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ABSTRACT Many breeds of modern cattle are naturally horned, and for sound husbandry management
reasons the calves frequently undergo procedures to physically remove the horns by disbudding or
dehorning. These procedures are however a welfare concern. Selective breeding for polledness – absence
of horns – has been effective in some cattle breeds but not in others (Bos indicus genotypes) due in part to
the complex genetics of horn phenotype. To address this problem different approaches to genetic testing
which provide accurate early-in-life prediction of horn phenotype have been evaluated, initially using
microsatellites (MSAT) and more recently single nucleotide polymorphism (SNP). A direct gene test is not
effective given the genetic heterogeneity and large-sized sequence variants associated with polledness in
different breeds. The current study investigated 39,943 animals of multiple breeds to assess the accuracy of
available poll testing assays. While the standard SNP-based test was an improvement on the earlier MSAT
haplotyping method, 1999 (9.69%) out of 20,636 animals tested with this SNP-based assay did not predict a
genotype, most commonly associated with the Indicus-influenced breeds. The current study has developed
an optimized poll gene test that resolved the vast majority of these 1999 unresolved animals, while the
predicted genotypes of those previously resolved remained unchanged. Hence the optimized poll test
successfully predicted a genotype in 99.96% of samples assessed. We demonstrated that a robust set of
5 SNPs can effectively determine PC and PF alleles and eliminate the ambiguous and undetermined results
of poll gene testing previously identified as an issue in cattle.
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Cattle, like other bovidae species, werehistorically naturally hornedwith
bony appendages fused onto the frontal cranium for defense from
predators and to exert dominance for food and mating (Kiltie 1985;

Lundrigan 1996; Davis et al. 2011). Since domestication of cattle (Bos
taurus and Bos indicus), the shape and size of horns have become the
prominent feature of their unique phenotypic diversity between the breeds
(Ajmone-Marsan et al. 2010). Generally, the head phenotype in cattle is
termed as Horned when keratin coated permanent pointy protrusions
anchored to the skull, Scurred when rudimentary horns are loosely at-
tached to the skin rather than the skull, or Polledwhen there is a complete
absence of horns and scurs. Absence and presence of horns or scurs is
determined during prenatal development. However, the postnatal devel-
opment of horns vs. scurs is very difficult to differentiate at an early age
because both present initially as free-floating horn-buds and subsequently,
only the former fuses to the cranium (Dove 1935; Wiener et al. 2015).

Desirability of horns has changed over the centuries with develop-
ments in the intensity and practices of raising beef and dairy cattle
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(Zeder 2008; Ajmone-Marsan et al. 2010). In the modern commercial
cattle industry, horned animals are less desirable because they pose
potential hazards for other cattle and animals used for mustering
(horses, dogs), feeding, handling and transport facilities, and farm
workers. Furthermore, there is evidence that horned cattle are associ-
ated with higher costs of on-farm and post-farm production and
greater risk of reduced meat and skin quality (Bunter et al. 2013;
Knierim et al. 2015; Schafberg and Swalve 2015). Therefore, polled
cattle have generally become much more desirable. Archaeological ev-
idence suggests that polled cattle have existed in various civilizations for
at least a few centuries (Kyselý 2010; Lauwerier 2015; Schafberg and
Swalve 2015). A range of different surgical, chemical and cautery meth-
ods are used to either remove unattached horn buds (disbudding) or
horns attached to the cranium (dehorning). All procedures are costly
and cause varying degrees of pain and reduced animal welfare, mor-
bidity, mortality and reduced productivity, with dehorning often result-
ing in exposure of the frontal sinus (Stafford and Mellor 2005; Neely
et al. 2014; Knierim et al. 2015; Herskin and Nielsen 2018).

