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Abstract: Accumulating evidence indicate that blueberries have anti-hypertensive properties, which
may be mainly due to its rich polyphenol content and their high antioxidant capacity. Thus, we
aimed to investigate the mechanisms by which blueberry polyphenols exert these effects. Human
aortic endothelial cells (HAECs) were incubated with 200 µg/mL blueberry polyphenol extract
(BPE) for 1 h prior to a 12 h treatment with angiotensin (Ang) II, a potent vasoconstrictor. Our
results indicate that Ang II increased levels of superoxide anions and decreased NO levels in HAECs.
These effects were attenuated by pre-treatment with BPE. Ang II increased the expression of the
pro-oxidant enzyme NOX1, which was not attenuated by BPE. Pre-treatment with BPE attenuated
the Ang II-induced increase in the phosphorylation of the redox-sensitive MAPK kinases, SAPK/JNK
and p38. BPE increased the expression of the redox-transcription factor NRF2 as well as detoxifying
and antioxidant enzymes it transcribes including HO-1, NQO1, and SOD1. We also show that BPE
attenuates the Ang II-induced phosphorylation of the NF-κB p65 subunit. Further, we show that
inhibition of NRF2 leads to a decrease in the expression of HO-1 and increased phosphorylation of
the NF-κB p65 subunit in HAECs treated with BPE and Ang II. These findings indicate that BPE acts
through a NRF2-dependent mechanism to reduce oxidative stress and increase NO levels in Ang
II-treated HAECs.

Keywords: NRF2; antioxidant enzymes; redox signaling; reactive oxygen species; NADPH oxidases;
endothelial dysfunction; hypertension; cardiovascular

1. Introduction

Oxidative stress and inflammation are major drivers of cellular and molecular events
that can lead to the development of hypertension, a multifactorial and multiorgan dis-
ease [1] that affects 49.6% adults in the United States [2]. Oxidative stress is characterized by
accumulation of reactive oxygen species (ROS), which is caused by “an imbalance between
oxidants and antioxidants in favor of oxidants” [3]. ROS is a major signaling molecule
mediating the actions of angiotensin (Ang) II, a vasoactive peptide that can lead to vascular
oxidative stress and inflammation, vasoconstriction, tissue hypertrophy and fibrosis [4–7].
Through its binding to Ang II type 1 receptor (AT1R), a G protein-coupled receptor, Ang II
can lead to activation of NADPH oxidases (NOX) resulting in increased production of ROS
such as hydrogen peroxide (H2O2) and superoxide anion (O2

•−). Superoxide anion reacts
with the vasodilator nitric oxide (NO) forming peroxynitrite (OONO−), thereby reducing
NO bioavailability [8,9]. Additionally, increased ROS causes endothelial NO synthase
(eNOS) uncoupling favoring production of O2

•− over NO, which further increases ROS in
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endothelial cells [10]. Altogether, these events can lead to endothelial dysfunction [11] and
high blood pressure [12].

Ang II-AT1R binding also promotes the phosphorylation and activation of the redox-
sensitive threonine/serine kinases such as protein kinase B (Akt) and mitogen activated
protein kinases (MAPKs): p38MAPK, stress-activated protein kinase (SAPK)/Jun amino-
terminal kinases (JNK), and extracellular signal-regulated kinase (ERK)1/2, which play
key roles in cell differentiation, proliferation, migration, hypertrophy, and fibrosis [13–15].
In fact, administration of p38MAPK inhibitor reduced blood pressure and cardiac hy-
pertrophy in Ang II-infused male rats [16]. Further, Ang II-AT1R binding activates the
pro-inflammatory transcription factor nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB), which is mediated by NOX-derived ROS production and MAPK
activation [14] and results in up-regulation of pro-inflammatory genes, cytokine production,
and tissue fibrosis. Zhao et al. [17] demonstrated that NOX4 transgenic mice infused with
Ang II had increased oxidative stress, cardiac fibrosis, and hypertrophy and that these
effects were mediated by Akt-NF-κB activation.

Nuclear factor erythroid 2-related factor (NRF) 2 is a transcription factor found se-
questered in the cytoplasm by Kelch-like ECH-associated protein (KEAP) 1 [18]. In the
presence of oxidative stress, NRF2 dissociates from KEAP1 and translocates to the nucleus
where it binds to antioxidant response element (ARE) inducing the transcription of several
detoxifying and antioxidant enzymes including heme oxygenase (HO)-1, NADH dehy-
drogenase (quinone) (NQO) 1 [18], and partially mediates superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPx) 1 [19,20]. SOD is a major antioxidant
enzyme responsible for converting O2

•− into H2O2 while peroxidases such as CAT and
GPx1 convert H2O2 into water and oxygen. Increased expression of NRF2 and the en-
zymes it transcribes can potentially increase NO production and bioavailability promoting
endothelium-dependent vasodilation and lowering blood pressure [21].

