia Li point out that misallocation of 
cropland and redundancy of resources occurred during this period due to management and other reasons [42], which also had an 
impact on efficiency. The second stage is the period of significant fluctuation (2003–2009), during which the overall volatility of 
China’s CLUE level was large, mainly due to the impact of natural disasters such as the heavy rainfall in 2006 and the snowstorm in the 

Table 3 
Results of CLUE in China from 2000 to 2021.  

year efficiency year efficiency 

2000 1.027 2011 0.955 
2001 0.951 2012 0.955 
2002 0.933 2013 0.936 
2003 0.928 2014 0.926 
2004 0.967 2015 0.903 
2005 0.952 2016 0.924 
2006 0.930 2017 0.929 
2007 0.975 2018 0.944 
2008 0.971 2019 0.964 
2009 0.994 2020 0.967 
2010 0.985 2021 0.963 

Source: Calculated through software. 

X. Dong and S. Liu                                                                                                                                                                                                    



Heliyon 10 (2024) e27249

5

south of China in 2008, which drastically reduced the grain output and caused the overall fluctuation of efficiency to be large. While 
technological advances can improve the CLUE, the impact of natural disasters remains significant [43]. The third stage is the period of 
steady decline (2009–2015), in which the efficiency values show an overall steady downward trend. This could be linked to emerging 
issues in Chinese agriculture, including increasing labor expenses and the shift of workers from rural to urban regions, resulting in a 
diminished workforce for farming activities. Moreover, the efficiency of agricultural production on a scale was impacted by the 
unpredictability associated with land lease durations [44]. The fourth stage is a period of steady rebound (2015–2021), during which 
China has increased its investment in agricultural research, such as the application of new breeding technologies, smart agricultural 
equipment, and the promotion of precision agriculture technologies, all of which have significantly improved the CLUE. 

Regarding the outcomes of CLUE from different functional areas (Fig. 2), the results of CLUE show that CLUE in MMA > CLUE in 
MPA > CLUE in BPMA. From the perspective of inputs and outputs, the urbanization process in the sales area is generally faster, non- 
agricultural land use is increasing, and the area of cultivated land per person is significantly below China’s average [45]. So the relative 
inputs in MMA are lower, but the total value of agricultural output in the MMA is likely to come from higher value-added agricultural 
products, whereas in MPA, although the total food production is large, the total value of output is likely to be less than that in MMA, 
due to food crops typically commanding lower market prices compared to cash crops. Therefore, the MMA obtains higher outputs with 
fewer inputs, and its CLUE is rather higher than that of the MPA. On the other hand, the MPA possess a substantial amount of cultivated 
land; however, due to their relatively underdeveloped economic status, at the same time, they bear more tasks of food production and 
have more intense use of cultivated land. Farm refinement is not as good as in the primary marketing areas. So, the CLUE in it is rather 
lower. 

3.2. Regional differences in CLUE 

This paper adopts the Dagum Gini coefficient (The formula is shown in equation (2) and (3)) to measure and decompose the 

Fig. 1. Variation of CLUE in China from 2000 to 2021. 
Source: Calculated through software. 

Fig. 2. Variation of CLUE in TFA from 2000 to 2021. 
Source: Calculated through software. 
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regional disparities in CLUE among the TFA from 2000 to 2021. Given the extensive size of the table, it is included in an appendix 
(appendix1) at the conclusion of the article. 

