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Background. Functional abnormalities of high-density lipoprotein (HDL) could contribute to cardiovascular disease in chronic
kidney disease patients. We measured a validated marker of HDL dysfunction, nitrated apolipoprotein A-I, in kidney transplant
recipients to test the hypothesis that a functioning kidney transplant reduces serum nitrated apoA-I concentrations. Methods.
Concentrations of nitrated apoA-I and apoB were measured using indirect sandwich ELISA assays on sera collected from each
transplant subject before transplantation and at 1, 3, and 12months after transplantation. Patients were excluded if they have history
of diabetes, treatment with lipid-lowering medications or HIV protease inhibitors, prednisone dose > 15mg/day, nephrotic range
proteinuria, serum creatinine > 1.5mg/dL, or active inflammatory disease. Sera from 18 transplanted patients were analyzed. Four
subjects were excluded due to insufficient data. Twelve and eight patients had creatinine < 1.5mg/dL at 3 and 12 months after
transplantation, respectively. Results. Nitrated apoA-I was significantly reduced at 12 months after transplantation (𝑝 = 0.039).
The decrease in apoA-I nitration was associated with significant reduction in myeloperoxidase (MPO) activity (𝑝 = 0.047). In
contrast to apoA-I, nitrated apoB was not affected after kidney transplantation. Conclusions. Patients with well-functioning grafts
had significant reduction in nitrated apoA-I 12 months after kidney transplantation. Further studies are needed in a large cohort to
determine if nitrated apoA-I can be used as a valuable marker for cardiovascular risk stratification in chronic kidney disease.

1. Background

Cardiovascular disease (CVD) is the leading cause of death
among patients with end-stage renal disease (ESRD), accoun-
ting for approximately half of all deaths [1–4]. The major
course of treatment is dialysis. Dialysis patients die at six to
seven times the rate of individuals in the general population
with otherwise similar risk factors. Patients with less severe
stages of chronic kidney disease (CKD) also carry excess risk
of cardiovascular mortality that is not explained by tradi-
tional risk factors [5, 6]. Reduction of LDL cholesterol using
statins lowers risk of atherosclerotic events in nondialysis
CKD patients [7, 8]. However, similar protection by statins

was not observed in clinical trials involving patients on
dialysis [9, 10].

It is possible that HDL’s quantity and quality may explain
some of the residual risks in patients with advanced CKD.
Epidemiologic studies have shown that there is a gradual
increase in the risk of CVD as HDL cholesterol decreases [11,
12]. However, recent pharmacologic interventions aimed at
increasing HDL abundance failed to provide clinical benefits
and were associated with unexpected side effects despite
promising preclinical outcomes [13, 14].

Recent studies are now focusing on assessing HDL func-
tion rather than measuring its traditional plasma concen-
tration [15–17]. In this regard, attempts have been made to
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measure nitrated apoA-I. These studies have advanced the
concept that oxidative modification of HDL byMPO renders
HDL dysfunctional [18–20]. Elevations in nitrated apoA-
I containing HDL have been reported in atherosclerotic
plaques and in plasma of CVD patients [6, 21–23].

Both qualitative and quantitative changes in HDL have
been described in patients with CKD [24]. Specifically, HDL
abundance is reduced and HDL acquires a proinflammatory
property instead of its usual anti-inflammatory role [25, 26].
In addition, HDL from patients with CKD has reduced
capacity for reverse cholesterol transport [27]. In more recent
study, CKD has been shown to alter specific HDL functions
linked to control of inflammation and endothelial responses
[28]. Low HDL levels were associated with earlier entry in
dialysis or doubling of plasma creatinine levels independently
of the presence of diabetes [29]. Immunohistochemistry
staining revealed higher nitrotyrosine in arteries with media
calcification in CKDpatients [30].Moreover, plasma proteins
of CKD patients showed a higher burden of nitration than
that in healthy controls [31]. Despite these significant reports
on plasma nitroproteome, the implication of nitrated lipopro-
teins in disease progression has not been explored in CKD
patients.