Counteracting ROS, in particular O2
•−, production and/or accumulation is an attrac-

tive approach to improving endothelial function. Blueberries are native to North America
and widely consumed in the United States. They are rich in flavonoids especially antho-
cyanins, including cyanidin 3-O-galactoside, delphinidin 3-O-galactoside, and malvidin
3-O-galactoside, as well as the flavonol myricetin, which is unique among other berries [22].
Blueberries have strong antioxidant capacity and accumulating evidence supports their
antihypertensive properties. For instance, consumption of wild blueberries improved
endothelial function in a dose-dependent manner and reduced NOX activity in neutrophils,
which was closely tied to serum fluctuation in blueberry-derived polyphenols in healthy
men [23]. Further, we showed that daily consumption of blueberries for eight weeks re-
duced blood pressure and increased levels of plasma NO in hypertensive postmenopausal
women [24]. Similarly, Basu et al. [25] observed a reduction of blood pressure in adults
with metabolic syndrome who consumed blueberry for eight weeks. Other groups reported
that blueberry consumption for six weeks [26] and six months [27] improved endothelial
function in subjects with metabolic syndrome. Interestingly, Curtis et al. [28] showed that
blueberries were ineffective at improving endothelial function post-prandially in adults
with metabolic syndrome. This may be due to the method by which blueberries were
provided, as they were part of a milk-based smoothie, and milk-derived proteins tend to
neutralize the antioxidant effects of blueberries and inhibits absorption of polyphenols [29].
Nonetheless, further evidence from animal studies indicate that blueberries reduce blood
pressure and decrease renal oxidative stress in spontaneously hypertensive rats and spon-
taneously hypertensive stroke-prone rats [30,31]. Thus, the aim of this study was to gain
insight into the mechanisms by which blueberry polyphenols exert their antihypertensive
effects using human aortic endothelial cells (HAECs) treated with Ang II.
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2. Materials and Methods
2.1. Chemicals and Reagents

Ang II (Bachem); chloromethyl 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA),
Gallic acid (Thermo Fischer Scientific, Waltham, MA, USA); Folin–Ciocalteu reagent, 4,5-
diaminofluorescein diacetate (DAF-2 DA), TOX8, radioimmunoprecipitation assay (RIPA)
buffer, phosphatase inhibitor cocktail 1 and 2 and protease inhibitor cocktail (Sigma-Aldrich,
St. Louis, MO, USA); EC Basal Growth Medium MV, EC Growth Medium MV Supplement
Mix (Promo Cell, Heidelberg, Germany); Dihydroethidium (DHE, Thermo Fisher Scien-
tific, Rockford, IL, USA); rabbit polyclonal antibodies against: p-p38MAPK (cat#: 4511),
p38MAPK (cat#: 8690), p-SAPK/JNK (cat#: 4668), SAPK/JNK (cat#:9 252), p-ERK1/2
(cat#: 9101), ERK1/2 (cat#:9102), p-NF-κB p65 (Cat#: 3033), NF-κB p65 (cat#: 4764), p-Akt
(cat#: 4060) GPx1 (cat#: 3206), catalase (cat#: 14097), SOD1 (cat#: 2770), SOD2 (cat#: 13141),
and HO-1 (cat#: 5061) (Cell Signaling, Danvers, MA, USA); rabbit polyclonal antibodies
against: NOX2 (cat#: ab180642), NOX4 (ab133303) and NOX5 (cat#: ab191010) (Abcam,
Cambridge, UK); rabbit polyclonal antibodies against: NRF2 (cat#: NBP1-32822) and NOX1
(cat#: NBP1-31546) (Novus Biologicals, Centennial, CO, USA); sheep polyclonal antibodies
against: NQO1 (cat#: AF7567) (R&D systems, Minneapolis, MN, USA); and mouse mono-
clonal antibodies against: Akt (cat#: 2920) and β-actin (cat#: 3700) (Cell Signaling, Danvers,
MA, USA).

2.2. Extraction of Blueberry Polyphenols

Polyphenol extraction and purification of Highbush freeze-dried blueberry powder,
derived from a 50/50 blend of Tifblue (Vaccinium virgatum) and Rubel (Vaccinium corym-
bosum), was performed as described by Feresin et al. [32]. Briefly, freeze-dried blueberry
powder was extracted with 80% ethanol in an ultrasonic bath under subdued light with
nitrogen purging to avoid oxidation. Solution was filtered, evaporated, and freeze-dried
prior removal of organic molecules using chloroform. The aqueous fraction was collected
and combined with ethyl acetate before being evaporated and freeze-dried again. Samples
were stored at −20 ◦C for later analysis and use.

2.3. Total Polyphenol Content

The total polyphenol content of BPE was evaluated colorimetrically using Folin–
Ciocalteu reagent according to a previously published protocol with some modifica-
tions [33]. BPE was dissolved in 90% EtOH at a concentration of 1 mg/mL. Gallic acid was
used as a standard and dissolved in 90% EtOH at a concentration range of 0–800 µM. BPE
and gallic acid standards were pipetted in triplicates into a clear, 96-well plate (20 µL/well),
and 40 µL of 10% Folin–Ciocalteu reagent was added to each well containing sample and
standard, followed by brief shaking. Then, 140 µL of Na2CO3 (700 mM) was added to these
wells, followed by a 10-min incubation at room temperature. The absorbance was then
read at 765 nm in a plate reader (Synergy HT, Biotek, Winooski, VT, USA).