3.2.1. Intra-regional variation 
Viewing CLUE from a nationwide standpoint (Fig. 3), the mean Gini coefficient for China’s CLUE between 2000 and 2021 stands at 

0.136, which is smaller overall, showing more obvious fluctuations and a certain downward trend. The overall regional imbalance in 
CLUE is gradually being improved. Specifically, it declined from 0.148 in 2001 to 0.124 in 2021, a decline of only 0.024, a relatively 
small rate of decline. This primarily stems from the significant disparities in agricultural development resources across different areas, 
making the diminishment of regional CLUE discrepancies a prolonged endeavor. Looking at CLUE within TFA (Fig. 3), the internal 
differences in the BPMA are large, and their Gini coefficients all exceeded the overall national Gini coefficient in the period under 
examination, indicating that the differences in CLUE within the BPMA are large, and are an important aspect leading to the large 
national CLUE [46]. The provinces within the BPMA exhibit significant disparities in terms of natural resource allocation, geographical 
positioning, and economic development stages, so their internal differences are large. Intra-regional variation in CLUE in MPA have 
shown a fluctuating upward trend over the past decade, and more monitoring efforts are needed to prevent them from expanding 
further. On the other hand, intra-regional variation in CLUE in the MMA are lower than the overall Gini coefficient for the country as a 
whole, and also lower than that in MPA and BPMA. This is mainly due to the fact that most of the MMA are areas where cultivated land 
resources are scarce but where talent and technology are concentrated, and where the overall CLUE is higher and the differences are 
smaller. 

3.2.2. Inter-regional variation 
Data analysis shows that the levels of CLUE between TFA in China are significantly different, and the average value of Dagum’s Gini 

coefficient across functional zones for the period 2001–2021 shows this trend: MMA - BPMA > MPA - BPMA > MPA -MMA. Specif-
ically, the large gap in CLUE between MMA and BPMA may be explained by the fact that MMA may be more advanced in terms of 
agricultural technology and management, for example, the adoption of modern agricultural technology, precision agriculture, and 
highly efficient irrigation systems, which have improved the CLUE, whereas BPMA may be relatively backward in these aspects. 
Observing the trend of variation between regions among the various groups, the Gini coefficients are all decreasing. That indicates that 
inter-regional variation among the TFA is gradually decreasing. The government and state authorities are increasingly focusing on 
achieving a balanced enhancement of CLUE across TFA. National food security is no longer solely reliant on the MPA. 

3.2.3. Sources of variation and decomposition 
Considering their impact as shown in Table 4, the average Gt value from 2000 to 2021 stood at 39.13%. Additionally, the mean 

value of the Gw was found to be 32.27%, while the mean value of Gnb was observed to be 28.60%. Among them, intra-regional variation 
measures the difference in CLUE between provinces within the TFA. Gnb measures the pure difference between provinces with high and 
low efficiency. Trans-variation density indicates the role that the overlap among subgroups plays in the total variance [47], i.e., the 
presence of some high-efficiency municipalities in an inefficient region with greater cropland use efficiency than some inefficient 
municipalities in a high-efficiency region. 

The contribution from variations between regions is showing a downward trend, from 30.98% in 2000 to 15.87% in 2021, while the 
contribution of trans-variation density is on an upward trend, gradually rising from the original 37.29%–49.69%, representing nearly 
half of the overall total and emerging as a primary factor in the disparities observed in CLUE, while the contribution of intra-regional 
variation has basically remained unchanged (Fig. 4). The significant increase in the contribution of trans-variation density reveals an 
increase in the number of outliers in CLUE between regions, and this widening difference may be due to uneven agricultural devel-
opment, with some provinces being able to make better use of resources and technology, while other regions may be limited by natural 

Fig. 3. Variation Gini coefficient of intra-regional variation in CLUE. 
Source: Calculated through software. 
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conditions, market access, or policy support. Intuitively, if one reduces the efficiency of regions with higher average CLUE and raises 
the efficiency of regions with lower CLUE, one can reduce the overall Gini coefficient by shrinking inter-regional variation [48]. 
Indeed, when subsamples overlap, this can lead to an increase in the intra-regional Gini coefficient, a decrease in the net variation 
between regions, and heightened inequality within the intersecting sections of the regions, so that the overall Gini coefficient rises 
rather than falls. Based on this, each functional area’s coordinated development should be strengthened to improve the CLUE level in 
China. The MMA appropriately expands the cultivated land area to ensure the CLUE does not decline. The MPA should focus more on 
improving the CLUE to bolster food production and safeguard food security. 