Degree of nitration in apoA1-HDL has been evaluated
by several methods such as mass spectrometry and Western
blot analysis in different disease setting [23, 32, 33]. However,
all these techniques are time-consuming and are not well
adapted to high throughput screen setting. We have devel-
oped an ELISA based method to quantify serum nitrated
apoA-I. We showed that CVD subjects have low total HDL
but their nitrated apoA-I content is high [34]. Using the same
ELISA, Vazquez et al. demonstrated a significant decrease
in cholesterol efflux by ABCA1 transporters and impaired
endothelial function that were associated with increased
nitration of apoA-I-HDL in obese women [35]. Patients with
CKD are at increased cardiovascular risk and have reduced
HDL levels and altered HDL composition [36]. We have
therefore investigated whether levels of circulating nitrated
lipoproteins change in CKD patients treated with kidney
transplantation.

2. Subjects and Methods

2.1. Patients Selection and Clinical Variable Assessment. Sev-
enty-eight subjects were recruited from outpatient clinics of
SUNY Downstate Medical Center between November 2010
and June 2013. The study was approved by the Institutional
Review Board under protocol number 441318-1. Written
informed consent was obtained from all study participants.
All participants were adults. Kidney transplant recipients
were enrolled in the study unless they met exclusion criteria.
Patients with the following criteria were excluded from the
study: diabetes, HIV on antiretroviral therapy, active sys-
temic rheumatologic diseases, nephrotic syndrome, prot-
ein : creatinine ratio >1, treatment with lipid-lowering agents,
body mass index (BMI) > 35, creatinine >1.5mg/dL or esti-
mated glomerular filtration (eGFR) <60mL/min by Modifi-
cation of Diet for Renal Disease (MDRD) equation, steroid

dose >15mg prednisone or equivalent a month or more after
transplantation, and treatment with sirolimus or everolimus.
All these above selection criteria would eliminate most of
important confounding factors that could interfere with
lipid and lipoprotein metabolism. A sample size of 12 was
estimated to provide 90% power to detect difference of
448 𝜇g/dL between pretransplant and 12-month posttrans-
plant concentration of nitrated apoA-I at two-tailed type I
error 𝛼 of 0.05 using Wilcoxon signed-rank test [34, 35].

Sera were collected from each transplant subject before
transplantation and at 1, 3, and 12 months after transplanta-
tion. In total, sera from eighteen transplanted patients who
were eligible and presented stable kidney functionwere retro-
spectively analyzed. Four patients were excluded due to
incomplete time point data. At the end, among this group,
twelve and eight patients had creatinine < 1.5mg/dL at 3 and
12 months after transplantation, respectively.

2.2. Sample Preparation and Quantification of Nitrated Lipo-
proteins by ELISA. Aliquoted sera stored at −70∘C were
thawed and concentrations of nitrated apoA1-containing
HDL were measured using a well-established sandwich
ELISAmethod [34]. A similar sandwich ELISA has been dev-
eloped to measure levels of nitrated apoB-containing LDL
particles as well.The specificity of the ELISA assaywas descri-
bed previously [34]. The intra-assay and interassay coeffi-
cients of variation for nitrated lipoproteins and apolipopro-
teins measurement were less than 5% and 10%, respectively.
These values are consistent with the precision of typical
sandwich ELISA assays [34, 37, 38]. Briefly, diluted sera sam-
ples were incubated in 96-well plates previously coated with
monoclonal anti-nitrotyrosine antibodies (EMD Millipore,
Billerica, Ma, USA; clone 1A6, Cat.# 05-233), enabling the
capture of total nitrated serum proteins including apoA-I
and apoB. The plates were blocked in PBS buffer containing
3% bovine serum albumin (BSA) and washed with PBS-
Tween (0.05%). Primary polyclonal antibodies to human
apoA-I or apoB (Novus Biologicals, Littleton, CO, USA;
Cat.# NB400-147 and Cat.# NB120-7616, resp.) were added to
specifically bind nitrated apoA-I or nitrated apoB captured
by the anti-nitrotyrosine antibodies. Standard curves were
generated using increasing concentrations (1–100 ng/mL and
1–100 𝜇g/mL) of purified human serum HDL and LDL,
respectively (MyBioSource, San Diego, CA, USA; Cat.#
MBS173145 and Cat.# 173147). For this purpose, monoclonal
antibodies against apoA-I and apoB were immobilized in
96-well plates (4H1 and 1D1, resp., University of Ottawa
Institute, Ottawa, Canada). Bound HDL (apoA-I-HDL) and
LDL (apoB-LDL) were detected with alkaline phosphatase-
conjugated secondary antibodies and p-Nitrophenyl phos-
phate (pNPP) as substrate (1mg/mL).