2.4. Total Anthocyanin Content

The total anthocyanin content of BPE was evaluated colorimetrically using the pH-
differential method [34]. A solution of KCl (25 mM, pH 1.0) and CH3CO2Na·3H2O (400 mM,
pH 4.5) was created in water and BPE was dissolved in each at 1 mg/mL. The absorbance
of both BPE solutions was measured at 520 nm and 700 nm in a clear, 96-well plate, and
cyanidin-3-glucoside equivalents were calculated with the following equation:

Anthocyanin pigment
(

cyanidin− 3− glucoside equivalents
mg
L

)
=

A ∗MW ∗DF ∗ 103

ε ∗ 1
where

• A = (A520–A700 nm) pH1.0 − (A520–A700 nm) pH4.5.
• MW (molecular weight) = 449.2 g/mol for cyanidin-3-glucoside.
• DF = dilution factor.
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• 1 = pathlength in cm.
• ε = 26,900 molar extinction coefficient in L ×mol−1 × cm−1 for cyanidin-3-glucoside.
• 103 = factor for conversion from g to mg

2.5. BPE Total Antioxidant Capacity

The total antioxidant capacity was assessed using the ferric reducing antioxidant
power (FRAP) assay [35]. A master mix was prepared containing 300 mM CH3COONa·3H2O,
10 mM TPTZ in 40 mM HCl, and 20 mM FeCl·6H2O at a ratio of 10:1:1. Fe2+SO4·7H2O was
used as a standard ranging from 0 to 500 µM. BPE was dissolved in water at a concentration
of 1 mg/mL. Then, 20 µL of BPE and standards were pipetted into a clear, 96-well plate
with 180 µL of master mix. After 10 min of incubation at room temperature, absorbance
was read at 593 nm.

2.6. Cell Culture

HAECs were cultured in flat-bottom flasks containing complete media (EC Basal
Growth Medium MV supplemented with EC Growth Medium MV Supplement Mix and
1% antibiotics at 37 ◦C and 5% CO2. Media was changed every two days. When the cells
reached approximately 80% confluency, they were detached using 0.04% trypsin/EDTA
solution, then centrifuged and re-suspended in media. HAECs were seeded in complete
media with a density of 5 × 103 cells per cm2 in 60 mm dishes for protein expression and
96-well black plates for cell viability, ROS, and NO measurements. Upon reaching 70%
confluency, cells were treated with blueberry polyphenol extract (BPE; 200 µg/mL) for 1 h,
followed by stimulation with 200 nM of Ang II for 12 h in starvation medium containing
0.5% FBS (10% of supplement quantity used in basal medium).

2.7. Cell Viability

Cells were treated with a BPE concentration range of 200–1000 µg/mL for 24 h in
starvation medium. Following treatment, medium was rinsed with warm PBS, and fresh
starvation medium was added. TOX8 was added to each well at a concentration of 10% of
volume of medium. After incubation for 2 h in 37 ◦C and 5% CO2, fluorescent intensity
was read at Ex/Em of 530/590 in a microplate reader (Synergy HT, Biotek).

2.8. ROS Measurements

Methods for ROS detection were modified from a prior investigation [36]. Cells
were washed with Dulbecco’s phosphate-buffered saline (DPBS) twice and incubated with
10 µM of DHE or H2DCFDA fluorescent probes for 30 min in 37 ◦C 5% CO2. Fluorescence
was read using a microplate reader at 480/590 (Ex/Em) for DHE and 405/570 (Ex/Em)
for H2DCFDA.

2.9. Intracellular NO

Methods were modified from Rathel et al. [37]. In brief, DAF-2 DA was added to each
well at a final concentration of 5 µM. After a 30-min incubation in 37 ◦C and 5% CO2, cells
were washed twice in warm PBS, then left in warm phenol red-free medium for imaging
and quantitative analysis at a fluorescent intensity of 495 nm/515 nm (Ex/Em).

2.10. NOS Activity

Cells were collected according to instructions in a commercially available NOS assay
kit (cat#: ab211083; Abcam, Waltham, MA, USA). NOS assay buffer (provided by the
manufacturer) was supplemented with protease and phosphatase inhibitor cocktails then
briefly sonicated at 20% amplitude for complete cell lysis. NOS activity was then assessed
according to kit instructions.
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2.11. Western Blot Analysis

As described elsewhere [38], cells were lysed in RIPA supplemented with protease
and phosphatase inhibitor cocktails, followed by centrifugation at 20,000× g for 20 min for
collection of supernatants. Protein concentration of lysates were determined using the DC
protein assay kit (BioRad Laboratories, Hercules, CA, USA). Samples containing 30 µg of
protein were mixed with 4× Laemli supplemented with 10% 2-mercaptoethanol (BioRad
Laboratories, Hercules, CA, USA), placed in a dry bath at 70 ◦C for 10 min and separated
using SDS-PAGE. Gels were transferred to polyvinylidene difluoride (PVDF) membranes
(BioRad Laboratories, Hercules, CA, USA) using Trans-Blot Turbo (BioRad Laboratories,
Hercules, CA, USA). The membrane was incubated with 5% non-fat dried milk (NFDM) in
Tris-buffered saline (TBS; 20 mM Tris, pH 7.5, 130 mM NaCl) containing 0.5% Tween-20
(TBS-T) for 20 min on a shaker, then washed with TBS-T 3 × 5 min before incubating with
the primary antibody solution (1:1000 dilution in TBS-T with 5% BSA and 0.1% sodium
azide) overnight at 4 ◦C on a shaker. Next, the membranes were washed 3 × 5 min with
TBS-T, then incubated with the secondary antibody solution containing 5% NFDM in
TBS-T at a 1:10,000 dilution for 1 h at room temperature. The membranes were washed
for an additional 3 × 5 min using TBS-T, then incubated in Immobilon Forte Western HRP
Substrate (EMD Millpore, Billerica, MA, USA) for imaging using the ChemiDoc Imaging
Systems (BioRad Laboratories, Hercules, CA, USA). Density of the protein bands was
quantified using Image Lab 6.0 (BioRad Laboratories, Hercules, CA, USA).