3.3. Distribution dynamics of CLUE 

The positioning of the kernel density curve for period sample data alone can signify the CLUE’s magnitude, with the peaks’ height 
and breadth indicating CLUE’s concentration level within that range. The quantity of peaks illustrates the sample data’s polarization, 
whereas the curve’s elongation, or its trailing extent, illustrates the distance between cities with the highest or lowest CLUE and the 
rest. A more pronounced trailing suggests a greater disparity within the region. Vertically comparing kernel density curves from 
various timeframes within the same area reveals the dynamic progression of CLUE’s distribution features in that region. Meanwhile, a 
horizontal analysis of curves from different regions highlights the variances in CLUE evolution paths. Using the Kernel density esti-
mation method, depth analysis in the position, pattern, flexibility, and polarization of CLUE in China as a whole and in TFA (Fig. 5). 

In terms of distribution position, a rightward shift in the curve’s distribution position occurs in the whole country, in MPA as well as 
in BPMA, showing an overall improvement in CLUE. This trend may stem from the progress of agricultural technology, effective land 
management policies and agricultural support measures at the national level. Conversely, the curve for MMA moved right and then 
left, suggesting that this region has undergone intricate variations in CLUE through the years. As urbanization advances, the MMA may 
face a reduction in the area of cultivated land and changes in land use, but at this time the traditional perception of the importance of 
agriculture has not yet been fully transformed [49], so the remaining cultivated land may receive more inputs and attention, and these 
elements might temporarily result in an elevation of CLUE. Yet, as urbanization progresses, the diminishing cultivated area, the shift of 
agricultural workers to non-agricultural sectors, and ecological pressures could cause a decrease in CLUE. 

In terms of distribution dynamics, the curve of CLUE in China from 2000 to 2021 has a tendency of rising wave peaks and narrowing 
widths. In terms of TFA, the trend seen in the kernel density estimation curve for CLUE within MMA aligns with the national pattern, 

Table 4 
Variation Gini coefficient of inter-regional variation.  

year BPMA ∣ MPA MMA ∣ MPA BPMA 
∣ MMA 

year BPMA ∣ MPA MMA ∣ MPA BPMA ∣ MMA 

2000 0.147 0.152 0.169 2011 0.159 0.119 0.16 
2001 0.171 0.134 0.207 2012 0.158 0.122 0.141 
2002 0.150 0.140 0.165 2013 0.168 0.130 0.145 
2003 0.164 0.162 0.152 2014 0.171 0.144 0.144 
2004 0.133 0.116 0.139 2015 0.178 0.154 0.162 
2005 0.15 0.135 0.135 2016 0.161 0.128 0.145 
2006 0.156 0.143 0.171 2017 0.163 0.136 0.143 
2007 0.124 0.106 0.134 2018 0.157 0.125 0.142 
2008 0.130 0.111 0.137 2019 0.143 0.114 0.117 
2009 0.123 0.101 0.133 2020 0.137 0.105 0.115 
2010 0.139 0.102 0.132 2021 0.137 0.118 0.116 

Source: Calculated through software. 

Fig. 4. Sources of variation and their contribution. 
Source: Calculated through software. 
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showing that the absolute disparity in CLUE levels in MMA is steadily decreasing. In contrast, the relative values of the crests in MPA 
and BPMA are expanding, indicating that the differentiation of CLUE between these two functional areas is obvious, which may be 
caused by a combination of uneven application of technology, differences in management practices, inconsistencies in the effects of 
policy implementation, and changes in market conditions [47]. These common problems suggest that, in order to improve the CLUE in 
these regions, a more balanced and integrated strategy is needed to ensure the effective allocation and utilization of technologies, 
policies and resources. 