Selective breeding for polled animals requires accurate early-in-life
prediction of horn phenotype (Spurlock et al. 2014; Scheper et al. 2016).
Horn phenotype is a qualitative trait controlled by genetics – 000483-
9913 (OMIA 2019) – which have been mapped to bovine autosome
1 (BTA1) (Georges et al. 1993; Harlizius et al. 1997; Mariasegaram et al.
2012; Randhawa et al. 2016). The underlying genes and causal muta-
tions for horns, scurs and polledness remain to be fully elucidated.
Phenotypic penetrance suggests that the poll gene is dominantly
inherited, i.e., PP (polled), pp (horned), with heterozygous animals
usually polled but also commonly scurred (Pp). The genetic basis of
scurs remains unclear although evidence suggests the condition is ge-
netically complex and affected by polled status as well as sex of indi-
viduals (Capitan et al. 2009; Mariasegaram et al. 2010; Capitan et al.
2011; Tetens et al. 2015). In addition, an as yet unidentified African
horn gene has been speculated as a possible explanation for the epis-
tasis-like complexity in the horn inheritance in several breeds (White
and Ibsen 1936; Long and Gregory 1978; Prayaga 2007). However, no
empirical evidence has been presented to confirm its existence to date
(Grobler et al. 2018).

Genetic heterogeneity has been found across breeds linking the poll
characteristics with different sequence variants of deoxyribonucleic
acid (DNA), namely, Celtic (PC), Friesian (PF), Mongolian (PM)
and Guarani (PG) mutations (Medugorac et al. 2012; Rothammer
et al. 2014; Wiedemar et al. 2014; Medugorac et al. 2017; Grobler
et al. 2018; Utsunomiya et al. 2019). Each mutation is a complex
insertion-deletion of variable size, such that PC is g.[22429326_
2429335del;2429109_2429320dupins], PF is g.2629113_2709240dup
(80,128 bp), PM is g.[2695261_2695267delinsTCTGAA;2695889_
2696047dupins] and PG is g.2614828_2724315dup (�110 kb) within
the poll locus (2.2 to 2.8 Mb) on BTA1 (bovine genome assembly
ARS-UCD1.2 (GCA_002263795.2): https://www.ncbi.nlm.nih.gov/
assembly/GCF_002263795.1/). These genetic mutations (PC, PF, PM
and PG) are not directly involved in gene coding, although putative
causal effects have been reported by introgression of the PC allele by
gene-editing of bovine embryos that resulted in the birth of healthy
and phenotypical unremarkable polled cattle (Carlson et al. 2016).
The mutations may be involved in gene regulation and translation
processes through unconventional mechanisms as speculated by the
presence of antisense sequences caused by similar insertions disturbing
normal function of horn growth associated genes (Allais-Bonnet et al.
2013; Wiedemar and Drögemüller 2015). However, their association
with polledness provides opportunities for genetically selecting animals
to produce naturally polled cattle (Prayaga 2007; Spurlock et al. 2014;

Windig et al. 2015). Notably, PC and PF are the most frequent muta-
tions observed in the majority of breeds in production systems globally,
and hence are the focus of this study.

The poll locus contains several microsatellite (MSAT) markers,
unique to several breeds, that have been successfully employed to
predict the poll phenotypes (Mariasegaram et al. 2012). However,
within-population instability and cross-population diversity of these
obsolescent genetic markers make them vulnerable to diminishing
accuracy over time and in non-ascertained populations. As genome
sequencing technologies have become more accessible and cost effec-
tive, SNP-based testing has replaced MSAT testing. SNP-based
indirect tests have been developed to predict both PC and PF alleles
and are present on many commercial genotyping assays designed for
genomic evaluation to reduce testing costs. However, the accuracy of
commercially available SNP-based poll gene tests are constrained
because their initial development only involved a limited number of
taurine cattle breeds (Grobler et al. 2018). To address the problem
that the current commonly used SNP haplotype translations are not
well suited to several beef breeds, including Brahman and Brahman-
infused cattle common to northern Australia and other tropical coun-
tries, an optimized poll gene test was developed using the recently
identified SNPs associated with Celtic and Friesian mutations, and a
resource herd with accurate phenotypic and genotypic recording
across generations. This paper describes the development and evalu-
ation of this optimized poll gene test for cattle.

MATERIALS AND METHODS

Animal ethics
Ethics approval for the pre-tested animals was not required, as these
results were generated under commercial services using microsatellites
andSNPbasedpoll testing.However, tail-hair samples,headphenotypes
and genotyping for confirmation of the optimized poll gene test were
approved (Animal ethics approval numbers SVS/301/18, SVS/465/18
and SVS/ANRFA/397/19).