2.12. Statistical Analysis

Data distribution was examined using Shapiro–Wilk. Data were found to be normally
distributed thus one-way analysis of variance (ANOVA) was used next followed by Tukey–
Kramer post hoc test for pairwise comparisons. Significant differences were determined
at p ≤ 0.05. Values are presented as mean ± standard deviation of the mean (SD). Data
analyses were performed using GraphPad Prism software (La Jolla, CA, USA).

3. Results
3.1. Polyphenol Content of BPE

The polyphenol and anthocyanin content as well as antioxidant capacity of ethanol-
based BPE used in this study are described in Table 1. Based on previous cell culture studies
with berry extracts conducted in our laboratory [36,38] and cell viability data (not shown),
200 µg/mL BPE was used to perform further experiments.

Table 1. Polyphenolic content and antioxidant capacity of blueberry polyphenol extract (BPE).

Total Polyphenol Content Total Anthocyanin Content Antioxidant Capacity
(FRAP)

141.3 ± 3.4 µmol GAE/L 105.3 ± 2.0 C3GE mg/L 205.3 ± 4.7 µmol Fe2+/L
Data are expressed as mean ± SD from three independent experiments. GAE, gallic acid equivalents; C3GE,
cyanidin-3-glucoside equivalents.

3.2. Effects of BPE on NO and ROS Levels in Ang II-Treated HAECs

We first examined the effects of Ang II and BPE on NO levels. Ang II significantly
decreased levels of NO (0.65± 0.25-fold; n = 3; p = 0.008) compared to control (Figure 1A,B).
Pre-treatment with BPE significantly prevented that decrease (1.04 ± 0.04-fold; n = 3;
p = 0.005) (Figure 1A,B). To test whether these effects were mediated by the actions of Ang
II and BPE on the synthesis of NO, we measured NOS activity. Ang II had no effects on
NOS activity in HAECs while BPE significantly increased NOS activity compared to Ang
II (1.35 ± 0.22 vs. 0.99 ± 0.03-fold, respectively; n = 3; p = 0.03) and control (p = 0.03)
(Figure 1C). This may indicate that the reduction in NO metabolite levels observed with
Ang II is due to a decrease in NO bioavailability rather than a decrease in NO production.
To test this hypothesis, we investigated the effects of Ang II and BPE on ROS levels using
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DHE and H2DCFDA. These are fluorescent probes that allow for the detection of O2
•−

and H2O2 as well as hydroxyl and peroxyl radicals, respectively. Ang II increased levels
of O2

•− (2.52 ± 1.02-fold; n = 3; p = 0.07) compared to control, which trended towards
significance (Figure 1D). Pre-treatment with BPE significantly attenuated the increase in
O2
•− induced by Ang II (0.63 ± 0.59-fold; n = 3; p = 0.03) (Figure 1D). Ang II induced a

significant increase in H2O2 levels (1.24 ± 0.08-fold; n = 4; p = 0.002) compared to control;
however, BPE did not prevent or attenuated this effect (1.23 ± 0.08-fold; n = 4; p = 0.98)
(Figure 1E).
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Figure 1. Blueberry polyphenol extract (BPE) prevents the decrease in nitric oxide (NO) levels
and the increase in superoxide production induced by angiotensin (Ang) II in human aortic en-
dothelial cells (HAECs). HAECs were treated with 200 µg/mL of BPE for 1 h then treated with
200 nM of Ang II for 12 h. NO levels were visualized (A) and quantified (B) after 30 min incubation
with DAF-2DA. NO synthase (NOS) activity (C). ROS levels were determined after 30 min incuba-
tion with DHE (D) or H2DCFDA (E). Data are expressed as mean ± SD from three independent
experiments. Values that do not share the same letter are significantly different from each other
(p ≤ 0.05).

