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Abstract

Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated
with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate
COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key
molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR),
Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional
associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes
differentially expressed in COPD, as reported in a previous study were superposed with the resulting transcriptional
regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-
domain interactions involving protein products of genes in the generated networks, several molecular candidates were
predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK,
HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a
direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of
senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung
samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-
senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed;
while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the
peripheral lung tissue samples from patients with COPD. The critical balance between senescence and anti-senescence
factors is disrupted towards senescence in COPD lungs.
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Introduction

Chronic obstructive pulmonary disease (COPD) is characterized

by a progressive decline in lung function, with an irreversible

airflow obstruction, caused either by chronic bronchitis, emphy-

sema or both [1]. It is a leading cause of morbidity and mortality

worldwide, and thus a global health problem [2,3]. COPD affects

around 210 million people worldwide and is predicted to become

the third leading cause of death worldwide by the year 2020 [4,5].

The pathogenesis of COPD involves chronic inflammatory

response in airways and lung parenchyma that results in

pulmonary tissue injury, repair, and abnormal remodeling

processes [6–9]. The pathobiology of COPD involves persistent

inflammation, oxidative, and nitrosative stress, impaired cell repair

and cell death manifested as senescence and apoptosis, and

destruction of extracellular matrix due to protease-antiprotease

imbalance in the lung tissues [1,10].

Cigarette smoking remains the primary preventable environ-

mental risk factor for COPD [11]. Other factors such as air

pollution, respiratory infections, and aging are being recognized as

critical environmental contributors to disease pathogenesis as

many more people are exposed to biomass pollutants compared to
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tobacco smoke [10,12]. It is unknown why only a subset of

smokers as well as people exposed to similar amount of other

environmental lung toxicants develops the disease. Furthermore,

the disease progresses at different rates in different people exposed

to similar amounts of pollutants. COPD and lung cancer are the

fourth and second leading cause of deaths in the US, respectively,

and it is important to understand the genes and processes that may

define the bifurcations for both these debilitating diseases with

high lethality [13]. A better comprehension of the host genetic

susceptibility and consequent differential regulation of pathogenic

processes is required to make advances in directed therapy of

COPD.

Oxidative and nitrosative stress induced by cigarette smoking is

thought to be responsible for corticosteroid resistance in COPD

[14–18][19][20]. Oxidant–antioxidant imbalance in the lungs has

been strongly implicated in COPD severity and resistance to

corticosteroids [21–23]. Strong epidemiologic and genetic evi-

dence indicates that an individual’s ability to defend against

cigarette smoke–induced oxidative stress through up-regulation of

lung antioxidant defenses is important, presenting oxidative stress

as a critical event in the pathogenesis of COPD [24].

Although, the understanding of the underlying mechanisms of

COPD is constantly evolving, the absence of any novel or effective

therapy aimed at this irreversible disease presents a significant

challenge [8,9]. There are limited effective therapies for COPD

[25,26]. Therapies such as bronchodilators provide temporary

symptomatic relief, while corticosteroids are not completely

effective [27] [28,29]. Interestingly, recently, it is reported that

the risk of pneumonia in patients with COPD increases with

corticosteroid treatments [27]. There is no current therapy to

arrest the long-term decline in lung function seen in COPD.

Current therapy has not significantly decreased the mortality

noted in susceptible former smokers even after years of smoking

cessation. Hence, the understanding of the irreversible processes

important in the pathogenesis of COPD seen in smokers may

provide a means of exploiting these destructive processes and

genes associated with the disease process.

To explore the molecular definition of COPD, transcriptional

regulatory networks were derived from airway gene expression

data. Large collections of gene expression data provide regulatory

patterns that potentially bear valuable insights regarding disease

mechanisms. A number of predicted molecular participants

involved in COPD etiology are identified in this report, concurring

with the aging hypothesis for COPD [30]. This hypothesis, based

on empirical evidence as presented by Aoshiba and Nagai (2009)

[30], highlights the involvement of cellular senescence in key

processes that characterize COPD such as chronic inflammation,

increased susceptibility to infection, emphysematous lesions, and

arrested tissue repair. Notable among the identified genes and

their corresponding products are members of the T-box (TBX)

family transcription factors and CDKN2A, which are associated

with senescence [31,32][33,34]. The findings suggest that the

balance between senescence and anti-senescence factors in normal

smokers is disrupted towards senescence in COPD lungs.

Results

The experimental approach is summarized in Figure 1. Using

the Context Likelihood of Relatedness (CLR) algorithm [35], data

from both the U133A and the U133Plus_2 Affymetrix platforms

were used to generate a transcriptional regulatory network

consisting of genes involved in apoptosis, response to oxidative

stress, and inflammatory response. The rationale for the focus on

these processes is that they have been identified as key players in

molecular pathogenesis of COPD [36][37], [38]. A union of the

generated network consisted of 535 genes (represented at the

nodes in Figure S1A) and 1474 interactions (represented as

connections or edges between the nodes in Figure S1). Further

details are presented in Table S1.

For the purpose of identifying the most influential nodes within

the overall network, two features were used. First, the size of each

node is an indication of its connectedness within the network: the

large size nodes are more connected in the network. The larger

nodes include HMOX1, TGFB1, TBX3, CDKN2A, PML,

NME1, NPM1, SMAD3, RELA, FOXL2, STAT1, IL1B, TP63,

NOTCH2, NFX1, ELF3, HIF1A, NLRP3, NFRKB, E2F1,

TIAL1, AATF, TBX5, TCF7L2, HTAPIP2, TNF, ITCH,

NFAM1, and CREB1. Second, the color of each node is an

indication of the alterations in gene expression in COPD. For this

purpose, a study on the differential gene expression in 15 COPD

cases and 18 controls was used [39]. As several genes were

represented by multiple probe sets on the arrays, the probe set

with the median gene expression level was used. Pink nodes

represent genes whose expression levels were unchanged in the

study. Olive-green nodes represent genes whose median probe set

expressions are suppressed in COPD. These include SMAD3,

TBX3, TBX5, AATF, TCF7L2, NFX1, SEMA6A, HIP1,

TNFRSF19, TNFSF10, DNAJB6, AGER, PRDX5, RAC1,

NFATC3, PAWR, MGLL, SCYE1, NAE1, GPX3, SIRT2,

HDAC6, HDAC1, and CAT. White nodes represent genes whose

median probe set expressions are elevated in COPD. These

include SOCS3, MCL1, IL1B, IL6, IL8, IL24, IL1RN, TNFAIP6,

CCL3, CCL4, PTX3, ADORA3, NFAM1, NLRP3, BCL10,

PPARD, FAIM3, PAX3, MAPK1, PRKCA, CASP2, SERPINB9,

BCL2L11, TRADD, CAV1, and CDKN2A.

