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A B S T R A C T

Background: Large vision models (LVM) pretrained by large datasets have demonstrated their enormous capacity
to understand visual patterns and capture semantic information from images. We proposed a novel method of
knowledge domain adaptation with pretrained LVM for a low-cost artificial intelligence (AI) model to quantify
the severity of SARS-CoV-2 pneumonia based on frontal chest X-ray (CXR) images.
Methods: Our method used the pretrained LVMs as the primary feature extractor and self-supervised contrastive
learning for domain adaptation. An encoder with a 2048-dimensional feature vector output was first trained by
self-supervised learning for knowledge domain adaptation. Then a multi-layer perceptron (MLP) was trained for
the final severity prediction. A dataset with 2599 CXR images was used for model training and evaluation.
Results: The model based on the pretrained vision transformer (ViT) and self-supervised learning achieved the
best performance in cross validation, with mean squared error (MSE) of 23.83 (95 % CI 22.67–25.00) and mean
absolute error (MAE) of 3.64 (95 % CI 3.54–3.73). Its prediction correlation has the R2 of 0.81 (95 % CI
0.79–0.82) and Spearman ρ of 0.80 (95 % CI 0.77–0.81), which are comparable to the current state-of-the-art
(SOTA) methods trained by much larger CXR datasets.
Conclusion: The proposed new method has achieved the SOTA performance to quantify the severity of SARS-CoV-
2 pneumonia at a significantly lower cost. The method can be extended to other infectious disease detection or
quantification to expedite the application of AI in medical research.

1. Introduction

The ongoing coronavirus disease 2019 (COVID-19) global pandemic
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has had a significant impact on global health. It has infected over 775
million people and caused 7 million deaths worldwide as of July 2024
[1]. SARS-CoV-2 pneumonia is not only associated with critical cases
leading to acute respiratory distress syndrome (ARDS), but also related
to asymptomatic or presymptomatic COVID-19 infection as confirmed
by radiographic findings [2]. Multiple clinical studies confirmed that
SARS-CoV-2 pneumonia is a high-risk factor for the mortality of severe
COVID-19 cases particularly associated with the elderly and comorbid-
ities, or other immunocompromising conditions [3–5].

There have been several successful studies on applying artificial in-
telligence (AI) methods for COVID-19 detection and diagnosis since the
outbreak of the pandemic. The major focus was on the use of deep

learning (DL) with convolutional neural network (CNN) for detection of
radiological patterns indicative of the disease on either chest X-ray
(CXR) or computed tomography (CT) images for fast screening and
initial diagnosis [6–8]. Although CT image detection has good sensi-
tivity and specificity for SARS-CoV-2 pneumonia diagnosis, its high cost
and high dosage of radiational exposure restricted its use as a primary
screening tool. In contrast, CXR has many merits as a primary tool for
large-volume screening for COVID-19 infection and continuous moni-
toring for SARS-CoV-2 pneumonia. The COVID-19 manifestations
featured by ground-glass opacities and patchy consolidations on CXR are
usually involved bilaterally at the peripheral and lower zone of the
pulmonary area [9]. Thus, the success of capturing the CXR visual fea-
tures of COVID-19 requires the AI model’s capacity to integrate global
pixel characteristics. Although convolutional neural network (CNN)
models have demonstrated excellent performance in many computer
vision tasks, the intrinsic reliance of these models on a small receptive
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field and locality of pixel dependencies through the convolution oper-
ations restrict their performance from integrating global pixel relations
[10].

Inspired by recent advances in AI, we proposed a novel method to
combine the merits of transformers and contrastive learning. Taking
advantage of the availability of large vision models (LVM), e.g., ViT,
DINOv2 [11], etc., we apply the pretrained LVMs as the backbone for
primary feature extraction and an encoder trained by self-supervised
learning to adapt the feature domain to CXR images. The encoded
CXR domain features will be fed to a multi-layer perceptron (MLP) to
predict the final quantitative estimate of the severity of SARS-CoV-2
pneumonia. We evaluate the performance of our proposed new
method to demonstrate its effectiveness. We also expect that such an
approach could significantly lower the cost of developing
high-performance, disease-specific AI models for newly emerging in-
fectious diseases.