3.3. BPE Attenuated the Phosphorylation of SAPK/JNK and p38MAPK in Ang II-Treated HAECs

Next, we explored the effects of Ang II and BPE on ROS signaling by measuring the
expression of the phosphorylated redox-sensitive MAPKs and Akt. Ang II increased the
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phosphorylation of SAPK/JNK (2.56 ± 0.25-fold; n = 3; p < 0.0001) (Figure 2A,B) and
p38MAPK (1.9 ± 0.22-fold; n = 5; p = 0.002) (Figure 2E,F) compared to control. Expo-
sure of HAECs to BPE prior to Ang II treatment significantly attenuated the SAPK/JNK
(2.13 ± 0.16-fold; n = 3; p = 0.04) (Figure 2A,B) and p38MAPK (1.48 ± 0.17-fold; n = 5;
p = 0.004) (Figure 2E,F) phosphorylation. Interestingly, expression of total and phosphory-
lated ERK1/2 (Figure 2C,D) and Akt (Figure 2G,H) was not affected by Ang II or BPE.
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Figure 2. Blueberry polyphenol extract (BPE) attenuates SAPK/JNK and p38 phosphorylation
in angiotensin (Ang) II-treated human aortic endothelial cells (HAECs). HAECs were treated
with 200 µg/mL of BPE for 1 h then treated with 200 nM of Ang II for 12 h. Protein expression of
phosphorylated and total SAPK/JNK (A,B), ERK1/2 (C,D), p38 (E,F), and Akt (G,H) were determined
by Western blot. Quantification was performed using Image Lab (Bio-Rad Laboratories, Inc., Hercules,
CA, USA). Data are expressed as mean ± SD from three (SAPK/JNK), four (Akt) and five (ERK1/2
and p38) independent experiments. Values that do not share the same letter are significantly different
from each other (p ≤ 0.05).

3.4. BPE Did Not Attenuate Ang II-Induced Increase in NOX1 Expression in HAECs

As indicated above, Ang II led to increases in ROS levels. NOXs are one of the major
ROS-producing enzymes in HAECs. Therefore, we hypothesized that this increase in ROS
could be due to Ang II-induced increased expression of NOX enzymes in these cells. Ang
II increased the expression of NOX1 (1.18 ± 0.05-fold; n = 3; p = 0.01) compared to control
(Figure 3A,B). Pre-treatment of HAECs with BPE did not significantly attenuate this effect
(1.10 ± 0.08-fold; n = 3; p = 0.2) (Figure 3A,B). Neither Ang II or BPE treatment affected the
expression of NOX2, NOX4, and NOX5 (Figure 3C–H).

3.5. BPE Increased the Expression of Antioxidant Enzymes in HAECs Treated with Ang II

Since BPE prevented the increase in O2
•− induced by Ang II but did not affect NOX

expression, we hypothesized that BPE may increase the expression of antioxidant enzymes.
Thus, we assessed the expression of the dismutases SOD1 and SOD2, peroxidases such as
CAT and GPx1, and the cytosolic reductase NQO1. Ang II significantly increased SOD2 ex-
pression (3.07± 0.62-fold; n = 5; p = 0.001) in HAECs compared to control (Figure 4A,B). BPE
did not elicit any further significant increases in Ang II-treated HAECs (3.24 ± 0.98-fold;
n = 5; p = 0.9) (Figure 4A,B). BPE significantly increased the expression of SOD1 compared
to Ang II-treated HAECs (1.21 ± 0.14 vs. 0.92 ± 0.17-fold, respectively; n = 6; p = 0.004) and
control (p = 0.03) (Figure 4C,D). Expression levels of the peroxidases GPx1 (Figure 4E,F) and
CAT (Figure 4G,H) were not affected by either Ang II or BPE. Ang II did not significantly
affect the expression of NQO1 (Figure 4I,J). However, BPE elicited a significant increase in
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NQO1 expression in Ang II-treated HAECs (1.24 ± 0.36 vs. 0.82 ± 0.19-fold, respectively;
n = 5; p = 0.04) (Figure 4I,J).

3.6. BPE Increased the Expression of NRF2 and Attenuated Ang II-Induced Increase in NF-κB
Expression in HAECs

Next, we examine whether the increase in the expression of SOD1, SOD2, and NQO1
was in response to an increase in the activation of NRF2, the redox transcription factor that
plays a role in transcribing genes for these antioxidant enzymes. Ang II did not change
NRF2 expression compared to control while BPE significantly increased NRF2 expression
compared to Ang II (1.30 ± 0.12 vs. 0.99 ± 0.17-fold, respectively; n = 5; p = 0.004) and
control (p = 0.005) (Figure 5A,B). BPE also significantly increased the expression of HO-
1, a cytoprotective enzyme transcribed by NRF2, compared to Ang II (1.36 ± 0.20 vs.
1.07 ± 0.26-fold, respectively; n = 11; p = 0.02) and control (p = 0.002) (Figure 5C,D). To
confirm whether BPE is in fact exerting its beneficial effects on Ang II-treated HAECs
through NRF2, we inhibited this transcription factor using the specific NRF2 inhibitor
ML385 and measured HO-1 expression. ML385 did not elicit any changes in the absence
of Ang II and BPE. However, inhibition of NRF2 by ML385 led to a significant decrease in
HO-1 expression in the presence of Ang II alone (0.65 ± 0.23-fold; n = 7; p = 0.001) or with
BPE (0.74 ± 0.29-fold; n = 7; p < 0.0001) (Figure 5C,D).