Combining these two features facilitated the identification of the

most connected nodes that were also differentially expressed in

COPD. We hypothesize that these nodes represent genes that may

be critical regulators in the etiology of the disease. Among these,

Author Summary

Chronic obstructive pulmonary disease or COPD is among
the most lethal of respiratory diseases. While this disease
has been well characterized, more studies are needed to
learn the interaction of macromolecules involved in the
progression towards illness. We explored possible interac-
tions involved in the disease process using a compendium
of gene expression data from frontline cells of the
respiratory airways of the lung. The gene expression data
were generated under a variety of experimental condi-
tions. Application of computational schemes, which
robustly detect enduring patterns, among sections of the
genes represented across the varying experimental per-
turbations, revealed important regulatory relationships.
When gene expression data from lungs of patients with
COPD were factored into these networks of regulatory
relationships, certain highly connected nodes (hubs)
representing differentially expressed genes emerged.
Notably included are members of the T-box (TBX) family
of genes and CDKN2A, which regulate cellular aging. These
findings were confirmed in studies using lung samples
from COPD patients. Novel genes linked to TBX and
CDKN2A include COL4A3, CFLAR, GULP1, PDCD1, CASP10,
PAX3, BOK, HSPD1, PITX2, and PML, which were thus
predicted to be involved in the disease process. The
balance between senescence and anti-senescence factors
is disrupted towards senescence in COPD lungs.

TBX2 Family Important in COPD
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the T-box (TBX) transcription factors, TBX3 and TBX5 (Figure

S1B) along with the cell cycle inhibitor, CDKN2A (Figure S1B, C)

were noteworthy for the extent of their connectedness. An

enrichment analysis showed that genes dependent on TBX3 in

the network are involved in apoptosis. However they also included

genes associated with cell development, cell proliferation, and

signal transduction. Of the 83 genes, 19 genes (e.g. TBX3) are

involved in the cell cycle process. Similarly, of the 46 genes

dependent on TBX5, 11 are involved in the regulation of the cell

cycle. Quantitative real-time PCR (qRT-PCR) analysis of samples

from smokers with or without COPD confirmed that relative to

normal smokers without COPD, the expression of TBX3, TBX5,

HDAC6, SIRT1, SIRT5, is suppressed in severe cases of COPD

(Figure 2).

For confirmation purposes, a second transcriptional regulatory

network was generated using the same data and an alternative

algorithm, the Algorithm for the Reconstruction of Accurate

Cellular Networks (ARACNE) [40]. Like CLR, ARACNE uses

mutual information computed on the basis of gene expression

data. ARACNE and CLR differ in their modes of discretizing and

eliminating false edges. Unlike ARACNE, CLR uses B-spline

functions for discretization of gene expression data [41]. Both,

nonetheless, assert high connectivity for the same nodes of interest

when direct as well as indirect close neighbors are considered. As

summarized in Table 1, CLR was the more conservative of the

two algorithms; most of the edges it predicted were predicted by

ARACNE. For example, both algorithms infer the following as

direct neighbors of TBX5 in the network generated: KNG1,

SNCA, RHOB, ALOX15B, SOCS3, RHOT1, MPO, AGTR2,

BCL2, MAPK1, TBX3, SEMA6A, BBC3, PRKCA, BOK,

LYST, PDCD6, PTEN, ADORA1, CD74, ACTN3, NLRP12,

DNM2, PDIA2, BCL2L1, CDK5R1, TRAF7, CECR2, CO-

L4A3, PAX3, GRM4, ACTN1, HSPD1, MAPK8, CDKN2D,

TIA1, and PDCD1.

The exploratory study was then expanded to involve all probe

sets available on the Affymetrix U133A platform (removing the

focus away from apoptosis, oxidative stress, and inflammation

genes). All 22,283 probe sets represented after robust multi-array

analysis [42] on 109 human lung epithelia arrays were used. Using

the CLR likelihood estimate cut-off of 2.5 (a threshold that

captured known biological associations described as part of the

Discussion section), a network consisting of 17,396 nodes and

127,331 edges was generated. At this cut-off, the previously

established dependencies were detected along with additional

ones. Using the study by Bhattacharya et al. [39], the same

coloring scheme as indicated above was used for differentially

expressed genes. The T-box transcription factors remained central

in this enlarged network, with the TBX2 gene emerging as one of

the most connected to other genes in the network (Figure S2A).

The CDKN2A node remained highly connected in this network as

well (Figure S2B). It is noteworthy that a large cross-section of the

genes differentially expressed in COPD was found to be dependent

on TBX2 and CDKN2A in this network. (Further details are

presented in Tables S2 and S3 respectively.) This expanded study

revealed links for additional genes such as CAV1 and certain

histone deacetylases (including certain sirtuins), whose probable

Figure 1. A view of the outline of the approaches used in this study. A combination of network inference and other algorithms applied to
the datasets as described in the Materials and Methods section, led to the nodes of interest identified in the networks.
doi:10.1371/journal.pcbi.1002597.g001

TBX2 Family Important in COPD
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roles in COPD were indicated by altered expression in COPD

lung samples (Figures 2 and 3).

For confirmatory purposes, the entire dataset of 22,283 probe

sets and 109 observations (Gene Expression Omnibus datasets

GDS534 and GDS999) was also subjected to a bicluster analysis.

Each bicluster consists of a subset of probe sets and a collection of

the observations (conditions) within which they are similar [43].

Members of the observation set are similar only when the given

subset of probe sets is considered and vice versa. This unsupervised

learning of subsets within the larger dataset constitutes an

unbiased mechanism of identifying functional associations within

the data. By helping to identify relationships among the probe sets,

the biclusters provided a means for re-examining the observations

made in Figures S1 and S2 for possible corroboration. Using the

Factor Analysis for Bicluster Acquisition (FABIA) algorithm [44],

five, ten, then twenty biclusters were identified. Several probe sets

grouped together in this way were also in transcriptional

regulatory relationships per the CLR and ARACNE learning.

As depicted in Table 2, CDKN2A, CDKN2B, COL4A3,

COL4A3BP, CTNNA1, FOXJ2, FOXK2, FOXL1, FOXN3,

HDAC6, HDAC9, IGF1, IGF2, IGF2BP3, PML, TBX1, TBX2,

and TBX3 are all contained in the same bicluster (bicluster

number 3) when ten biclusters were identified. Several of these

(and related) genes also fall in the same bicluster when five and

Figure 2. Quantitative PCR data indicate TBX3, TBX5, HDAC6, SIRT1, SIRT6 gene expression is suppressed in the lungs of patients
with COPD, while mRNA expression of HDAC2 does not change compared to lung tissue from normal smokers. The extent of the
suppression is highly significant between patients with mild and those with severe COPD. Patient diagnosis was based on the National Heart, Lung,
and Blood Institute/World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD) [146]. Fifteen normal, nine mild COPD,
and six severe COPD samples were used for this analysis. The data is represented as Mean 6 S.D. The data was analyzed using student’s t-test for
comparing mRNA expression in the respective groups. *represents a significance of p-value,0.01.
doi:10.1371/journal.pcbi.1002597.g002

Table 1. Proportion and list of direct neighbors also asserted in initial networks generated via other mutual information—based
algorithm.