Absorbance at 405 nm was measured and corrected to
absorbance of control wells in which PBS-Tween was added
instead of serum. Total serum apoA-I and apoB levels were
determined as described previously [34, 35]. Absolute values
of nitrated apolipoproteins (apoA-I and apoB) were normal-
ized to total serum apoproteins and degree of nitration was
expressed as percent.
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Figure 1: Panel (a) shows changes in optical densities due to the presence of nitrated apoA-I and apoB in the serum when immobilized anti-
nitrotyrosine antibodies are incubated with increasing amounts of purified HDL and LDL. The amount of nitrated apolipoproteins present
in the serum as measured by ELISA using commercially available purified human HDL and LDL as standard curves. Comparison between
nitrated HDL (apoA-I-HDL) and nitrated LDL (apoB-HDL) was carried out using equimolar concentrations of HDL and LDL as described
in methods. Representative linear standard curves for ELISA are plotted at the top of panel (a). Values are mean of triplicates ± SD. Panel (b)
shows a comparison between percent nitration of apoA-I-HDL and apoB-LDL in human serum. Sera obtained from commercially available
blood donors (Bioreclamation, LLC) were used. Mean values in these sera for apoB were 149.69 ± 28.78mg/dL (range: 114.65−204.62mg/dL)
and for apoA-Iwere 49.30±12.96mg/dL (range: 35.06−73.35mg/dL). Serawere distributed in two groups (control versusCVD;𝑁 = 10/group)
based on their lipids and lipoproteins levels. Concentrations of nitrated apoA-I and nitrated apoB and lipoproteins levels were measured by
ELISA. Final values of nitrated apoA-I and apoB were normalized by levels of HDL and LDL, respectively. Values are mean ± SD (𝑁 =
10/group). One-way ANOVA test was performed between the two groups. Statistical significance was considered at 𝑝 < 0.05.

2.3. Lipid Analyses and Enzymatic Assays. Non-HDL fraction
was isolated from sera by precipitating (LDL/VLDL) with
manganese chloride solution (1.06M). After centrifugation,
total cholesterol in the supernatants (HDLc) and in PBS-
reconstituted precipitates (non-HDLc) was measured by
colorimetric assay (Wako Diagnostics, Richmond, VA, USA;
Cat.# 439-17501). Lipid peroxidation/oxidative stress were
evaluated by measuring thiobarbituric acid reactive sub-
stances (TBARS) in sera. Briefly, the LDL/VLDL fraction
was precipitated by 1.06M manganese chloride and levels of
TBARS were determined using OXI-TEK TBARS assay kit
(ZeptoMetrix Corp., Buffalo, NY, USA; Cat.# 0801192). MPO
was measured by colorimetric activity assay kit (Sigma, St.
Louis, MO, USA; Cat.# MAK068).

2.4. Statistical Analysis. Only results for those with creatinine
< 1.5 (those with successful transplant) are mentioned.
Data for continuous variables (means ± SD) and medians
(interquartile ranges) were reported. All analyses were per-
formed using the Prism GraphPad 5.0 and Statistica 10.0
softwares. Paired values of percent nitrated apoA-I or nitrated
apoB before and after transplantation were compared using
nonparametric Wilcoxon signed-rank sum test. In addition,
linear regression and Pearson’s correlation coefficient were
used to assess associations between variables. 𝑝 < 0.05 was
considered statistically significant.