Since increased oxidative stress can exacerbate the inflammatory response via activa-
tion of the redox transcription factor NF-κB, we measured the expression of the p-NF-κB
p65 subunit. Ang II significantly increased the phosphorylation of the NF-κB p65 subunit
(1.64 ± 0.17-fold; n = 3; p = 0.0001), which pre-treatment with BPE (1.34 ± 0.09-fold; n = 3;
p = 0.02) was able to attenuate (Figure 5E,F). NRF2 inhibition did not affect NF-κB p65
subunit phosphorylation in the presence of Ang II but it further increased it in cells treated
with Ang II and BPE (1.72 ± 0.13-fold; n = 3; p = 0.01) (Figure 5E,F). This may confirm that
BPE exerts its effects in HAECS treated with Ang II in a NRF2-dependent mechanism.
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Figure 3. Blueberry polyphenol extract (BPE) did not affect the expression of NADPH oxidases
(NOX) in angiotensin (Ang) II-treated human aortic endothelial cells (HAECs). HAECs were
treated with 200 µg/mL of BPE for 1 h then treated with 200 nM of Ang II for 12 h. Protein expression
of NOX1 (A,B), NOX2 (C,D), NOX4 (E,F), and NOX5 (G,H) were determined by Western blot.
Quantification was performed using Image Lab (Bio-Rad Laboratories, Inc.). Data are expressed as
mean ± SD from three (NOX1 and NOX4) and five (NOX2 and NOX5) independent experiments.
Values that do not share the same letter are significantly different from each other (p ≤ 0.05).
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Figure 4. Blueberry polyphenol extract (BPE) increases the expression of antioxidant enzymes in
angiotensin (Ang) II-treated human aortic endothelial cells (HAECs). HAECs were treated with
200 µg/mL of BPE for 1 h then treated with 200 nM of Ang II for 12 h. Protein expression of
SOD2 (A,B), SOD1 (C,D), GPx1 (E,F), CAT (G,H), and NQO1 (I,J) were determined by Western blot.
Quantification was performed using Image Lab (Bio-Rad Laboratories, Inc.). Data are expressed
as mean ± SD from seven (SOD1, SOD2, and GPx1) four (CAT) and six (NQO1) independent
experiments. Values that do not share the same letter are significantly different from each other
(p ≤ 0.05).
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Figure 5. Blueberry polyphenol extract (BPE) increases the expression of NRF2 and HO-1 while
reducing NF-κB p65 phosphorylation in angiotensin (Ang) II-treated human aortic endothelial
cells (HAECs). HAECs were treated with 200 µg/mL of BPE for 1 h then treated with 200 nM of Ang
II for 12 h. Protein expression of NRF2 (A,B), HO-1 (C,D), and NF-κB p65 (E,F) were determined by
Western blot. Quantification was performed using Image Lab (Bio-Rad Laboratories, Inc.). Data are
expressed as mean ± SD from nine (HO-1), and three (NRF2 and NF-κB) independent experiments.
Values that do not share the same letter are significantly different from each other (p ≤ 0.05).

4. Discussion

Several human [26,27,39] and animal [30,31] studies have demonstrated the anti-
hypertensive effects of blueberries. Thus, the main goal of this study was to investigate the
mechanisms by which blueberry polyphenols exert their vasoactive effects using HAECs
treated with Ang II. Our results, summarized in Figure 6, demonstrate that BPE attenuated
the Ang II-induced decrease in NO metabolite levels, which was in part due to the increase
in NOS activity. In addition, BPE prevented the increase in ROS induced by Ang II
suggesting that BPE not only increases NO synthesis but also NO bioavailability. This
decrease in ROS appears to be attributed to an increase in the expression of antioxidant
enzymes including SOD1, NQO1, and HO-1, rather than a decrease in the expression of
ROS production, as BPE did not significantly reduce Ang II-induced NOX1 expression.
Further, our data suggest that the actions of BPE on the expression of antioxidant enzymes
is in part mediated by NRF2. Lastly, we show that BPE attenuated ROS signaling as
indicated by decreased activation of the redox MAPKs, SAPK/JNK and p38, and the redox
pro-inflammatory transcription factor NF-κB, which was likely due to the reduction in
ROS levels.

NO is the main endothelium-derived relaxing factor synthesized by eNOS. Ang II
has been shown to decrease NO levels and Ser1177 p-eNOS expression in human umbilical
vein cells (HUVECs) [40]. In the current study, we show that Ang II decreases NO levels,
which was prevented by pre-treatment with BPE. To investigate whether these observations
were due to Ang II and BPE effects on NO production, we measured NOS activity. Ang
II had no effect on NOS activity while BPE significantly increased it. To our knowledge,
no studies have reported on the effects of blueberry polyphenol extracts on NO levels
and NOS activity in endothelial cells stimulated with Ang II. However, Park et al. [41]
have shown that pterostilbene, a polyphenol abundant in blueberries, increased NO levels
and Ser1177 p-eNOS expression in HUVECs. Since Ang II did not affect NOS activity in
our study, we hypothesize that the decrease in NO levels was due to a decrease in NO
bioavailability rather than its production. Therefore, we sought to measure ROS levels in
our cells.
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Figure 6. Overall endothelial-dependent mechanisms by which blueberry polyphenols may attenuate
hypertension. Upregulated renin–angiotensin–aldosterone system results in the increased synthesis
of angiotensin (Ang) II, which causes vasoconstriction due to reduced endothelial-derived nitric
oxide (NO). (A) Ang II binds to Ang II type-1 receptor (AT1R), which results in the activation of
NADPH-oxidase (NOX)1. NOX1 synthesizes superoxide anions (O2