GENE CLR ARACNE DIRECT NETWORK NEIGHBORS FOUND BY BOTH ALGORITHMS

TBX3 80/84 80/347 ACTN1 ACTN3 ACVR1B AIFM2 AVEN BAX BCL2L1 BCL2L10 BCL3 BCLAF1 BID BIRC7 BOK CASP10 CD74
CDK5R1 CDKN2D CECR2 CIDEA CLCF1 COL4A3 CRYAA DAPK2 DAPK3 DIABLO DLC1 DOCK1 F2 FOXO1
FURIN GLRX2 HIP1 IGF1R IL3 IL4I1 KIAA1967 KNG1 KRT18 LYST MAP3K10 MAPK1 MAPK8IP2 NCR1
NLRP12 NME1 NME2 NME5 NOL3 NPM1 PAX3 PCSK6 PDCD5 PDIA2 PHLDA2 PRKAA1 PRKCA PRKCZ
PRLR RNF7 RTKN SCIN SEMA6A SERPINB2 SERPINB9 SFRP1 SMAD3 SOCS3 SPATA3 SST SSTR3 TBX5
TGFB1 TGFB2 TIA1 TIAL1 TLR2 TNFRSF19 TNFSF10 TP53 TRIAP1

TBX5 37/45 37/180 ACTN1 ACTN3 ADORA1 AGTR2 ALOX15B BBC3 BCL2 BCL2L1 BOK CD74 CDK5R1 CDKN2D CECR2
COL4A3 DNM2 GRM4 HSPD1 KNG1 LYST MAPK1 MAPK8 MPO NLRP12 PAX3 PDCD1 PDCD6 PDIA2
PRKCA PTEN RHOB RHOT1 SEMA6A SNCA SOCS3 TBX3 TIA1 TRAF7

CDKN2A 44/60 44/189 ADAMTSL4 ANXA1 ANXA4 API5 BBC3 BCL2 BCL2A1 BCLAF1 BTG1 CADM1 CASP8AP2 CD38 CDC2L2
CFLAR CRADD CYFIP2 DAPK2 DAXX DEDD2 EIF5A FASLG GCLC GULP1 HDAC3 HMGB1 IL1A MAPK8IP2
MCL1 NLRP1 NOTCH2 NOX5 PCSK6 PDCD1 PDIA2 PIK3R2 PML PRKCA PRKCE SPHK1 TAOK2 TGFB1
TNFRSF25 TNFRSF6B TP63

doi:10.1371/journal.pcbi.1002597.t001

TBX2 Family Important in COPD
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twenty biclusters are identified (Table 2). Tables S4A, S4B, and

S4C contain complete listings of the membership of the various

biclusters. Within-bicluster only CLR runs affirmed the regulatory

relationship between TBX2 and several genes differentially

expressed in COPD, as found before (Figure S3).

Furthermore, the Inferelator algorithm [45] was used to infer

the transcription regulators targeting the FABIA-derived biclus-

ters. Inferelator uses model shrinkage and standard regression to

select predictive models for the expression of a gene or gene

cluster, on the basis of expression levels of previously identified

transcription regulators and interactions between them. Inferelator

has been judged among the best performing network inference

algorithms [46,47]. As shown in Table 3 (the output when twenty

FABIA-generated biclusters were fed into Inferelator), TBX3 was

a predicted positive regulator of bicluster 1. TBX5 was predicted

to negatively regulate biclusters 2 and 7; it also negatively regulates

bicluster 20 (along with HSF1). TBX2 cooperates with PML in a

predicted negative regulation of bicluster 7; it also cooperates with

EP300 in a predicted negative regulation of bicluster 11. Besides

the TBX family members, other regulators of note identified in

Table 3 include STAT1, STAT5A, STAT5B, RUNX3, SMAD3,

PML, HSF1, JUN, NFKBIB, TP53, TP63, NFE2L2, PAX3,

PAX7, ATF1, ATF2, CDKN1A and FOXO3. Similar outcomes

were obtained when ten FABIA-generated biclusters were fed into

Inferelator; four of the ten biclusters were predicted to be TBX

gene product-regulated (Figure S4).

On the basis of these results, samples obtained from patients

with COPD and normal subjects without COPD were examined

for the relative levels of TBX2 and CDKN2A mRNA and protein

expression. As shown in Figure 3, patients with COPD had

elevated expression of CDKN2A and suppressed expression of

TBX2 mRNA and protein. These findings are consistent with the

findings from our exploratory studies (Figures S1 and S2). In

addition, other senescence factors such as CDKN1A [48] and

Figure 3. Patients with COPD have suppressed TBX2 and increased CDKN2A, CDKN1A, and caveolin-1 mRNA and protein
expression. A) Quantitative PCR data indicate TBX2 gene expression is suppressed, while senescence factors, CDKN2A, CDKN1A, and caveolin-1 are
induced in the lungs of patients with COPD compared to lung tissue from normal smokers. Fifteen normal, nine mild COPD, and six severe COPD
samples were used for this analysis. The data is represented as Mean 6 S.D. The data was analyzed using student’s t-test for comparing mRNA
expression in the respective groups. B) Representative Western blots showing suppressed TBX2, HDAC2, SIRT1 proteins and increased expression of
CDKN2A, CDKN1A and caveolin-1 proteins in samples from patients with COPD. C) Densitometry analysis of Western blot data. Four normal, four mild
COPD, and four severe COPD samples were used for this analysis. Densitometry analysis was carried out using image-J software. The data is
represented as Mean 6 S.D. The data was analyzed using student’s t-test for comparing protein expression in the respective groups. *represents a
significance of p-value,0.01.
doi:10.1371/journal.pcbi.1002597.g003

TBX2 Family Important in COPD

PLoS Computational Biology | www.ploscompbiol.org 5 July 2012 | Volume 8 | Issue 7 | e1002597



Table 2. Examples of genes within Biclusters (of five, ten, and twenty Biclusters identified using FABIA).

Number of
Biclusters Learned

Bicluster
Number

Probe sets
Present

Arrays
Present Some Genes Present Description of Array Samples In Bicluster

5 Bicluster #4 924 35 CTNNA1, FOXO3, HDAC5,
IGFBP2, IGFBP5, TBX2, WNT6

*Thirty four bronchoalveolar lavage samples from lung
transplant recipients (7 acute rejection; 27 with no
rejection). In addition, there is one array from a sample
obtained from one **former smoker.

10 Bicluster #3 1749 30 CDKN2A, CDKN2B, COL4A3,
COL4A3BP, CTNNA1, FOXJ2,
FOXK2, FOXL1, FOXN3,
HDAC6, HDAC9, IGF1, IGF2,
IGF2BP3, PML, TBX1, TBX2,
TBX3

*Bronchoalveolar lavage samples only. The samples were
from 27 lung transplant recipients who had no rejection,
and 3 who had acute rejection.

20 Bicluster #2 2096 30 CDKN2D, COL4A3, CTNNA1,
CTNND2, FOXG1, FOXK2,
FOXM1, FOXO3, HDAC2,
IGFBP6, TBX2, WNT16

*Bronchoalveolar lavage samples only. The samples were
from 27 lung transplant recipients who had no rejection,
and 3 who had acute rejection.

20 Bicluster #8 1991 44 CDKN2A, CDKN2C, CIZ1,
CTNNA1, FOXB1, FOXG1,
FOXL2, FOXN3, HDAC5, IGF1,
IGFBP2, IGFBP5, IGFBP7,
IGF2BP3, PML, TBX1

*Thirty four bronchoalveolar lavage samples from lung
transplant recipients (7 acute rejection; 27 with no
rejection). This set also includes three arrays from
samples from former smokers, five from current smokers,
and two from ‘‘never smokers’’**.

20 Bicluster #13 567 56 COL4A3BP, FOXO3, IGFBP3,
TBX2

*Thirty bronchoalveolar lavage samples from lung
transplant recipients (3 acute rejection; 27 with no
rejection). This set also includes seven arrays from
samples from former smokers, eight from current
smokers, and eleven from ‘‘never smokers’’**.