3. Results

3.1. Quantification of Nitrated HDL and LDL by ELISA.
Figure 1(a) illustrates kinetic curve of detection of immobi-
lized nitrotyrosine-bound lipoproteins in the wells by poly-
clonal antibodies against apoA-I and apoB.At equimolar con-
centrations, nitrated LDL binding reached saturation quicker
than nitrated HDL, and the assay achieved linearity between
0 and 100 𝜇g/mL LDL added and between 0 and 100 ng/mL
HDL added (top 2 panels in Figure 1(a)). Sera from CVD
patients showed a twofold increase of nitrated lipoproteins
levels as compared to healthy subjects. There was approxi-
mately a sixfold increase of nitrated molecules of HDL com-
pared to LDL (Figure 1(b)).

3.2. Clinical Characteristics of Study Cohort. Patients meet-
ing eligibility criteria as described above were analyzed in
this study. Among the 18 transplanted patients who were
eligible and presented stable kidney function four patients
were excluded due to incomplete data and twelve and eight
patients had creatinine < 1.5mg/dL at 3 and 12 months after
transplantation, respectively.

Subjects’ age in this cohort ranged from 29 to 64
years. Clinical characteristics are summarized in Table 1. At
baseline, the mean HDL cholesterol and the mean non-
HDL cholesterol were 52.9 ± 16.7mg/dL (22.4–85.3) and
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Table 1: Clinical characteristics at baseline (before transplantation) and at 3 months and 12 months after transplantation.

Characteristics Baseline
(𝑛 = 14)a

3 months after
transplantation

(𝑛 = 12)

12 months after
transplantation

(𝑛 = 8)
Age at transplantation (years) 46.6 ± 12 45.1 ± 11.9 48.3 ± 15.8
Female (𝑛) 6 6 4
BMI (kg/m2) 25.1 ± 3.26 24.7 ± 3.3 28.9 ± 4.1∗

Systolic BP (mmHg) 149.5 ± 13.6 128.3 ± 14.7∗∗∗ 143.9 ± 18.1
Diastolic BP (mmHg) 86 ± 7.8 73.3 ± 11.8∗∗ 81.5 ± 10.8
Blood urea nitrogen, BUN (mg/dL) 39.8 ± 20.8 22.9 ± 5.1∗ 24.3 ± 8
Triglycerides (mg/dL) 121.30 [62.27–386.37] 135.60 [73.90–246.34] 103.40 [84.44–242.00]
Total cholesterol (mg/dL) 152.4 ± 36.5 187.3 ± 26.4∗ 198.3 ± 81.7
Glycerol (mg/dL) 28.5 ± 23.1 29.4 ± 11.6 39.1 ± 33.8
Serum apoA-I (mg/dL) 76.76 [9.68–92.61] 71.99 [48.43–90.33] 79.19 [45.04–89.19]
Serum apoB (mg/dL) 129.13 [74.29–186.95] 115.84 [59.21–254.67] 158.20 [61.96–190.96]
Non-HDL cholesterol (LDL + VLDL, mg/dL) 107.1 ± 22.2 97.6 ± 27.3 118.2 ± 18.6
HDL cholesterol (mg/dL) 52.9 ± 16.7 65.8 ± 30.4 52.6 ± 17.7
TBARS (LDL + VLDL) (MDA nmoles/mL) 7.7 ± 5.7 7.5 ± 6.3 6.9 ± 3.0
Myeloperoxidase (mU/mL) 109.7 ± 27.0 110.4 ± 50.1 73.9 ± 53.0∗

Serum creatinine (mg/dL) 7.9 ± 2.5 1.2 ± 0.2∗∗∗ 1.2 ± 0.3∗∗∗

eGFR (mL/min) (MDRD) N/A 73.6 ± 14.5 74.9 ± 15.9
hs-CRP (mg/L) (median)b <4 <4 <4
Hemoglobin (g/dL) 11.3 ± 2 12.5 ± 1.4 13.1 ± 1.4∗

Albumin (g/dL) 4.1 ± 0.4 4.3 ± 0.2 4.1 ± 0.1
Data are presented as means ± SD or medians [interquartile ranges]. Values from baseline (before transplantation) and 3 months and 12 months (after
transplantation) were compared using nonparametric test (data were significant at ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, and ∗∗∗𝑝 < 0.001).
aFourteen patients had creatinine ≤1.5 at 3 or 12 months after transplantation; two of the 14 patients were not included at 3 months because creatinine was >1.5.
The graft function of these two patients improved to creatinine of ≤1.5, so, together with 6 patients included at 3 months, they make up 8 patients at 12 months.
b50% of patients had values <4 (lower limit of detection for assay = 4mg/L).