•−), which can react with NO,
reducing NO bioavailability. (B) Blueberries may reverse this effect by increasing the synthesis of
NO via increased endothelial NO synthase (eNOS) activity. (C) Mitogen-activated protein kinases
(MAPKs), such as p38MAPK and stress-activated protein kinases (SAPK)/Jun amino-terminal ki-
nases (JNK), are redox-sensitive kinases activated by upstream MAPK kinase kinase (MAPKKK). The
phosphorylation of p38MAPK and SAPK/JNK expression was attenuated by blueberry polyphenols,
suggesting reduced cellular oxidative stress. (D) Inhibitor of nuclear factor kappa B (IκB) kinase
(IKK) is also a redox-sensitive kinase, which can undergo auto-phosphorylation upon interaction
with reactive oxygen species (ROS) and is upstream of NF-κB. Following IKK phosphorylation, IκB
is phosphorylated and the p65 subunit of NF-κB is then also phosphorylated. IκB then undergoes
ubiquitin-dependent degradation, liberating NF-κB to translocate to the nucleus where it is involved
in inflammatory transcription. Blueberries, however, reduced p65 phosphorylation, suggesting
reduced IKK phosphorylation via reduced ROS. (E) These cytoprotective effects of blueberry polyphe-
nols may be mediated by nuclear factor-erythroid factor 2-related factor 2 (NRF2), a master regulator
of antioxidant enzymes. Kelch-like ECH-associated protein (KEAP)1 sequesters NRF2 in the cytosol
and the entire complex undergoes ubiquitin-dependent degradation. However, conformational
changes in KEAP1 prevent NRF2 binding, allowing NRF2 to translocate to the nucleus where it is
involved in the transcription of antioxidant enzymes, NADPH dehydrogenase quinone (NQO)1 and
superoxide dismutase (SOD)1, both of which can neutralize O2

•−. Blueberries increase cellular NRF2
concentration possibly via interaction with KEAP1, resulting in increased NQO1 and SOD1, overall
reducing NOX1-mediated oxidative stress preventing NO neutralization via O2

•−.
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The increase in O2
•− induced by Ang II was significantly attenuated by pre-treatment

with BPE. NADPH oxidases are a major source of ROS. NOX1, NOX2 and NOX5 are O2
•−

generators while NOX4 produces primarily H2O2. Ang II has been shown to upregulate the
expression of aortic NOX1 and NOX2. For example, deletion of NOX1 gene blunted Ang
II-induced aortic O2

•− production and pressor response [42]. NOX2 knockout mice were
also shown to have attenuated production of aortic O2

•− in response to Ang II compared
to wild-type mice [43]. NOX4 appears to have a protective role in the vascular system as
NOX4-deficient mice developed endothelial dysfunction [44]. In the present study, Ang
II upregulated the expression of NOX1 but had no effect on the other isoforms. However,
BPE was not able to fully attenuate this effect. We also observed a slight increase in NOX4
expression, albeit not significant. Further, we noted significant increases in H2O2 elicited
by Ang II, which was not affected by BPE.

Because NOX expression was not reduced by BPE in the present study, we hypoth-
esized that the attenuation in O2

•− levels was due to an increase in the expression of
antioxidant enzymes such as SOD, which converts O2

•− to H2O2. Our data indicate that
Ang II led to a significant increase in the expression of SOD2, a mitochondrial enzyme,
which was not further augmented by BPE. However, Ang II had no effect on the expression
of SOD1, a cytosolic enzyme, while BPE significantly increased it. Neither Ang II nor BPE
affected the expression of peroxidases such as GPx1 and CAT, which may also explain the
fact that H2O2 remained increased in the presence of BPE. We also show that BPE increased
the expression of NQO1, a detoxifying enzyme that reduces quinones to hydroxyquinones.
In addition to these enzymatic antioxidants mediated by BPE, the polyphenols may act as
direct antioxidants. Indeed, blueberries have a relatively high FRAP score compared with
many other fruits and vegetables [45]. In hypertensive women, blueberry consumption
reduced 8-hydroxy-2′-deoxyguanosine (8-OHdG), a marker of oxidative stress-induced
DNA damage, after four weeks [46]. In healthy males, consumption of blueberry postpran-
dially reduced H2O2-induced DNA damage [47]. Nonetheless, the antioxidant effects from
blueberries are likely synergistic with both enzymatic and non-enzymatic mechanisms.
However, the enzymatic effects may be more important as evidenced by NRF2 genetic
knockout studies with single bioactive compound supplementation [48,49].