*Bronchoalveolar lavage samples obtained from lung transplant recipients whose biopsies had a perivascular score of between 0 and 2, and a bronchiolar score of
between 0 and 1 [147].
**Lung epithelial cell transcriptome study of 34 current smokers, 18 former smokers, and 23 subjects who had never smoked [148].
doi:10.1371/journal.pcbi.1002597.t002

Table 3. Inferelator predictions of regulators of twenty Biclusters generated using FABIA.

BICLUSTER‘

NUMBER OF
PROBESETS

NUMBER OF
OBSERVATIONS

CLUSTER PROBABLY POSITIVELY
REGULATED BY***

CLUSTER PROBABLY NEGATIVELY REGULATED
BY***

1 2084 32 TBX3, ELF3 ATF2_with_HSF1

2 2096 30 CEBPG, ATF1 PML, TP63, TBX5, TBX5_with_NFKBIB, PPARD_with_SMAD3

3 1560 31 CEBPG_with_TP63, NME1-NME2, TCF7L2, TIAL1

4 1569 38 NFE2L2_with_CDKN1A, STAT1 TCF7L2

5 2619 35 STAT5B_with_TP63, SMAD3 HTATIP2

6 1705 35 RUNX3 E2F1_and_TCFL2 , HTATIP2

7 1381 38 STAT1, CREBBP E2F1, LOC652346, PML_with_TBX2, TBX5

8 1991 44 STAT5B, NFATC3 TCF7L2, TCF7L2_with_TIAL1

9 1089 33 NLRP3, SMAD3, RUNX3

10 967 47 SIGIRR

11 806 32 RUNX3, RUNX3_with_SMAD3 ATF2, EP300_with_TBX2, TCF7L2

12 566 34 TP63_and_STAT1 CEBPB, TCF7L2

13 567 56 FOXO3, SMAD3_with_ERC1, ELF3 STAT5A

14 493 50 ARHGDIA_with_RUNX3, RUNX3 PML, E2F1

15 754 45 ELF3 CREB1_with_TIAL1

16 356 43 PML_with_HSF1, LOC161527, HSF1, SBNO2

17 510 46 SBNO2, JUN, RUNX3_with_CREB1,
JUN_with_TP53, TP63

NFATC4_with_HTATIP2

18 380 61 ELF3_with_BCL10 ATF1

19 347 47 SMAD3 TGFB1_with_GOLGA6L4, STAT5A

20 497 50 HIF1A, STAT1, STAT5B, RELA HSF1_with_TBX5

‘Obtained using FABIA algorithm ****Per Inferelator predictions

doi:10.1371/journal.pcbi.1002597.t003

TBX2 Family Important in COPD
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caveolin-1 (CAV-1) [49,50] also showed enhanced expression in

samples from patients with COPD (Figures 3A, B, and C). Both

these genes have critical roles in senescence pathway activation. In

our regulatory network, CDKN1A is connected to TBX2 via

TP53 and MMP12; TBX3 via TP53 and FH; TBX5 via TP53

and SEC14L1. A number of previous reports have shown TBX2-

and TBX3-mediated regulation of senescence factor, CDKN1A

[51–53]. Interestingly, we found that CAV-1 is connected to

TBX2 via ARHGDIA and TMED2. Both ARHGDIA and

TMED2 are directly linked to the master transcriptional regulator

of the anti-oxidant response, nuclear factor erythroid 2-related

factor 2 (NRF2), i.e. NFE2L2, which was predicted to be a

bicluster regulator along with CDKN1A (Table 3; also a regulator

in one of ten FABIA-generated biclusters, Figure S4).

It is well known that COPD clusters in families [54]. Details of

the genetic susceptibility loci continue to be studied. It has been

determined that a polymorphism of the type IV collagen alpha3

(COL4A3) gene is associated with the risk of developing COPD

[55]. Subjects with carriers of 451HH with at least one 451R allele

had a higher COPD risk, which is more pronounced in younger

subjects. Interestingly, in our analysis, COL4A3 expression was

found to be suppressed in COPD. An examination of its

expression within the networks generated indicated dependence

on TBX genes (Figure 4A and Figures S1B, and S1C). Further,

Figure 4A shows that the expression of COL4A3 depends on both

CDKN2A and TBX2.

Taken together, these results indicate a critical balance between

senescence and anti-senescence factors in normal smokers, which

is disrupted towards senescence in COPD lungs. There are

previous reports of decline in telomere length, which is a hallmark

of senescence in samples from patients with COPD [49,56–58].

On the other hand, increase in anti-senescence activity is reported

as a hallmark of cancer [59–64] including lung cancer which, like

COPD, is associated with smoking. These observations are in

agreement with recent reports that highlight aging and associated

senescence pathway as the key pathogenic molecular pathways

involved in chronic lung diseases including lung cancer [65] and

COPD [66–69].

Discussion

Using a variety of computational approaches, a number of

regulatory genes important in COPD have been identified in these

studies. First, using gene expression data of genes associated with

three Gene Ontology biological processes implicated in COPD,

transcriptional regulatory networks were learned by way of CLR

and ARACNE. The most highly connected nodes of the networks

which simultaneously represented genes differentially expressed in

COPD were noted as important. The basic findings were also

present in an expanded CLR study of all 22,283 probesets on the

U133A Affymetrix platform. Differentially expressed and highly

connected nodes of note included TBX2, TBX3, TBX5, and

CDKN2A.

Bicluster analyses of the entire U133A platform dataset, which

were unbiased in terms of a prior determination of genes of focus,

found that the genes related to those noted in the CLR and

ARACNE studies clustered together, often co-occurring in more

than one bi-cluster (Table 2). CLR-generated regulatory networks

involving only genes occurring within the same biclusters affirmed

a central regulatory role for TBX2 (Figure S3). In addition,

Figure 4. A) The state of the Type IV collagen alpha 3 subunit, COL4A3, depends on the states of both TBX2 and CDKN2A in human lung epithelial
cells. Following Robust Multi-Array Analysis of a compendium of 109 Affymetrix arrays on the U133A platform, the Context Likelihood of Relatedness
(CLR) algorithm was used to generate a transcriptional regulatory network involving all available probe sets (at a CLR likelihood estimate cut-off of
2.5). Olive-green nodes represent genes whose median probe set expressions are suppressed in COPD. White nodes represent genes whose median
probe set expressions are elevated in COPD. COL4A3, whose expression is suppressed in the COPD lung, is thus statistically dependent on both TBX2
and CDKN2A. B) Evolutionarily conserved probable protein domain-domain interactions corresponding to the predictions of Table 5. The thickness of
each edge is commensurate with the corresponding computed probabilities. The COL4A3 protein has the Collagen domain (Collagen in Pfam
database; InterPro Database Accession IPR008160) and probably engages PML via its zf-C3HC4 domain (zf-C3HC4 in Pfam database; InterPro
Database Accession IPR001841). By way of its Collagen domain, COL4A3 interacts with PITX2 via its Homeobox domain (Homeobox in Pfam database;
InterPro Database Accession IPR001356). Among others, there is also a probable interaction between the zf-C3HC4 of PML and the Ankyrin repeat
(Ank in Pfam database; InterPro Database Accession IPR002110) domain of CDKN2A that could impact the COPD etiology.
doi:10.1371/journal.pcbi.1002597.g004
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Inferelator, which uses a very different approach from CLR and

ARACNE, predicted that TBX gene products are involved in the

overall regulation of between 25% and 40% of identified biclusters

(Table 3, Figure S4). Thus, among a variety of computational

approaches, there was a consensus regarding a regulatory role for

TBX gene products in COPD.