107.1 ± 22.2mg/dL (71.7–147.3), respectively. Mean value of
triglycerides levels was 157.8 ± 89.6mg/dL and apoA-I and
apoB levels were 74.1 ± 12.4mg/dL and 123.3 ± 29.8mg/dL,
respectively. Creatinine (Cr) levels ranged from 4.6mg/dL to
13.2mg/dL and C-reactive protein (CRP) levels were below
4mg/L. There was a reduction in serum creatinine and there
was a slight increase in BMI and hemoglobin levels 12months
after transplantation as compared to values at baseline.

3.3. Temporal Changes in Serum Components and Status
of Nitrated Lipoproteins in the Total CKD Cohort. Overall,
serum components such as total apoA-I and apoB did not
change over time after transplantation (Figures 2(a) and
2(b)). Analysis of all fourteen patients with good graft func-
tion did not show any significant changes in nitrated lipopro-
teins 1 month, 3 months, and 12 months after transplantation
(Figures 2(c)–2(f)).

3.4. Changes in Nitrated HDL and LDL in Kidney Transplant
Recipients with Creatinine < 1.5mg/dL. At the end of the
study we had twelve patients and eight patients with good
graft function (creatinine < 1.5mg/dL) at 3 months and 12
months after transplantation, respectively. For each subject,

we compared paired values of percent nitrated apoA-I and
apoB before kidney transplantation and 3 months and 12
months after kidney transplantation. Analysis of the twelve
patients that had creatinine < 1.5mg/dL at 3 months after
transplantation showed no difference in nitrated apoA-
I (Figure 3(a)). At 12 months after transplantation, levels
of apoA-I-HDL were slightly increased but did not reach
significance (mean values were 73.4 ± 14.1mg/dL and 76.7 ±
13.7mg/dL at baseline and at 12months after transplantation,
resp.).Thismodest elevation of serum apoA-I levels was asso-
ciated with significant reduction (∼12%) in nitrated apoA-
I (Figure 3(b)). Interestingly, six patients among eight have
decreased their nitrated apoA-I by ∼10%–30% 12 month after
transplantation.Themean value for percent of nitrated apoA-
I was significantly reduced by 18.5 ng/mg apoA-I (median
value reduced by 22.5 ng/mg apoA-I; 𝑝 = 0.039) 12 months
after transplantation. In contrast, there were no significant
changes in nitrated apoB at 3 months and 12 months after
transplantation (Figures 3(c) and 3(d)). Like apoA-I, serum
apoB levels tended to slightly increase but did not reach
any significance (mean values were 112.46 ± 46.92mg/dL
and 141.65 ± 41.38mg/dL at baseline and at 12 months after
transplantation).
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Figure 2: Temporal changes of circulating apolipoproteins and nitrated apolipoproteins in the 14 transplant patients with good kidney
function before transplantation (baseline) and 1 month, 3 months, and 12 months after transplantation. Concentrations of total serum apoA-I
containing HDL and apoB containing LDL particles (a and b) and levels of nitrated apoA-I and apoB (c and d) were measured by ELISA.
Percentages of nitrated apoA-I and nitrated apoB were calculated by normalizing absolute values by total amount of apoA-I and apoB,
respectively (e and f). Data are represented as box-and-whisker plots. Median values from each time point are connected to generate curves.
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Figure 3: Percentage changes of nitrated lipoproteins (apoA-I-HDL and apoB-LDL) 3 months and 12 months after transplantation. Sera of
twelve and eight patients with serum creatinine <1.5mg/dL at baseline (before transplantation) and at 3 and 12 months after transplantation
were analyzed by ELISA. Data represented are percent changes of nitrated apoA-I (a and b) and nitrated apoB levels (c and d) at 3 months
and 12 months after transplantation, respectively. Baseline value for each patient was set at 100%. Paired values of percent nitrated apoA-I or
nitrated apoB before and after transplantation were compared using nonparametric Wilcoxon signed-rank sum test. Statistical significance
was considered at 𝑝 < 0.05.