Sampling, genomic and phenotypic records
A total of 39,943 cattle samples were used in this study to compare the
previously performed diagnostic predictions with the proposed opti-
mization and assess their phenotypic concordance (Table 1, Table S1).
The poll predictions previously tested with MSAT (n = 20,534) were
obtained from Neogen Australasia. Genomic data and CPT-based pre-
dictions consisted of 20,636 samples. Phenotypic information about
registered animals in Australia were obtained from the BREEDPLAN
database (http://breedplan.une.edu.au/index.php). Tail-hair samples of
Brahman (n = 60) were used from previously available stocks for DNA
sequencing. In addition, tail-hair samples of validation populations
including Droughtmaster (n = 156), Brangus (17), Brahman (22), Santa
Gertrudis (29) and cross-bred (33) cattle were collected for phenotypic
and genetic concordance evaluation (Table 1).

Microsatellites, SNP markers and current poll
testing assays
A total of 14 microsatellite (MSAT) markers located between positions
2,341,080 to3,014,463onBTA1havestrongassociationswithpolledness
across different populations (Table S2). The poll-haplotype diagnostic
test data set in the current study used 10 markers for predictions
(Mariasegaram et al. 2012; Piper et al. 2014). There are over twelve
thousand SNPs surrounding the poll locus in cattle, of which only
10 have shown strong association with the candidate mutations (Celtic
and Friesian) causing polledness (Table 2) (Medugorac et al. 2012;
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Rothammer et al. 2014; Wiedemar et al. 2014). Out of the 10 SNPs
associated with polledness in various cattle breeds and with strong LD
to the known Celtic and Friesian variants (Table 2), the current
poll testing (CPT) assay represents 8 SNPs. Within this haplotype,
the SNP rs800947704 has been identified as having low call rates in
several breeds (Table S3), and therefore was investigated by DNA
sequencing.

DNA extraction, PCR, DNA sequencing and
SNP genotyping
DNAextraction fromall samplesused for targetedDNAsequencingand
SNP genotyping was performed by using the standardized protocol
at the genetic testing laboratory of Neogen Australasia. DNA frag-
ments of 1,098 bp (2,377,810-2,378,907) harboring a targeted genotype
rs800947704 (g.2378745G . C) were amplified by using primers
(Forward: 59-TCCCTCTGCTGTGATAAACACC-39 and Reverse:
59-ACCACAAACCAAGGCCAAAC-39). PCR reactions containing
15-20 ng DNA, 10 mM forward and reverse primers, 0.12 ml taq in
a total volume of 25 ml, and employed standard PCR cycling condi-
tions on an Applied Biosystems thermocycler. An internal primer
(59-TCCAATGAACACCCAGGACT-39) was used to generate 665 bp
(2,378,243-2,378,907) sequencing reads. Unused dNTPs and primers
were removed using ExoSAP-IT (USB Corporation distributed by GE
Healthcare Bio-Sciences, Rydalmere, Australia). Sequencing was per-
formed using an ABI Prism Big Dye Terminator Cycle Sequencing
Ready Reaction Kit Version 3.1 (PE Applied Biosystems, Foster City,
USA) following the instructions supplied with the kit. Sequencing
separation was performed on an ABI 3730xl automated sequencer.

Forward and reverse sequences were aligned and edited using Chro-
masPro (Technelysium Pty Ltd, Tewantin, Australia).

Prediction of celtic and friesian alleles: Prediction of polledness-
associated PC and PF mutations were generated using the SNPmarkers
(Table 2) available on commercial bovine BeadChip assays (Illumina)
including Neogen’s proprietary GGP-LDv4, GGP Taurus 50K or GGP
Indicus 35K assays (Neogen Corporation, Lincoln, NE). The Celtic (PC)
is predicted by translating a single SNP marker rs383143898 based
on its horn or poll allele (Table 2). The Friesian mutation is predicted
based upon haplotype associated withmarkers in LD with PF (Table 2).
Note that the combination of PF-markers used varied with different
versions of the Poll Test being assessed in this study. Final results
represent reconciled outcomes from both predictions to generate al-
lele-pairs (genotypes) such as HH, HPC, HPF PCPC, PCPF or PFPF.
However, if the PC-SNP or more than two PF-SNPs fail during geno-
typing, or two or more SNPs differ in predicted genotype (H vs. PF)
then the result is considered ambiguous and termed as a “No Result”.
The optimized poll testing assay remained identical for PC, while gen-
otyping failure or contrasting prediction were restricted to only one
differing or missing PF SNP.