Since the abovementioned antioxidant and detoxifying enzymes can be mediated
by NRF2, we examined the effects of Ang II and BPE on its expression. We show that
NRF2 expression is significantly increased by BPE. To confirm whether BPE is acting in a
NRF2-dependent manner, we treated cells with the NRF2 inhibitor, ML385, and measured
the expression of HO-1, a cytoprotective enzyme that protects against oxidative stressors.
We show that BPE increased expression of HO-1, which was significantly suppressed by
ML385 demonstrating the role of NRF2 in the beneficial actions of BPE. Ang II is known to
upregulate redox-sensitive kinases and the NF-κB transcription factor. Since BPE was able
to reduce O2

•− levels by increasing the expression of NRF2 and antioxidant enzymes, we
hypothesized that BPE would decrease activation of MAPKs, and Akt as well as NF-κB.
Our data indicate that BPE attenuated the Ang II-induced phosphorylation of SAPK/JNK
and p38. Additionally, we show that BPE lessened the phosphorylation of the NF-κB p-65
subunit induced by Ang II, which was significantly increased with NRF2 inhibition.

NRF2 is continually synthesized by the cell, however, it is sequestered in the cytosol
by KEAP1, which undergoes continuous ubiquitination and degradation when the KEAP1–
NRF2 complex is formed. Under conditions of oxidative stress, modifications in cysteine
residues on KEAP1 result in NRF2 accumulation in the cytosol and translocation to the
nucleus [50]. As with NF-κB, NRF2 binds to cAMP response element binding protein
(CREB)-binding protein (CBP) allowing it to bind to the transcriptional region of DNA
encoding the ARE, leading to the transcription and synthesis of the aforementioned antioxi-
dant enzymes [51]. Because CBP can bind to both NF-κB and NRF2, these proteins compete
for binding [52]. However, under conditions of inflammation and oxidative stress, NF-κB
appears to bind 10-fold greater to CBP than NRF2 as observed in HepG2 cells treated with
12-O-tetradecanoylphorbol-13-acetate [53]. Thus, under pathological conditions observed
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in hypertension, it can be assumed that NRF2 would be deprived of CBP binding, and
under these circumstances, insufficient ARE transcription would occur, preventing NRF2
from eliciting an overwhelming enough antioxidant response to counteract ROS. Thus,
activating NRF2 is of physiological importance.

The effects of blueberries on the expression of the proteins assessed in the current
study in endothelial cells stimulated with Ang II has not been reported. However, blueberry
polyphenols have been used in endothelial cell lines to reduce ROS under a variety of
insults. For example, Sivasinprasasn et al. [54] showed that cyanidin-3-glucoside, a major
anthocyanin in blueberries, reduced ROS induced by Ang II (1 µM) in a dose-dependent
manner in immortalized umbilical endothelial cells (EA.hy926) [54]. This was accompanied
by a dose-dependent increase in NRF2 and HO-1 expression an attenuation of Ang II-
induced increase in the expression of the NF-κB p-65 subunit [54], which corroborates our
findings. Myricetin, a blueberry flavonol, also reduced oxidative stress-induced by high-
glucose conditions in human umbilical vein endothelial cells (HUVEC)s [55]. In addition,
in HUVECs, NF-κB upregulation after stimulation with tumor necrosis factor (TNF)-α was
reduced by both cyanidin-3-glucoside [56] as well as by malvidin and its glycosides [57].
Under basal conditions in HUVECs, blueberry anthocyanins, malvidin and its glycosides,
reduced ROS production, increased total SOD, and increased HO-1 [58]. It is interesting
to note that xanthine oxidase (XO), a ROS-producing enzyme, was also reduced. While
we did not investigate the role of XO, it is possible that this was a contributing source of
ROS in the present study. Landmesser et al. [59] demonstrated that XO is potentially redox-
sensitive and can be activated by NOX, which may be of relevance in the present study. It
was also demonstrated that Ang II stimulation (100 nM) in bovine aortic endothelial cells
increased XO protein levels, which peaked at 12 h and coincided with increased superoxide
production [59].

5. Conclusions

Collectively, our data indicate that blueberries preserve NO bioavailability and reduce
Ang II-mediated oxidative stress and inflammatory signaling in HAECs. We also provide
evidence that these protective effects may be mediated by increased NRF2 transcriptional
activity. Thus, targeting NRF2 is likely of major clinical significance. For example, NRF2
agonist tert-butylhydroquinone (tBHQ) prevented hypertension and vascular oxidative
stress in a two-week Ang II infusion model in mice [60]. However, NRF2 genetic knockout
mice did not experience this protection following tBHQ, illustrating the importance of
NRF2 activation in attenuating hypertension. We have demonstrated the anti-hypertensive
effects of blueberry consumption clinically in a prior investigation [24]; however, the role of
NRF2 in mediating these anti-hypertensive effects was not evaluated. As demonstrated in
the present study in vitro with BPE, NRF2 and its activity is also increased in vivo follow-
ing polyphenol-rich fruit consumption in peripheral blood mononuclear cells in human
volunteers [61]. Anthocyanins, such as those found in blueberries, appear to be directly in-
volved in NRF2-mediated ARE-activation [62], and this may be due to polyphenol–protein
interaction with KEAP1, leading to NRF2 accumulation in the cell [63]. A number of clinical
studies have been conducted utilizing NRF2 inducers, such as dimethyl fumarate, bar-
doxolone methyl, oltipraz, and sulforaphane [64]. However, blueberries are safe and free
of side effects, comparatively low cost, and may be effective inducers of NRF2 activation
clinically. Future studies should aim to investigate the NRF2-mediated role of blueberries
in hypertension using genetically modified animal models as well as clinical studies.
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