T-box proteins are an important family of transcription factors.

Over 20 genes in vertebrates have a region of homology to the

DNA-binding domain of the transcription factor encoded by

Brachyury, the T gene [70]. The region of homology in the gene

product, called the T-box, has approximately 180 amino acid

residues and is highly conserved across several species [71]. TBX

transcription factors are characterized by a highly conserved

DNA-binding T-box domain, which recognizes a consensus core

sequence GGTGTGA called the T-sites, and this domain is

different from any other known DNA-binding motif [72]. A

variety of T-box proteins serve as activators or repressors of their

target genes, depending on cofactors involved [70,73] [74,75]. T-

box proteins are critically important during development [76].

Importantly, with regard to COPD, T-box proteins are inhibitors

of senescence [31,32]. TBX3, for instance, inhibits senescence in a

process involving p53-dependent proliferation arrest [32].

CDKN2A is a mechanistic marker for cellular senescence

[33,34]. The CDKN2A gene generates transcript variants that

include p16INK4A and ARF. The cyclin-dependent kinase,

CDK4, which is critical for cell cycle turnover, is inhibited by

the p16INK4A product [77]. The other CDKN2A product, ARF,

promotes the degradation of the p53 inhibitor, MDM2 and

consequently promotes the accumulation and stabilization of p53

[78]. The accumulated p53 is subsequently able to activate the

expression of genes involved in the arrest of the cell cycle at G1 or

in apoptosis [79]. Thus, by arresting the progression of the cell

cycle to promote repair of damaged DNA or by inducing

apoptosis; p53 prevents accumulation of mutations that can be

oncogenic.

Thus, the activities of both T-box proteins and the CDKN2A

products converge on the p53 pathway. Our findings (Figure S1C)

underscore the roles of T-box proteins and CDKN2A in the

etiology of COPD and indicate that the expressions of these genes

are linked in the human lung epithelium. Of note are the changes

in expressions of TBX (-2, -3) and CDKN2A occur in opposite

directions in cancer. T-box genes/proteins such as TBX2 and

TBX3 are overexpressed in several neoplasms, including melano-

mas, breast, and pancreatic cancer [53,80,81]. On the other hand,

because of its effect on MDM2, the CDKN2A product, ARF, acts

as a tumor suppressor; consequently its loss is associated with

neoplasms [82]. The other CDKN2A product, p16INK4A, also

suppresses tumors, and is itself suppressed in neoplasms [77].

Secondly, in COPD, we show that expressions of TBX (-3, -5) are

suppressed and expression of CDKN2A increases (Figures 2 and

3A and Figures S1B, and S1C). This is in distinct contrast to prior

observations made in cancer. TBX2 belongs to the TBX2 sub-

family of TBX transcription factors that include TBX3, TBX4,

and TBX5 genes [71]. Protein expression of TBX2 also declines in

the lungs of patients with COPD compared to control subjects,

while the expression of CDKN2A protein is elevated in the lungs

of patients with COPD compared to control subjects (Figures 3B

and 3C). We also show an association between expression levels of

TBX3, TBX5, and CDKN2A, an indication they are statistically

associated (Figure S1C). TBX3 down-regulates the expression of

the CDKN2A product, ARF [32]. Similarly, via the stress-

activated p38 MAP kinase, the activated TBX2 localizes in the

nucleus and represses the closely related CDKN1A (p21) promoter

[51]; CDKN1A is an inhibitor of DNA repair [83,84]. In Figures

S2A and S2B, we show that both TBX2 and CDKN2A are highly

connected in the human lung epithelium transcriptional regulatory

network. We also show that many of the genes differentially

expressed in the COPD lungs are statistically dependent on the

expression of TBX2 and CDKN2A.

TBX2 and its close relative, TBX3, negatively regulate cell cycle

control genes and CDKNs, specifically CDKN2A, CDKN2B, and

CDKN1A [51,53] and are often upregulated in several cancers

[53,80,85]. Additionally, in carcinogenesis, TBX2 destabilizes p53

by inhibition of ARF [86], while the retinoblastoma protein (Rb1)

is an important modifier of TBX2 function [87]. Taken together,

TBX2 and TBX3 act as suppressors of senescence factors such as

CDKNs, and hence, suppress senescence especially in cancer cells;

thus, TBX2 and TBX3 are thought to be critical anti-senescence

factors [51,52,88,89].

As reported here, the expression of the anti-senescence T-box

transcription factors are suppressed in the COPD lungs, and there

is a concomitant rise in the expression of the cellular senescence

markers, CDKN2A, CDKN1A, and CAV-1 (Figure 3). CDKN1A

mediates cigarette smoke-induced inflammation [48]; cigarette

smoke increases expression of CAV-1 which is involved in

senescence and pulmonary emphysema induction [49,50]. Thus

these findings support the aging hypothesis for COPD [30]. The

two important relevant COPD risk factors converge. First, the

incidence of COPD increases with age [90]. Secondly, cigarette

smoking has been associated with the incidence of COPD. These

associations suggest senescence in the lungs is probably due to the

exposure to cigarette smoke. Indeed, studies in human lung

epithelial cells and mice indicate that cigarette smoke induces

senescence [91]. Cellular senescence is often associated with

shortening of telomeres and is relevant to tissue aging [92]. One of

the hallmarks of senescent cells is their tendency to generate a

number of pro-inflammatory cytokines [93].

COPD Susceptibility Locus
Genome-wide studies in patients with COPD indicate that the

chromosomal locus spanning 2q33.3–2q37.2 is associated with

COPD [94] [95]. Among the genes linked by the CLR algorithm

to TBX5 (Figure S1C), HSPD1, COL4A3, and PAX3 fall within

this region, and BOK and PDCD1 lie on the edge of this locus

(Table 4). HSPD1, also known as HSP60 or HSP65, is a member

of the heat shock protein family. As shown in Figure S1C HSPD1,

which has elevated expression in COPD is linked to the expression

of TBX5, one of the central transcription factors with suppressed

expression in COPD. Notably, HSF1 [96], a transcription factor

responsible for the transcriptional activation of several heat shock

proteins, is linked to COL4A3 (Figure 4A), which falls within a

chromosomal locus of interest. Also, a polymorphism of the

COL4A3 gene is associated with the risk of developing COPD

[55].

COL4A3 [97] has suppressed expression in COPD (Figure S1

and Figure 4A), and is tied by the CLR algorithm to the

transcription factors PML (also a tumor suppressor) and PITX2.

PML and PITX2 have protein domains that likely interact with

COL4A3 (Figure 4B, Table 5). By way of its Collagen domain,

COL4A3 probably interacts with PITX2 via the PITX2

Homeobox domain (Homeobox in Pfam database; InterPro

Database Accession IPR001356). PITX2 acts downstream of the

Wnt-b-catenin pathway and responds to the activation of that

pathway, by regulating the transcription of G1 cell cycle control

genes such as cyclin D1 and c-Myc [98]. The dependence between

PML and COL4A3 (per the CLR runs) is similarly interesting,

because PML, a regulator of the cell cycle, plays a critical role in

the regulation of cell proliferation, apoptosis, and senescence [99].