Data availability
Genomic sequences generated in this study have been deposited in
NCBI’s GenBank (accession numbers: MN473394 to MN473448).
Genotypic and phenotypic data have been provided in supplementary
files Data 1 and Data 2 available at figshare: https://doi.org/10.25387/
g3.10423904.

n■ Table 1 Number of animals tested by Microsatellites and SNPs based assays

Breed Tested animals Tested by MSAT Tested by SNP
Validation
population

Angus 1630 28 1602
Brahman 7160 4532 2819 22
Brangus 806 745 72 17
Charolais 3148 2666 900
Droughtmaster 2718 2223 558 156
Hereford 6424 3485 3341
Limousin 2193 2124 207
Santa Gertrudis 4456 4306 136 29
Shorthorn 316 224 67
Wagyu 9182 201 9050
Other breedsa 1910 — 1884 33
Total 39,943 20,534 20,636 257
a
List of other breeds are provided in Table S1.

n■ Table 2 List of single nucleotide polymorphisms (SNP) on autosome 1 known for strong linkage disequilibrium (LD) with Celtic (PC) and
Friesian (PF) mutations and their call rate in cattle breeds

SNPs ARS-UCD1.2 positions Mutations Poll alleles LD with Call rate a

rs801127025 2,372,456 P5ID T PF 99.47
rs799187101 2,377,687 G . A A PF 99.98
rs800947704 2,378,745 C . T T PF 96.32
rs798116945 2,407,338 G . C C PF 99.99
rs383143898 2,429,319 P202ID T PC 99.92
rs799403053 2,486,811 T . C C PF 99.80
rs210350155 2,491,161 C . A A PF 99.23
rs797088784 2,578,598 G . A A PF 99.44
rs800767839 2,629,115 T . A A PF 99.94
rs799920960 2,748,715 C . G G PF 100
a
indicates mean call rate. Breed-wise call rates are given in Table S3.
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RESULTS AND DISCUSSION
Distinctive characteristics of MSAT and SNP in different populations
have historicallymade interpretation of the poll gene test quite complex,
resulting in compromised performance of both test types in some breeds.
Out of 20,534 samples tested with the MSAT-based assays, 11.7% have
failed to predict a poll genotype - reported as “Not Determined”
(Figure S1). Breed specific failure varied from Angus (3.57%) to Wagyu
(30.35%), while most breeds have the failure rates over 10% (Brahman,
Brangus, Charolais, Droughtmaster, Santa Gertrudis, Shorthorn). The
high frequency of Not Determined was a major barrier to widespread
uptake of the MSAT-based poll test in Australia.

SNP-based poll testing in cattle has significantly reduced the fre-
quencyofNotDetermined (NoResult) in taurinebreeds.HoweverZebu
(Bos indicus) and their cross-bred cattle are still constrained by a high
frequency of No Results (Figure S1). Out of 20,636 samples genotyped
with the current SNP-based poll test (CPT), most of the breeds of
European origin (Angus, Charolais, Hereford, Limousin, Holstein-
Friesian etc.) except Shorthornwere successfully predicted for head-status
(Table S1). Nonetheless, overall 9.69% of CPT-tested samples had failed to
identify an unambiguous genotype and hence were predicted as “No
Result” with the majority of these No Results being Brahman (17.45%)
and Brahman-infused populations such as Brangus, Droughtmaster,
Santa Gertrudis and Cross-bred cattle (Table S1, Figure S1).