In terms of distribution ductility, the curve of CLUE in the whole country from 2000 to 2021 shows the phenomenon of right 
trailing, especially after 2005, the change of right trailing is obvious, and the right trailing phenomenon of MPA, MMA and BPMA is 
basically consistent with that of the whole country, among which there is the phenomenon of left trailing in MPA in part of the year, 
and the change of right trailing is obvious after 2015, and overall trailing phenomenon is slowed down, which shows that the CLUE in 
part of provinces in this region is low, which in turn pulls down the value of the overall CLUE. 

In terms of distribution polarization, the bipolar or multipolar trend of the curve reveals the differences in CLUE between different 
regions. The whole country, MPA and BPMA all show a “double-peak” pattern, while the MMA shows a “multi-peak” state, suggesting 
that CLUE within the region is trending towards multi-polarization. In general, whether analyzed from the perspective of the whole 
country or the three food functional areas, the overall trend of CLUE had shown characteristics such as “leveling up and narrowing 
absolute differences," 

3.4. Evolution trend of CLUE 

3.4.1. Traditional Markov chain 
To further investigate the transfer pattern of CLUE in China, this paper uses the CLUE of TFA from 2000 to 2021 to measure the 

probability matrix of transfer of CLUE status in China under different time spans by the Markov chain method. According to previous 
studies, the CLUE was classified into four categories: low efficiency (LE), medium-low efficiency (MLE), medium-high efficiency 
(MHE), and high efficiency (HE) [42], and the period T was set as 1–5 years. Table 5 presents the probability matrix of transfer within 
the research period. 

The figures on the main diagonal represent the likelihood of the CLUE level remaining unchanged in each province, while the 

Fig. 5. Kernel density curves of CLUE for China and TFA. 
Source: Calculated through software. 
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numbers on the off-diagonal lines show the probabilities of a lateral shift in CLUE levels across the provinces. From the data in Tables 5 
and it can be analyzed:  

(1) The probabilities on the diagonal were greater than other positions. It indicates that the development trend of CLUE in each 
province is more stable when the influence of spatial factors is not considered, and cross-transfer between provinces of differing 
levels proves to be challenging.  

(2) As time increases, the probability that the provinces will remain unchanged is gradually decreasing. For example, from low-low 
= 0.870, medium-low-mid-low = 0.729, medium-high-mid-high = 0.701, high-high = 0.856 in T/T+1 lagged period down to 
low-low = 0.652, medium-low-mid-low = 0.492, medium-high-mid-high = 0.504, and high-high = 0.705 in the T/T+5 lag 
period. It shows that the ability of the provinces to maintain the status quo at the level of CLUE has decreased. In other words, 
the convergence trend of CLUE in each province diminishes with time, and mobility increases gradually.  

(3) From the results in the table, it can be observed that the probability of an increase in the level of CLUE was greater than that of a 
downward shift in the level. In other words, there was a greater inertia of upward shift [50]. In addition, transfers of CLUE 
typically happen between adjacent efficiency levels, except for the transfer from MLE to MHE in the T/T+5 lag period. That is to 
say, the transfer of CLUE in each province is slow, and it is difficult to achieve cross-domain leaps. It also reflects that improving 
CLUE requires matching economic development level and agricultural production technology. 

3.4.2. Spatial Markov chain 
While the conventional Markov chain method effectively illustrates the temporal evolution of CLUE, it operates under the 

assumption that regions are independent, overlooking the spatial correlations among them. To further reveal the spatial transfer 
pattern of CLUE in China, and to judge whether the efficiency level of “neighboring” regions affects the efficiency transfer in the region, 
this section will use a spatial Markov chain that incorporates spatial neighboring weights into the time for analysis. The transfer 
probability matrix is shown in Table 6. The results show that:  

(1) The transfer of CLUE does not exist in isolation but is affected by the CLUE in surrounding provinces. Disregarding the geospatial 
context, the probability of transitioning from LE to MLE at T/T+1 was 13.0%. In contrast, when considering the proximity to 
provinces with different levels of CLUE, the probability of transferring LE to MLE was 7.4%, 13.9%, 15.8%, and 0.00% when the 
efficiency of neighboring provinces was LE, MLE, MHE, and HE. This indicates that the level of CLUE in neighboring provinces 
impacts the CLUE level in this province. Therefore, it is necessary to consider spatial factors’ influence on CLUE’s transfer 
pattern.  