TBX2 Family Important in COPD
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It induces a block of the G1 phase of the cell cycle in tumor cell

lines [100] and enhances the transcriptional activity of the key

tumor suppressors such as p53 and Rb [99]. The COL4A3 protein

has the Collagen domain (Collagen in Pfam database; InterPro

Database Accession IPR008160) and probably engages PML via

its zf-C3HC4 domain (zf-C3HC4 in Pfam database; InterPro

Database Accession IPR001841) (Figure 4B, Table 5). Our results

also show a transcriptional regulatory relationship between PML

and CDKN2A (probably by an interaction between the zf-C3HC4

of PML and the Ankyrin repeat domain of CDKN2A (Figure 4B,

Table 5)). However, the significance of this observation for COPD

remains unclear.

Other senescence genes. The importance of TBX2 and

CDKN2A in the network has been highlighted. Other gene

products associated with senescence were found via the CLR

(using all available probe sets) to be statistically associated with,

and thus probably dependent on, TBX2 and/or CDKN2A

(Table 6). They include insulin/IGF-1 signaling genes which

promote aging [101–103]; members of the forkhead family [104]

[105][106]; members of the WNT family and the bipartite

transcription factor b-catenin/TCF [107][108][109][110]

[111][106]; as well as histone deacetylases (HDACs) and sirtuins

(SIRTs) [112][113]. Furthermore, the association of TGBF1 with

senescence-related genes in our study (Table 6) is an indication of a

probable role in the etiology of COPD [114][115].

Our study furthers the paradigm on cellular senescence as its

effectors and their regulation are the cross-roads of smoking-

induced lung cancer or COPD [13,116,117]. Along with T-box

transcription factors, other anti-aging molecules such as HDACs

and SIRTs are decreased in the lungs of patients with COPD

compared with smokers without COPD. This results in enhanced

inflammation that furthers the progression of COPD [118,119].

The genes identified here may serve as mechanistic biomarkers for

detecting impending physiological changes during the disease

process. Further, this understanding can help in designing directed

therapies with further understanding of genomic, molecular, and

physiological changes in patients with emphysema or COPD

[120,121].

Materials and Methods

Ethics Statement
The study protocols were approved by the Institutional Review

Board for human studies, and patients’ lung function data from

each of the contributing centers were obtained for this study.

Etiology of COPD and Microarray
The overall experimental approach is summarized in Figure 1.

The etiology of COPD has been associated with apoptosis

Table 5. Maximum likelihood estimation indicating
probabilities of protein-protein interactions based on
evolutionarily conserved domain-domain interactions.

MLE Probability

CDKN2A 0.99 ETS1

CDKN2A 1 NFKBIB

CDKN2A 0.94 NLRP3

CDKN2A 1 NOTCH2

CDKN2A 1 PML

CDKN2A 0.99 TIAL1

COL4A3 0.68 PITX2

COL4A3 0.9 PML

ETS1 0.99 NFKBIB

ETS1 0.99 NOTCH2

HSF1 0.9 NFKBIB

HSF1 0.9 NOTCH2

JUN 0.99 NEUROD1

NEUROD1 0.99 PITX2

NLRP3 0.94 NFKBIB

NLRP3 0.94 NOTCH2

NLRP3 0.99 PITX2

NLRP3 1 TIAL1

NOTCH2 0.99 ETS1

NOTCH2 1 NFKBIB

NOTCH2 1 PML

PML 1 JUN

PML 1 NFKBIB

PML 1 NOTCH2

PML 1 PITX2

TIAL1 0.99 NFKBIB

TIAL1 0.99 NOTCH2

TIAL1 0.99 NOTCH2

TIAL1 1 PITX2

TIAL1 1 PITX2

TIAL1 1 PML

MLE = Maximum likelihood estimation.
Probable interactions involving COL4A3, which is in the susceptibility locus, are
in bold character.
doi:10.1371/journal.pcbi.1002597.t005

Table 4. Several chromosome 2 genes linked to senescence
hubs in transcriptional regulatory network fall within COPD
susceptibility locus, 2q33.3–2q37.2.

Hub Direct Neighbor Chromosomal Location

CDKN2A ANXA4 2p13

CFLAR 2q33–34

GULP1 2q32.3–q33

IL1A 2q14

PDCD1 2q37.3

TBX3 CASP10 2q33–34

PAX3 2q35

RTKN 2p13.1

TIA1 2p13

TBX5 BOK 2q37.3

COL4A3 2q36–37

HSPD1 2q33.1

PAX3 2q35

PDCD1 2q37.3

PRKCE 2p21

RHOB 2p24

TIA1 2p13

Genes in bold character are in or border the region of the susceptibility locus.
doi:10.1371/journal.pcbi.1002597.t004
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[122,123], oxidative stress [124], and inflammation [125]. The

computational aspects of these studies were conducted in two

phases. During the first phase, transcriptional regulatory networks

of the human lung epithelium were reverse-engineered from

publicly available gene expression data, using the CLR network

inference algorithm [35]. Subsets of a compilation of publicly

available gene expression data were generated based on genes

classified under the Gene Ontology [126] term ‘‘inflammatory

response’’ (GOID 0006954), ‘‘apoptosis’’ (GOID 0006915), and

‘‘response to oxidative stress’’ (GOID 0006979), using a program

written for that purpose in lisp [127]. Thus, for each microarray

platform (Affymetrix U133A and U133Plus_2), a transcription

regulatory network was generated that consists of a union of

statistical dependencies among the genes involved in inflammatory

response, apoptosis, and response to oxidative stress. For

comparison and confirmation purposes, a second transcriptional

regulatory network was generated using ARACNE and the same

datasets. Like CLR, ARACNE uses mutual information computed

on the basis of gene expression data, as discussed below. ARACNE

and CLR differ in their modes of binning and eliminating false

edges. CLR was the more conservative of the two algorithms, most

of the edges it asserted also having been asserted by ARACNE

(Table 1).

Expanding on the findings of the first phase, the entire set of

probe sets represented on 109 arrays of the U133A platform was

used during the second phase in which the CLR algorithm was

executed (Gene Expression Omnibus datasets GDS534 and

GDS999). Subsequently to assure the reliability of the regulatory

relationships just described, biclusters were identified within the

dataset using the FABIA algorithm. The Inferelator algorithm was

then also used to predict regulators of those biclusters.

Public Gene Expression Data
A compendium of microarray data was generated from the

Gene Expression Omnibus (GEO). GEO record numbers

GDS534, GDS999, GDS2604, and GDS2486 (http://www.ncbi.

nlm.nih.gov/geo/) and contains the gene expression microarray

experiment data from human lung epithelial cells under a variety

of conditions. These arrays are based on the Affymetrix (http://

www.affymetrix.com) human U133A and U133Plus_2 platforms.

In all, there were 109 arrays from the human U133A and 49

arrays from the human U133Plus_2 platforms, respectively. For

each platform, gene expression data files in the .CEL format were

downloaded and subjected to Robust Multiarray Analysis [42],

using the Bioconductor (http://www.bioconductor.org) package

affy in R (http://cran.r-project.org/).

CLR
The CLR algorithm [35] is an improvement on the Relevance

Networks algorithm [128]. Both use the concept known as mutual

information to infer the state of one member of a given gene pair,

given the state of the other member of the pair [129,130]. There is

a need to capture biologically relevant links within the resulting

reverse-engineered networks. In relevance networks, mutual

information score thresholds are applied. Low thresholds tend to

capture dense networks with many false positives which inevitably

include misrepresentations of indirect dependencies as direct

interactions. On the other hand, high thresholds result in much

smaller networks albeit with fewer false positives. The CLR uses

an adaptive background correction step to remove indirect

influences and false correlations. It compares the mutual

information value for a given pair of genes to a background

distribution of mutual information scores.