2. Materials and methods

2.1. Quantification of SARS-CoV-2 pneumonia

The continuous monitoring of SARS-CoV-2 pneumonia is an effective
measure of the severity, and a reliable predictor for the prognosis of
COVID-19 patients. A multicenter study concluded that the progressive
increase of radiographic assessment of the lung edema (RALE) score was
associated with the mortality of ARDS cases by COVID-19 [12]. RALE is
a quantitative tool to assess the extent and density of alveolar opacities
of different regions of the lung on CXRs that reflects the degree of pul-
monary edema [13]. A multicenter study on 350 CXR images from 139
COVID-19 ARDS patients revealed that the progressive increase of RALE
score was associated with higher mortality and longer use time of
ventilator [6]. The modified RALE scoring system (mRALE) [13] that
will be used in this study is an improved version of RALE to quantify the
overall pulmonary edema in a range from 0 to 24 on frontal CXR images.
Applying artificial intelligence (AI) to automatically quantify the
mRALE score directly from frontal CXR images can serve not only as an

Fig. 1. CXR image with mRALE annotation.
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effective and convenient method to assess the severity of SARS-CoV-2
pneumonia, but also as a reliable predictor of the prognosis of
COVID-19 cases.

2.2. CXR image dataset

The dataset for this study was retrieved from the 2023 MIDRC
mRALE Mastermind Challenge [14] with 2599 annotated CXR images.
The mRALE scores were determined by the expert radiologists in the US
that contributed their time and expertise to the challenge. The original
CXR image dataset is in the DICOM format which is accessible at the
MIDRC challenge repository (https://github.com/MIDRC/COVID19_Ch
allenges). We converted the images into PNG format and resized them to
224 × 224 × 3 to fit the input requirement of the pretrained models.
Some CXR image examples are shown in Fig. 1.

2.3. Vision transformer for medical image processing

There have been many successful studies on applying AI for COVID-
19 detection and diagnosis since the outbreak of the pandemic. The
majority used deep learning (DL) with convolutional neural network
(CNN) for radiological patterns detection on either chest X-ray (CXR) or
computed tomography (CT) images for fast screening and initial diag-
nosis [6–8]. A survey covered more than 100 published studies of DL for
COVID-19 concluded that using CNN on CXR images for COVID-19
detection has many advantages such as easy access, low radiational
exposure and low cost compared to CT scans, and it has higher sensi-
tivity compared to ultrasound images. However, the CNN-based AI
methods had concerns about reliability and robustness due to the
insufficient training without large and well-annotated image datasets
[15].

To overcome the restrictions of the conventional CNN architecture,
the Vision Transformer (ViT) based on the transformer architecture with
the multi-head attention mechanism [16] was proposed by Dosovitskiy
et al., in 2020 [17] to model long-range pixel dependency. The vision
transformers have shown the state-of-the-art (SOTA) performance on
image classification given sufficient training by large image datasets
[17]. For example, Park et al. proposed a multi-task transformer model
trained by several public and internal CXR image datasets to detect
COVID-19-positive CXR images and to quantify the pneumonia severity
[10]. Another study by Li et al. used the Siamese network trained by
large CXR datasets to learn the CXR features, then they used the
contrastive learning strategy to predict the severity of SARS-CoV-2

pneumonia by comparing the X-ray similarity [18].

2.4. Architecture of vision transformer

A vision transformer (ViT) is a deep neural network with the multi-
head self-attention mechanism [16] to enhance the global integration of
patterns. It was originally used in natural language processing (NLP) to
process sequence data. The transformer architecture is later adapted for
computer vision tasks to integrate the long-range dependency of pixel
regions [17,19,20]. The ViT divides the input image into small patches
(Fig. 2(a)) with the corresponding positional encoding to form the to-
kens (z0). z0 is fed to the transformer encoders. The transformer encoder
layers receiving the sequence of embedded patches are composed of
transformer units consisting of the multi-head self-attention (MSA) unit
and the MLP block connected by layer normalization (LN) (Fig. 2(b)). In
the MSA, the input sequence generates three values (Q-query, K-key,
V-value) by multiplying the tokens with three learned matrices UQKV to
determine the relevance among different tokens (Fig. 2(c)& (d)). Taking
advantage of the transformer architecture, ViT can effectively learn the
global pixel dependency and integrate the patterns captured by different
receptive fields with the patching and embedding operations, thus the
limitation of CNN on learning only local pixel dependency will be alle-
viated. Based on this understanding, we used two vision transformer
models pretrained by large image datasets as the LVM for primary
feature extraction, and the extracted features will be used for domain
adaptation through self-supervised contrastive learning.

2.5. Self-supervised contrastive learning for LVM knowledge domain
adaptation

Self-supervised contrastive learning is a machine learning (ML)
strategy to train the ML model in an unsupervised manner by comparing
the similarity of training data as supervisory signals. We applied this
method to train the feature encoders for knowledge domain adaptation.
In our previous study, we used the SimSiam (Simple Siamese network)
architecture [21] to train a ResNet-50 encoder using a 2048-dimensional
feature vector to represent the CXR features for the downstream mRALE
score predictor. The result showed it can reduce the mRALE prediction
errors compared to the conventional CNN models [22]. Based on this
finding, we propose a novel method to combine the strengths of large
vision models (LVM) and self-supervised learning to further perform
domain adaptation. The training has two phases. In the first phase, we
used the pretrained LVM (ViT or DINOv2) to extract the pixel features.