We investigated the utility of the 10 SNPs that make up the CPT
assays in the predictions of PC and PF prevalence in different breeds.
Two SNPs, rs798116945 and rs800767839, were homozygous across
most of the European and Zebu breeds and their cross-bred popula-
tions. Hence, these two SNPs were declared non-informative for the
Poll gene testing assays (Table 2, Table S3). Our investigation also
identified two SNPs, rs799187101 and rs800947704, as the major cause
of “No Result” in the Zebu cattle when running the CPT assay Neither
SNP is in complete LD in the haplotypes predicting the presence of PC
or PF. Furthermore, in a subset of 18,675 genotyped animals, SNP
rs800947704 consistently showed lower call rate (Table S3) in several
breeds including Brahman (14.3%). Therefore, 60 Brahman samples
were selected to sequence the 665 bp genomic region surrounding
rs800947704 in 55 samples (Table S4, GenBank accession numbers:
MN473394 to MN473448). Sequence alignment of 55 Brahman sam-
ples found nine known SNPs (rs383371521, rs377981008, rs135217384,
rs136702754, rs134535435, rs381418143, rs800947704, rs110759734
and rs444879378).

Targeted sequencing analyses of Brahman cattle suggested that there
was an inherent issue with the probe design of rs800947704 SNP in the
various IlluminaBeadChips (TableS4).Genotypecall failureat the target
SNP (C. T, rs800947704) in the genotyping assays was being caused
by probe hybridization issues, due to a neighboring SNP rs381418143
(g.2378742A. G) located 3 bp upstream to rs800947704 in Brahman
cattle. The current probes are designed based upon the Taurine refer-
ence genome to recognize allele A only of rs381418143. Therefore all
samples carrying the allele A at rs381418143 (n = 22) were correctly
genotyped at the target SNP rs800947704 for all alleles (CC, TT or
CT = Y). However, DNA samples (n = 16) with G at rs381418143
resulted in incorrect genotype or failure to generate a genotype
depending upon whether animals tested were heterozygous GA or
homozygous AA for rs800947704. Although some of the genotyping
assays were optimized to fix the aforementioned errors, it was observed
that the poll-associated allele T of rs800947704 was not consistently
genotyped in samples when other marker SNPs were indicating the
presence of PF associated alleles. Similarly, another SNP rs799187101
was found discordant causing unsuccessful predictions for PF. Therefore,
both SNPs (rs799187101 and rs800947704) were deemed unreliable and

excluded. Finally, SNP rs799920960 was found to be redundant and was
also excluded.

At this point, the remaining 5 SNPs (rs801127025, rs383143898,
rs799403053, rs210350155 and rs797088784) were retained to assess
accurate predictions of PC and PF alleles, with rs383143898 (P202ID) as
the sole predictor for PC, while the other 4 SNPs are associated with PF.
For the sake of this prediction we accepted the successful genotyping of
at least 3 out of the 4 SNPs asminimum to predict PF. Collectively, these
5 SNPmarkers are named as optimized poll testing (OPT) assay, which
predicts 6 possible genotypes (HH,HPC, HPF, PCPC, PCPF or PFPF).We
evaluated previously successful predictions (n = 18,637), confirming the
predictions remain unchanged (100%) using OPT relative to the orig-
inal prediction with CPT (Table 3). Of the samples previously unable to
be predicted based upon the CPT translations (No Result, n = 1,999),
1,990 (99.6%) were effectively classified into one of the 6 genotypic
predictions (Table 3, Table S1). Thus, out of the total genotyped sam-
ples (n = 20,636) the success rate for OPT predictions was 99.96% as
compared to 90.31% for the CPT assays. Subsequent investigation of
the remaining unpredicted (No Result) 9 samples found that 8 of them
were due to genotyping failure for rs383143898 (PC) and one failed for
multiple markers associated with PF (Table S1). Both genotyping error
rates were within the expected, 0.01% range (Wu et al. 2019) and can
be resolved by resampling. It is possible that higher prediction failure
rates by MSAT and CPT in some breeds (e.g., Brahman and Wagyu)
might suggest that they carry another mutation (e.g., Mongolian) given
the spatial and temporal closeness with Turano cattle. However,
100% of polled animals of these breeds in this study carried PC or
PF as elucidated by the OPT. Hence, we conclude that with success-
fully genotyped OPT markers, 100% of the samples can be effectively
predicted in multiple breeds of cattle including European, Zebu and
their composite animals (Table S1, Figure S2).