3.5. MPO Activity and Lipid Peroxidation. The decrease in
apoA-I nitration 12 months after transplantation was asso-
ciated with a significant reduction of MPO activity levels
(Table 1; median values: 68.3mU/mL versus 107.1mU/mL;
32% decrease; 𝑝 = 0.047). Lipid peroxidation as measured by
TBARS assay was unchanged at 3months and 12months after
transplantation.

3.6. Correlation between HDL and LDL Levels and Percent
Nitrated apoA-I and Nitrated apoB. In our previous study,
we have reported a negative relationship between degree of
apoA-I-HDL and levels of circulating HDL particles in low
HDL patients [34]. In this study, we sought to determine
patterns of potential relationship between nitrated apolipo-
proteins and circulating lipoproteins in kidney transplant
patients at baseline and at 3months and 12months after trans-
plantation (Figure 4). There was no significant correlation
between percent nitrated apoA-I and serum apoA-I levels
in CKD patients before kidney transplantation (Figure 4(a))
and 3 months (Figure 4(b)) and 12 months (Figure 4(c)) after
kidney transplantation. In contrast, there was a significant
negative relationship between percent nitrated apoB and
serum apoB levels at baseline (Figure 4(d)). This inverse
correlation was maintained after 3 months (Figure 4(e)) and

becomes markedly significant 12 months after kidney trans-
plantation (Figure 4(f)). There was no significant association
between nitrated apoA-I or nitrated apoB with other known
inflammatory and cardiovascular markers such as hs-CRP,
MPO, and Cr. (data not shown).

4. Discussion

CVD in CKD is primarily driven by oxidative stress, vascular
calcification, hypertension, inflammation, and accumulation
of oxidized lipoproteins as well as HDL deficiency and
dysfunction [39, 40]. Recent study showed thatHDL function
was impaired in heart transplant recipients but it was not
related to cardiac allograph vasculopathy andCRP levels [41].
To date, there is insufficient information about HDL func-
tionality in kidney transplant recipients. In the present report,
we demonstrate for the first time that serum nitrated apoA-
I is reduced after 12 months in kidney transplant recipients
with good kidney function.

We examined associations of nitrated lipoproteins with
serum levels of apoA-I and apoB in kidney transplant recip-
ients. We found no significant relationship between nitrated
apoA-I and levels of circulating apoA-I at baseline and at 3
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Figure 4: Correlations between % nitrated apoA-I and apoA-I-HDL levels and % nitrated apoB and apoB-LDL levels at baseline (before
transplantation; a and d) and at 3 months (b and e) and 12 months (c and f) after transplantation, respectively. Linear regression was used to
generate the curves. Statistical significance was considered at 𝑝 < 0.05.

months and 12 months after transplantation (Figures 4(a)–
4(c)). This is not in agreement with our previous observation
in CVD patients with low HDL [34]. This could be due to
possible differences in lipoproteins and/or degree of nitration
and patient’s population from CKD and CVD. Surprisingly,

there was a significant negative correlation between percent
nitrated apoB and levels of serum apoB at baseline and at 3
months and 12 months after transplantation (Figures 4(d)–
4(f)). The more the serum is enriched with apoB the lesser
the degree of apoB nitration is. One plausible explanation
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to this unexpected observation could relate to differences in
clearance of different forms of modified apoB-LDL particles.
We speculate that nitrated apoB-LDL molecules would be
cleared faster in the circulation than unmodified LDL result-
ing in lower amount of nitrated apoB. In fact, previous studies
demonstrated that the accumulation of apoB-containing
lipoproteins results primarily from decreased clearance
rather than from increased synthesis [42]. LDL nitration has
been shown to be associated with enhanced macrophages
uptake when compared with oxidized LDL isolated from
rheumatoid and osteoarthritis patients with CVD [43]. More
studies are warranted to further elucidate the clearance of
nitrated LDL particles by macrophages in CKD patients.