Thus a likelihood estimate:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xz

2zYz
2

q

is used (where Xz is the z-score of the mutual information between

gene X and gene Y in gene X’s mutual information score

distribution, and Yz is the z-score of the mutual information

between gene X and gene Y in gene Y’s mutual information score

distribution).

Mutual information. Given two random variables, X and Y,

the mutual information between them is given by:

M X,Yð Þ~H Yð Þ{H YDXð Þ~H Xð Þ{H XDYð Þ

M X,Yð Þ~H Xð ÞzH Yð Þ{H X,Yð Þ

(Here the Shannon entropy [130], the probability of observing a

particular symbol or event, pi,

H~{ S pi log2 pi

is used as a measure of quantitative information).

In other words, the shared information between X and Y

corresponds to the remaining information of one party if we

remove the information of that party that is not shared with the

other party. For two genes, X and Y, the mutual information is

given by:

Table 6. Several aging-related genes are statistically linked to the expressions of TBX2, CDKN2A, and TGFB1.

TBX2 CDKN2A TGFB1

Catenin-related genes CTNNA1, CTNND1 CTNNBIP1

Forkhead transcription
factor-related genes

FOXA2, FOXB1, FOXD3, FOXH1, FOX01,
FOXO3

FOXA1, FOXJ1, FOXO4

Insulin Growth factor-related
genes

IGF2, IGF2BP3, IGFBP7, IGFBP5 IGFALS IGFALS, IGFBP4, IGF2PB2, IGFBP7, IGFBP5,
IGF2R, IGFBP3

Interleukin-related genes IL4, IL13, IL13RA1, IL27RA, IL1RL1, IL17RC,
IL10RB, IL2RA, IL12RB1

IL1RN, IL6ST, IL1RAPL1 IL20RA, IL27RA, IL13RA1, IL2RG, IL10RA, IL4I1

Wnt-related genes WNT3, WNT4, WNT6, WNT7B, WNT11 WNT10B

doi:10.1371/journal.pcbi.1002597.t006
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M(X; Y)~
X

i,j

P(xi,yj)log
p(xi,yj)

p(xi)p(yj)

xi and yi represent specific expression levels across a given set of

measurements. The mutual information thus ranges between 0

and 1, and is a measure for dependencies in the data: negative or

positive, nonlinear or linear [131,132]. The higher the mutual

information score between the two genes, the greater the

information inferred on the states of the first gene from the

pattern of states in the second.

CLR execution. The code implementation provided by Faith

et al. was used from a Linux command line [35]. During the first

phase, the CLR runs were conducted on the data subsets outlined

above. For each data subset, gene subsets that are also identified in

the Gene Ontology as transcription factors using GeneInfoViz

[133] were designated as transcription regulators as part of the

execution of the algorithm. Other details of this CLR run are in

Table S5.

In the second phase, all 22,283 probe sets represented after

background correction and normalization on the U133A platform

were used (Gene Expression Omnibus datasets GDS534 and

GDS999). A likelihood estimate cut-off value of 2.5 used generated

a network consisting of 17,396 nodes and 127, 331 transcription

regulatory links.

ARACNE
Like CLR, ARACNE uses mutual information [40]. Unlike

CLR, it uses the Data Processing Inequality (DPI) to retain only

those regulatory relationships that are direct (rather than indirect)

[134]. In other words, if genes g1 and g3 interact only through a

third gene, g2, then DPI indicates:

I g1, g3ð Þƒmin I g1, g2ð Þ; I g2, g3ð Þ½ �

Thus of the trio, the edge with the least value gets eliminated. The

‘‘DPI tolerance’’ used for ranking of I values, to minimize the

impact of I value variance was set at 0.15 in this study. DPI

tolerance values of greater than 0.2 have been determined to yield

high false positive edges by the developers of ARACNE.

Furthermore, the threshold p-value for establishing that the

mutual information between gene pairs was significant in this

study was set at 1027.

Factor Analysis for Bicluster Acquisition (FABIA)
The algorithm [44] was run using the entire dataset derived

from the 109 U133A arrays. For p biclusters and additive noise,

the model for the matrix X (input to biclustering method) is:

X~
Xp

i~1

li zT
i zU,

where the real numbers l, zi, and U, are the sparse prototype

column vector, the sparse vector of factors (transposed as rows)

with which the prototype vector is scaled for the ith bicluster, and

the additive noise respectively. For each of the bicluster sets (where

p is 5, 10 or 20), there were 500 iterations, and a sparseness factor

of 0.1. All parameters were set at the default values.

Inferelator
The Inferelator [45] version 1.0 was used to infer a minimal set of

regulators that explains the expression levels of each of the 10 and

20 biclusters identified. Potential regulators were defined (as was

done for the CLR execution), and the expression data was treated as

equilibrium observations (i.e. no information about temporal

relationships between observations was incorporated into the

inference process). The Inferelator was run with default settings.

Previous COPD Studies and Network Graphics
The human lung transcription regulatory networks generated

were subsequently analyzed in the light of GEO datasets

GSE1122, GSE1650, and GSE8581, representing studies on

changes in gene expression between emphysema subjects and

control subjects [135], patients with severe COPD and patients

with symptoms ranging from mild COPD to normal [136], and

patients with COPD and control patients [39]. CEL files were

downloaded, and in each case, the data analyzed for differential

gene expression using Partek workbench [137] after Robust

Multiarray Analysis [42] processing (p-value = 0.01 and false

discovery rate = 0.01) [138]. For each gene represented by

differentially expressed probe sets, the median probe set value

was used to represent the level of expression during visualization in

Cytoscape [139]. Genes suppressed in COPD (compared to

controls) were depicted using olive green-colored nodes and up-

regulated genes had white-colored nodes. In our studies GSE8581

data [39] were used.

Domain Analysis
Proteins interact with each other via their component domains.

An accurate prediction of domain-domain interactions would

facilitate the prediction of protein-protein interactions. The Pfam

database [140] contains a large collection of evolutionarily

conserved protein domains and empirically determined interac-

tions they are involved in. Based on relevant Pfam domain family

data, a Maximum Likelihood Estimation method was used to infer

protein-protein interactions among connected nodes of the

transcriptional regulatory networks generated as described above

[141][142].Although the networks were generated on the basis of

gene array data, they are proxies for interactions among

corresponding gene products (proteins). Indeed genes with similar

expression patterns often generate proteins that interact in some

fashion [143,144]. An implementation of the maximum likelihood

estimation in Cytoprophet [145] was used, and probabilities of

domain-domain (protein-protein) interactions were computed.

COPD Patient and Normal Lung Samples
Frozen peripheral lung tissue samples used in this study were

obtained from two tissue banks: (1) the NHLBI Lung Tissue

Research Consortium (University of Colorado Health Sciences

Center, Denver, CO); and (2) the iCAPTURE (James Hogg

iCAPTURE Centre for Cardiovascular and Pulmonary Research,

St. Paul’s Hospital, University of British Columbia, Vancouver, BC,

Canada). We obtained data on patients’ lung function from both

established patient registries. Clinical information, samples size, and

classification based on Global Initiative for Obstructive Lung

Disease (GOLD) for Chronic Obstructive Lung Disease stages of

patients with COPD and normal control subjects are summarized in

Table 7. Participants in the COPD groups who smoked had similar

pack-year smoking histories, where smoking for 1 pack-year refers to

smoking one pack of cigarettes per day each year.

Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR)

Selected genes (TBX2, TBX3, TBX5, CDKN2A, CDKN1A,

HDAC2, HDAC5, SIRT1, SIRT5, and CAV1) from our analysis

TBX2 Family Important in COPD
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were validated by qRT-PCR. Total mRNA from the peripheral

lung tissues from patients with COPD and non-COPD individual’s

lungs were purified using the Qiagen RNeasy kit (Qiagen,

Valencia, CA). qRT-PCR was then performed using inventoried

Assay-on-Demand primers and probe sets from Applied Biosys-

tems (Foster City, CA). We used the ABI 7000 Taqman system

(Applied Biosystems) to perform these assays. b-actin was used as a

normalization control. The analysis was run as previously

described [19].

Immunoblot Assay
Immunoblots were performed using antibodies for TBX2,

CDKN2A, CDKN1A, SIRT1, CAV1, HDAC2, and ACTIN-B

(Santa Cruz Biotechnology, Santa Cruz, CA). ACTIN-B was used

as a loading control. These immunoblots were performed using

protocols as described previously [19].

Statistical Analyses for q-RT-PCR and Immunoblot
Analysis

Fifteen normal, nine mild COPD, and six severe COPD

samples were used for q-RTPCR analysis. Four samples per group

were used for immunonoblots. All immunoblots were quantified

by measuring scanned photographs in ImageJ software (NIH). All

statistical analyses were done with student’s t-test for comparisons

of COPD groups with normal samples as control. Data in graphs

were represented as mean values and error bars in the graphs

represent standard deviation (SD).

Supporting Information

Figure S1 CLR-Generated transcriptional regulatory network of

human lung epithelial cells. Following Robust Multi-Array

Analysis of a compendium of 158 Affymetrix arrays, the Context

Likelihood of Relatedness (CLR) algorithm was used to generate a

transcriptional regulatory network (false discovery rate, 0.05). A) A

synoptic view of the overall lung epithelial transcriptional

regulatory network generated using Gene Ontology genes

associated with apoptosis, response to inflammation, and response

to oxidative stress. B) An up-close view of TBX3 and nodes

directly connected to it in the network generated. C) An up-close

view of TBX5 and nodes directly connected to it in the network

generated. Larger-sized nodes represent hubs within the network,

i.e. human lung epithelium cell genes more highly connected to

other genes associated with apoptosis, response to inflammation,

and response to oxidative stress. Olive-green nodes represent genes

whose median probe set expressions are suppressed in COPD.

White nodes represent genes whose median probe set expressions

are elevated in COPD.

(TIF)

Figure S2 The states of a large cross-section of human epithelial

cell genes differentially expressed in COPD depend on the states of

(A) TBX2 and (B) CDKN2A. Following Robust Multi-Array

Analysis of a compendium of 109 Affymetrix arrays on the U133A

platform, the Context Likelihood of Relatedness (CLR) algorithm

was used to generate a transcriptional regulatory network

involving all available probe sets (at a CLR likelihood estimate

cut-off of 2.5). Olive-green nodes represent genes whose median

probe set expressions are suppressed in COPD. White nodes

represent genes whose median probe set expressions are elevated

in COPD. TBX2 gene expression is suppressed while CDKN2A

gene expression is elevated in COPD.

(TIF)

Figure S3 TBX2 is statistically associated with a large cross-

section of genes differentially expressed in the COPD lung.

Following Robust Multi-Array Analysis, ten biclusters were

identified using FABIA from a compendium of 109 Affymetrix

human lung epithelial cell microarrays. Focusing only on genes

present in each cluster, the Context Likelihood of Relatedness

(CLR) algorithm was used to generate Transcriptional Regulatory

Networks (false discovery rate, 0.05). The ten networks are merged

in this figure. Olive-green nodes represent genes whose median

probe set expressions are suppressed in COPD. White nodes

represent genes whose median probe set expressions are elevated

in COPD. TBX2, the olive node in the center, is either directly or

indirectly (by way of one or two intervening nodes) linked with a

significant cross-section of genes differentially expressed in the

COPD lung.

(TIF)

Figure S4 TBX gene products (captured by red arrows in figure)

are predicted to be involved in the direct regulation of 40% of

biclusters in the dataset. Following Robust Multi-Array Analysis,

ten biclusters were identified using FABIA from a compendium of

109 Affymetrix human lung epithelial cell microarrays. Inferelator

version 1.0 was used to infer a minimal set of regulators that

explain the expression levels of each of 10 biclusters. TBX2 was

predicted to be involved in the direct regulation of biclusters 6 and

10. TBX3 was predicted to be involved in the direct regulation of

bicluster 10. TBX5 was predicted to be involved in the direct

regulation of biclusters 2 and 8.

(TIF)

Table S1 Interacting nodes in CLR-generated network and

their corresponding likelihood estimates. The data in this table

correspond to Figure S1.

(DOC)

Table S2 Direct Connections to TBX2 in the CLR-Generated

Network. The data in this table correspond to Figure S2A.

(DOC)

Table S3 Direct Connections to CDKN2A in the CLR-

Generated Network. The data in this table correspond to Figure

S2B.

(DOC)

Table S4 A: Membership of Five Biclusters Learned Using

Factor Analysis for Bicluster Acquisition (FABIA). This table

Table 7. Patient characteristics.

Characteristic Normal Samples COPD Samples

GOLD Stage (1/2/3/4) 15 0/9/6/0

Sex (Male/Female) 15/0 15/0

Age (mean 6 SD), years 69.9614.4 68.4615.1

Pack years smoked, (mean 6 SD) 51.4611.1 58.368.3

FEV1 % predicted, (mean 6 SD) 95.169.3 31.3629.9

FVC % predicted, (mean 6 SD) 88.768.9 60.1618.1

FEV1 = Forced expiratory volume at 1 sec; FVC = Function vital capacity;
SD = Standard deviation; COPD = Chronic obstructive pulmonary disease.
GOLD (Global Initiative for Chronic Obstructive Lung Disease) Stages:
1 – mild COPD: FEV1$80% predicted, FEV1:FVC,70%.
2 – moderate COPD: 50%#FEV1#80% predicted, FEV1:FVC,70%.
3 – severe COPD: 30%#FEV1#50% predicted, FEV1:FVC,70%.
4 – very severe COPD: FEV1,30%predicted or FEV1,50% predicted with
chronic respiratory failure, FEV1:FVC,70%.
Pack years: (Packs smoked per day)6(years as a smoker).
doi:10.1371/journal.pcbi.1002597.t007
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identifies the genes and phenotypes that clustered together when

the algorithm was applied to learn five biclusters from the

experiments in the compendium. B: Membership of Ten Biclusters

Learned Using Factor Analysis for Bicluster Acquisition (FABIA).

This table identifies the genes and phenotypes that clustered

together when the algorithm was applied to learn ten biclusters

from the experiments in the compendium. C: Membership of

Twenty Biclusters Learned Using Factor Analysis for Bicluster

Acquisition (FABIA). This table identifies the genes and pheno-

types that clustered together when the algorithm was applied to

learn twenty biclusters from the experiments in the compendium.

(DOC)

Table S5 Details of CLR Execution that Generated Results

Found in Figure S1 and Table S1.

(DOC)
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