Accuracy of true phenotype matching with predicted genotypes is
challenging because of a lack of phenotypic records as well as inaccur-
acies (Connors et al. 2018). Phenotypic records on a subset of 6,930
animals were obtained from the BREEDPLAN database to test concor-
dance between phenotypes and genotypes (Table 4). OPT-based geno-
types have shown high concordance with known head-status for HH
and PP animals. However the potential for scur phenotypes in hetero-
zygous animals (HPC andHPF) significantly compromises informative-
ness of these genotypes. The biology underpinning scur development
remains poorly understood and potentially multifactorial, with indica-
tions in literature pointing to the probability that gender (female) and
sex hormones (steer) sway heterozygotes to be poll (Pailhoux et al.
2001). It is very unlikely that HH animals can be either scurred (3.1%)
or polled (2.1%), and these percentages likely reflect errors due to impre-
cise phenotyping at a very early age, improper dehorning resulting in
partial regrowth of horns mimicking scurs and data recording errors.
Accuracy of phenotype recording remains a significant challenge as

n■ Table 3 Comparison of current (CPT) and optimized (OPT) poll
testing on 20,636 Australian cattle samples. List of breed-wise No
results is given in Table S1

Animal
genotypes CPT results OPT results Gain by OPT

HH 11,113 12,785 1,672
HPC 3,420 3,696 276
HPF 135 147 12
PCPC 3,641 3,651 10
PCPF 300 311 11
PFPF 28 37 9
No Result 1,999 9 21,990
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evident in the BREEDPLAN data set. In the validation data,
phenotype-genotype concordance was found as expected with HH
(100% horned) and PCPC / PCPF / PFPF (100% polled) except HPC
(59.9% scurred and 40.1% polled) and HPF (100% polled). If in the
future true discordance between genotypes and phenotypes is con-
firmed, e.g., PCPC being horned or HH being polled, these animals
should be considered be a valuable resource for further study. We
have noted that heterozygous animals carrying PF (i.e., HPF) were
significantly (Fisher’s exact test, P = 0.05) more likely to be polled
compared to HPC. This observation may warrant further study in the
future as the numbers of HPF genotypes is too small (n = 123) in both
data sets (Table 4). On the other hand, a larger number of PCPF
animals (n = 269) were found to be 99.3% polled (Table 4). Note that
PC and PF mutations are approximately 200 kb apart and expected to
be in trans-arrangements given their independent evolutions. This
study have found no occurrence of cis-gametes carrying PC and PF
on the same haplotype in PCPF, PFPF and PCPC animals (n = 7,640,
Table 3). However, there is non-negligible recombination probability
(�0.2%) and a PCPF cis-haplotype coexisting with H allele on second
haplotype may cause growth of scurs as unexpected phenotype. To
date it remains unclear whether the existence of a scur gene could
be involved in the diversity of scurred animals as well as polled
phenotypes in heterozygotes HPC and HPF (Tetens et al. 2015). We
continue to investigate further genetic factors in target populations
by using high-density SNP arrays, whole genome sequencing and
accurate phenotyping.

Economic sustainability and animal welfare have driven recent
progress in modern livestock production systems especially in efforts
tominimize or eliminate undesirable traits such as the presence of horns
in cattle. Genetic dehorning is being progressively adopted as the non-
invasive approach to breed hornless cattle through genetic selection
(Carlson et al. 2016; Mueller et al. 2019). Genotype-phenotype rela-
tionships of horn growth are however complex (Medugorac et al. 2012)
limiting the informativeness of current assays for early detection for
horn status, and the presence or absence of polled alleles (polledness),
in some breeds. In this study we identified limitations of the current poll
gene testing assays, especially in tropical cattle common in Northern
Australia and throughout Asia. Our investigations have demonstrated
that a robust set of 5 SNPs can effectively eliminate the ambiguous and
undetermined results that limited the effectiveness of previous poll
predictions. The next important step is to get a better understanding
of the Scur locus, which remains a confounding influence especially for
heterozygous (HPC, HPF) animals.
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