MPO is the main enzyme involved in chlorination and
nitration of lipoproteins. Plasma MPO levels have been
associated with coronary artery disease [44]. Cavusoglu et al.
have shown that higher baseline MPO levels independently
predict the occurrence of myocardial infraction within 2
years in patients with acute coronary syndrome [45]. High
levels of nitrated HDL have been found in atherosclerotic
lesions and plasma of CVD patients. In contrast, the majority
of nitrated LDLmainly resides within atherosclerotic plaques
[21, 46–48]. Use of drugs such as statins, beta-blockers, or
ACE inhibitors has been shown to reduce MPO levels in
patients with acute coronary syndrome but not in patients
with stable coronary artery disease [49].

Interestingly, the decrease in apoA-I nitration 12 months
after transplantation was associated with significant reduc-
tion of MPO activity (Table 1). It is not clear from our studies
whether the reduced nitrated apolipoproteinA-I at 12months
is causally linked to reduced MPO activity. It is possible that
reduction in serum concentration of MPO after successful
kidney transplantation is due to attenuation of oxidant and
inflammatory states induced by the uremia. In fact, recent
study demonstrates that MPO deficiency ameliorates renal
injury in the renal ablation model of CKD in mice [50].
Another study reports a negative correlation between MPO
and urea and creatinine levels [51].

The evolution and severity of CKD have been shown to
be associated with elevated oxidative stress [52]. Analysis
of TBARS content in apoB-associated LDL/VLDL particles
did not reveal any significant differences at 3 months and 12
months after transplantation compared to baseline (Table 1).
This is quite different from the study by Vostálová et al.
showing beneficial effect of successful kidney transplantation
on the antioxidant status and lipidmetabolismwhich resulted
fromboth improved renal function and reduced cardiovascu-
lar complications [53]. One plausible explanation to this dis-
crepancy could be related to differences in lipid status, patient
selection, and protocol design between the two studies. In
addition, the changes in lipid peroxidation products in CKD
population are still debated [54–56].

In this study, a large proportion of subjects have high
levels of serum apoB (>100mg/dL; normal range ≤60mg/dL)
probably due to absence of lipid-lowering treatment in these
patients and possible effect of immunosuppressive drugs.
Unlike apoA-I, good kidney function did not affect degree of
apoB nitration at 3 months and 12 months after transplanta-
tion (Figures 3(c) and 3(d)).These differences could be related

to low levels of nitrated apoB in serum as compared to
nitrated apoA-I. Alternatively, structural and molecular dif-
ferences between lipoproteins may occur during progression
of CKD, rendering modified LDL molecules in particular
(oxidation, glycation, and carbamylation) less susceptible to
nitration by MPO. Analysis of total population (all fourteen
patients) with good graft function did not show any signif-
icant temporal changes in nitrated lipoproteins 1 month, 3
months, and 12 months after transplantation (Figure 2). This
could be due to significant interindividual variations among
patients in this small population. However, modest elevation
of serum apoA-I levels was associated with significant reduc-
tion of nitrated apoA-I in kidney transplant recipients after
only 12 months (Figure 3(b)). This is consistent with recent
study reporting that changes of lipid profiles occur early and
almost universally at 12 months after kidney transplantation
[57].

Onemajor limitation of our study is the small sample size
due to strict patient’s exclusion criteria setting. Nevertheless,
none of our patients had received lipid-lowering therapy that
could affect outcome of the study. Another limitation is lack
of suitable normal control group (donors) for this particular
setting protocol. These findings need to be confirmed in a
large prospective study in order to validate the usefulness of
nitrated apoA-I as independent predictor marker for CVD
risk in CKD patients. More focused research is warranted to
elucidate whether modified HDL in advanced CKD partici-
pates in very similar cellular processes of atherosclerosis such
as foam cell formation, proliferation andmigration of smooth
muscle cells, and, most importantly, plaque destabilization.

5. Conclusion

In summary, we have demonstrated that patients with well-
functioning kidney transplants had significant reduction in
nitrated apoA-I-HDL 12 months after kidney transplantation
without any major changes in nitrated apoB-LDL. Given the
high cardiovascular burden of kidney transplant recipients,
nitrated apoA-I may serve as valuable marker for population
stratification and perhaps as a possible target for novel thera-
peutic strategies.
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