(2) “Neighbors” with high-efficiency levels (i.e., neighboring provinces with higher levels of CLUE than this province) will promote 
the probability of transfer to higher efficiency levels. In contrast, “neighbors” with low-efficiency levels will have a dampening 
effect. It reflects the positive spillover effect of provinces with higher levels of CLUE on surrounding provinces.  

(3) With the continuous time lag, the effects on the upward and downward shift of the level type of CLUE in neighboring provinces 
under the same spatial lag type are asymmetric, and the probability of an upward shift of CLUE under different spatial lag types 
increases. 

To guarantee the robustness of the spatial Markov chain outcomes, this study integrates both the spatial distance matrix and the 

Table 5 
Traditional Markov transfer probability matrix for CLUE.  

lag period categories LE MLE MHE HE 

T/T+1 LE 0.870 0.130 0.000 0.000 
MLE 0.097 0.729 0.168 0.006 
MHE 0.013 0.162 0.701 0.123 
HE 0.000 0.013 0.131 0.856 

T/T+2 LE 0.808 0.179 0.013 0.000 
MLE 0.109 0.680 0.204 0.007 
MHE 0.041 0.152 0.662 0.145 
HE 0.000 0.020 0.132 0.849 

T/T+3 LE 0.740 0.220 0.040 0.000 
MLE 0.158 0.590 0.223 0.029 
MHE 0.044 0.185 0.578 0.193 
HE 0.000 0.034 0.199 0.767 

T/T+4 LE 0.676 0.268 0.049 0.007 
MLE 0.197 0.530 0.220 0.053 
MHE 0.063 0.164 0.578 0.195 
HE 0.000 0.051 0.196 0.754 

T/T+5 LE 0.652 0.273 0.068 0.008 
MLE 0.211 0.492 0.234 0.063 
MHE 0.083 0.174 0.504 0.240 
HE 0.000 0.070 0.225 0.705 

Source: Calculated through software. 
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economic geography matrix into the analysis of the spatial Markov chain over various time spans, after considering the influence of 
spatial and economic factors, the CLUE among provinces still shows obvious spatial correlation, so the results have a certain degree of 
stability. Due to space limitation, the relevant results are put into the appendix (appendix2, appendix3) for testing. 

4. Conclusions and recommendations 

4.1. Conclusions 

This study evaluated the CLUE of 30 provinces in China over the period 2000–2021, utilizing the super-efficient SBM model. It then 
examined the regional disparities in CLUE among TF and their underlying reasons via the Dagum Gini coefficient. Ultimately, it 
undertook a comprehensive analysis of the dynamic evolution of CLUE in China through kernel density estimation and Markov chain 
methods. The study’s findings can be summarized as follows:  

(1) China’s overall CLUE value is high, but the efficiency value is slightly decreasing in fluctuation. Regarding CLUE in three food 
functional areas, CLUE in MMA > CLUE in MPA > CLUE in BPMA. However, the high efficiency of MMA may be due to the fact 
that its total agricultural output value may come more from high value-added agricultural products, and it obtains higher 
outputs with fewer inputs, and its CLUE is rather higher than that of MPA.  

(2) The unbalanced development phenomenon still existed among the three food functional regions during the study period. Yet, 
there was a general trend towards diminished regional disparities, and the imbalance has seen some mitigation. The inter- 
regional variation among TFA is gradually narrowing, and the influence on the overall differences is gradually weakening. 
However, the cross-group degree of inter-regional variation is on the rise. Based on this, to enhance China’s overall CLUE, it is 
crucial to bolster the coordinated development across all functional areas, and the MMA should ensure that the CLUE does not 
decline by appropriately expanding the cultivated land area, while the MPA should place greater emphasis on enhancing the 
CLUE.  

(3) The kernel density estimation results showed that the overall trend of CLUE exhibits the characteristics of “increasing level and 
decreasing absolute difference,” both from the perspective of the whole country and the three food functional areas. The 
traditional Markov chain results showed that the development trend of CLUE in each province was relatively stable. Still, with 
the increase of time, the probability of maintaining the same level gradually decreased, and the probability of shifting the level 
of CLUE upward was greater than that of shifting it downward. The results of the spatial Markov chain further demonstrated a 
significant spatial correlation effect of CLUE in China, and the interaction of CLUE between neighboring provinces will lead to 
spatial convergence of CLUE in the long term. 

4.2. Recommendations 

In response to the results of the study, this paper argues that, firstly, maximizing the potential of production regions is essential, by 
delineating the variances in cultivated land resources, agricultural production capabilities, and economic growth levels across each 
functional sector. Exploiting the unique benefits of each area, customizing approaches to align with local requirements, and mobilizing 
resources internationally are crucial steps to amplify efficiency. Second, strengthen the synergistic development under the spatial 
correlation effect. The government should pursue relevant policies to promote inter-regional coordinated development, which may 
include establishing inter-regional mechanisms for agricultural technology exchange and cooperation, promoting inter-regional 
economic integration, and establishing common agricultural markets between provinces. Finally, infrastructure development 

Table 6 
Spatial Markov transfer probability matrix for CLUE.  

T/(T+1) categories LE MLE MHE HE T/(T+5) categories LE MLE MHE HE 

LE LE 0.926 0.074 0.000 0.000 LE LE 0.739 0.261 0.000 0.000 
MLE 0.083 0.583 0.250 0.083 MLE 0.167 0.250 0.500 0.083 
MHE 0.000 0.091 0.818 0.091 MHE 0.000 0.143 0.714 0.143 
HE 0.000 0.000 0.000 1.000 HE 0.000 0.000 0.000 1.000 

MLE LE 0.861 0.139 0.000 0.000 MLE LE 0.620 0.304 0.065 0.011 
MLE 0.097 0.731 0.172 0.000 MLE 0.264 0.514 0.167 0.056 
MHE 0.025 0.225 0.575 0.175 MHE 0.149 0.209 0.328 0.313 
HE 0.000 0.020 0.168 0.812 HE 0.000 0.101 0.247 0.652 

MHE LE 0.842 0.158 0.000 0.000 MHE LE 0.706 0.118 0.176 0.000 
MLE 0.122 0.780 0.098 0.000 MLE 0.167 0.528 0.222 0.083 
MHE 0.000 0.056 0.861 0.083 MHE 0.000 0.143 0.750 0.107 
HE 0.000 0.000 0.094 0.906 HE 0.000 0.000 0.263 0.737 

HE LE 0.000 0.000 0.000 0.000 HE LE 0.000 0.000 0.000 0.000 
MLE 0.000 0.667 0.333 0.000 MLE 0.000 0.500 0.500 0.000 
MHE 0.000 0.148 0.815 0.037 MHE 0.000 0.105 0.684 0.211 
HE 0.000 0.000 0.167 0.833 HE 0.000 0.000 0.500 0.500 

Source: Calculated through software 
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should be strengthened and the level of agricultural science and technology should be enhanced. Governments should support research 
and development and innovation in agricultural science and technology, including biotechnology, smart agricultural equipment, 
precision irrigation and fertilizer use technology. 

Although this study has made significant progress, there is still potential for further refinement and enhancement. The High Level 
Panel of Experts on Food Security and Nutrition (HLP) proposes that the definition of food security should also encompass aspects of 
accessibility and sustainability, which is not yet fully reflected in this study when selecting indicators for assessing the efficiency of 
CLUE. Subsequent studies can be supplemented and improved on the basis of existing studies, so as to integrate the multidimensional 
and deep-rooted factors of food security into the assessment system, continuously optimize and improve the evaluation model, and 
reflect the situation of cropland utilization in a more scientific and comprehensive way. 
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Appendix 

Appendix1  

Table 7 
Decomposition of Dagum-Gini coefficient of CLUE in China from 2000 to 2021  

year G Gw Gnb Gt Intra-regional Inter-regional Contribution 

MPA BPMA MMA BPMA∣MPA MMA∣MPA BPMA∣MMA Gw Gnb Gt 

2000 0.148 0.047 0.046 0.055 0.120 0.158 0.137 0.147 0.152 0.169 31.72% 30.98% 37.29% 
2001 0.156 0.046 0.073 0.037 0.116 0.191 0.101 0.171 0.134 0.207 29.83% 46.69% 23.48% 
2002 0.142 0.044 0.051 0.048 0.126 0.162 0.074 0.150 0.140 0.165 30.94% 35.50% 33.56% 
2003 0.150 0.045 0.059 0.046 0.141 0.169 0.047 0.164 0.162 0.152 30.13% 39.21% 30.66% 
2004 0.123 0.039 0.044 0.040 0.111 0.144 0.063 0.133 0.116 0.139 31.72% 35.49% 32.79% 
2005 0.135 0.042 0.048 0.045 0.123 0.160 0.060 0.150 0.135 0.135 31.42% 35.23% 33.35% 
2006 0.146 0.044 0.052 0.050 0.120 0.174 0.077 0.156 0.143 0.171 30.33% 35.47% 34.21% 
2007 0.117 0.038 0.027 0.052 0.094 0.142 0.099 0.124 0.106 0.134 32.89% 22.82% 44.29% 
2008 0.120 0.039 0.031 0.050 0.097 0.146 0.092 0.130 0.111 0.137 32.22% 26.05% 41.72% 
2009 0.114 0.037 0.034 0.043 0.092 0.142 0.084 0.123 0.101 0.133 32.51% 29.68% 37.82% 
2010 0.122 0.040 0.025 0.057 0.101 0.161 0.072 0.139 0.102 0.132 32.93% 20.52% 46.55% 
2011 0.141 0.046 0.039 0.056 0.119 0.184 0.082 0.159 0.119 0.160 32.60% 27.62% 39.78% 
2012 0.139 0.047 0.027 0.066 0.130 0.173 0.078 0.158 0.122 0.141 33.65% 19.14% 47.21% 

(continued on next page) 
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Table 7 (continued ) 

year G Gw Gnb Gt Intra-regional Inter-regional Contribution 

MPA BPMA MMA BPMA∣MPA MMA∣MPA BPMA∣MMA Gw Gnb Gt 

2013 0.147 0.049 0.030 0.068 0.138 0.181 0.073 0.168 0.130 0.145 33.22% 20.56% 46.22% 
2014 0.150 0.049 0.035 0.066 0.146 0.173 0.073 0.171 0.144 0.144 32.62% 23.53% 43.85% 
2015 0.159 0.051 0.045 0.063 0.151 0.185 0.072 0.178 0.154 0.162 31.96% 28.42% 39.62% 
2016 0.142 0.047 0.041 0.054 0.140 0.167 0.063 0.161 0.128 0.145 33.03% 29.11% 37.86% 
2017 0.142 0.045 0.046 0.051 0.144 0.166 0.029 0.163 0.136 0.143 31.55% 32.68% 35.77% 
2018 0.137 0.044 0.040 0.053 0.137 0.163 0.035 0.157 0.125 0.142 32.14% 29.06% 38.80% 
2019 0.125 0.042 0.032 0.051 0.133 0.146 0.036 0.143 0.114 0.117 33.57% 25.42% 41.01% 
2020 0.120 0.041 0.024 0.055 0.124 0.142 0.058 0.137 0.105 0.115 34.53% 20.07% 45.40% 
2021 0.124 0.043 0.020 0.062 0.129 0.136 0.077 0.137 0.118 0.116 34.44% 15.87% 49.69%  

Appendix 2  

Table 8 
Spatial Markov transfer probability matrix for CLUE (Spatial distance matrix)  

T/(T+1) categories LE MLE MHE HE T/(T+5) categories LE MLE MHE HE 

LE LE 0.895 0.105 0.000 0.000 LE LE 0.625 0.375 0.000 0.000 
MLE 1.000 0.000 0.000 0.000 MLE 1.000 0.000 0.000 0.000 
MHE 0.000 0.000 0.000 0.000 MHE 0.000 0.000 0.000 0.000 
HE 0.000 0.000 0.000 0.000 HE 0.000 0.000 0.000 0.000 

MLE LE 0.862 0.138 0.000 0.000 MLE LE 0.661 0.268 0.063 0.009 
MLE 0.080 0.761 0.152 0.007 MLE 0.183 0.530 0.226 0.061 
MHE 0.016 0.169 0.677 0.137 MHE 0.102 0.204 0.459 0.235 
HE 0.000 0.015 0.131 0.854 HE 0.000 0.071 0.205 0.723 

MHE LE 1.000 0.000 0.000 0.000 MHE LE 0.500 0.000 0.500 0.000 
MLE 0.154 0.615 0.231 0.000 MLE 0.500 0.200 0.200 0.100 
MHE 0.000 0.130 0.783 0.087 MHE 0.000 0.063 0.625 0.313 
HE 0.000 0.000 0.118 0.882 HE 0.000 0.091 0.364 0.545 

HE LE 0.000 0.000 0.000 0.000 HE LE 0.000 0.000 0.000 0.000 
MLE 0.000 0.000 1.000 0.000 MLE 0.000 0.000 1.000 0.000 
MHE 0.000 0.143 0.857 0.000 MHE 0.000 0.000 0.857 0.143 
HE 0.000 0.000 0.167 0.833 HE 0.000 0.000 0.333 0.667  

Appendix3  

Table 9 
Spatial Markov transfer probability matrix for CLUE (Economic distance matrix)  

T/(T+1) categories LE MLE MHE HE T/(T+5) categories LE MLE MHE HE 

LE LE 0.500 0.500 0.000 0.000 LE LE 0.625 0.375 0.000 0.000 
MLE 0.000 0.375 0.625 0.000 MLE 1.000 0.000 0.000 0.000 
MHE 0.000 0.097 0.774 0.129 MHE 0.000 0.000 0.000 0.000 
HE 0.000 0.111 0.444 0.444 HE 0.000 0.000 0.000 0.000 

MLE LE 0.866 0.134 0.000 0.000 MLE LE 0.661 0.268 0.063 0.009 
MLE 0.097 0.766 0.129 0.008 MLE 0.183 0.530 0.226 0.061 
MHE 0.023 0.216 0.625 0.136 MHE 0.102 0.204 0.459 0.235 
HE 0.000 0.010 0.126 0.864 HE 0.000 0.071 0.205 0.723 

MHE LE 0.889 0.111 0.000 0.000 MHE LE 0.500 0.000 0.500 0.000 
MLE 0.095 0.667 0.238 0.000 MLE 0.500 0.200 0.200 0.100 
MHE 0.000 0.100 0.867 0.033 MHE 0.000 0.063 0.625 0.313 
HE 0.000 0.000 0.047 0.953 HE 0.000 0.091 0.364 0.545 

HE LE 1.000 0.000 0.000 0.000 HE LE 0.000 0.000 0.000 0.000 
MLE 0.500 0.500 0.000 0.000 MLE 0.000 0.000 1.000 0.000 
MHE 0.000 0.000 0.600 0.400 MHE 0.000 0.000 0.857 0.143 
HE 0.000 0.000 0.400 0.600 HE 0.000 0.000 0.333 0.667  
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