Fig. 2. Vision transformer with multi-head attention.
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Next, we used the extracted features to optimize a feature encoder by
SimSiam self-supervised learning for knowledge domain adaptation. In
the second training phase, we froze the encoder trained in the first phase
and used the LVM + encoder structure to transfer the pixel features to
the medical domain features as inputs to an MLP to predict the mRALE
score. The whole architecture is illustrated in Fig. 3.

2.6. Model training

We first randomly separated 200 images from the dataset as the
holdout test set for evaluation. The remaining 2399 images were used
for model training and for 5-fold cross-validation. All CXR images are
independent without duplicates. Since our goal is to assess the LVMs
capacity of extracting significant patterns for the quantitative analysis of
SARS-CoV-2 pneumonia, we used the pretrained LVMs as primary
feature extractors and respectively applied two training strategies for
feature domain adaptation. In the first strategy, we connected a pre-
trained LVM as the primary pattern extractor to optimize the MLP
encoder using SimSiam self-supervised learning. After optimization, the
LVM + encoder will output a 2048-dimensional feature vector as the
input to the regression model composed of two 512-dimensional fully
connected dense layers with batch normalization for the mRALE score
prediction (Fig. 4(a)). In the second strategy, we directly used the pre-
trained LVM as the primary pattern extractor, which will output a 2048-
dimensional feature vector to the regression model. (Fig. 4(b)).

The LVMs we used for the experiments included ViT [17], DINOv2
[11], and Big Transfer (BiT) [23]. We also used the ResNet-50 model by
self-supervised learning in our previous experiments [22] for compari-
son. Routine data augmentation techniques such as random image
flipping, rotation, and color jittering were applied to the training pro-
cedure of SimSiam self-supervised learning (Fig. 4(a)). All models were
trained with the Adam (adaptive moment estimation) optimizer [24]
with an initial learning rate of 1× 10− 3. The experiments were per-
formed on AWS SageMaker Studio with a ml.g4dn instance with a
Nvidia T4 GPU. The SimSiam self-supervised encoders were trained by
40 epochs using the negative cosine similarity loss objective. The final
MLP regression models were trained for 50 epochs with the mean of
squared error (MSE) objective loss. The mini-batch size was 32.

3. Results

3.1. Comparison of prediction performance

We respectively used the holdout test set and performed 5-fold cross-

validation to evaluate the overall performance of the LVM-based
models, which respectively used the pretrained ViT, DINOv2, and BiT
as feature extractors. The pretrained ResNet-50 model from our previous
study [22] was added as the baseline for comparison. The MSE and mean
absolute error (MAE) of the predictions using different methods are
presented in Table 1.

Table 1 indicates the model architecture using ViT as the primary
feature extractor with SimSiam self-supervised learning for domain
adaptation has the best performance compared to other methods (p <

0.01). The BiT optimized by self-supervised learning for domain adap-
tation has the second-best performance. This finding reflects that the

Fig. 3. Self-supervised learning of LVM for knowledge domain adaptation.

Fig. 4. LVM training strategies to quantify SARS-CoV-2 pneumonia severity.

Table 1
Comparison of mRALE score prediction errors.

Extraction Method MSE (95 % CI) MAE (95 % CI)

ViT

Hold-out test set
Direct feature extraction 15.59 (15.17–16.01) * 2.97 (2.93–3.01) *
Self-supervised Learning 20.91 (20.73–21.09) * 3.62 (3.61–3.64) *
5-fold cross-validation
Direct feature extraction 24.43 (21.78–27.09) 3.83 (3.58–4.07)
Self-supervised Learning 23.83 (22.67–25.00) 3.64 (3.54–3.73)
DINOv2

Hold-out test set
Direct feature extraction 33.09 (30.82–35.36) 4.65 (4.49–4.81)
Self-supervised Learning 35.11 (34.83–35.39) 4.48 (4.46–4.50)
5-fold cross-validation
Direct feature extraction 40.76 (26.36–55.17)# 5.11 (4.09–6.14)#

Self-supervised Learning 40.77 (38.98–42.56) ▾ 5.07 (4.97–5.16) ▾

BiT

Hold-out test set
Direct feature extraction 46.24 (45.75–46.73) * 5.87 (5.84–5.90) *
Self-supervised Learning 23.60 (23.48–23.72) * 3.63 (3.61–3.65) *
5-fold cross-validation
Direct feature extraction 51.02 (47.90–54.14) *▾ 6.07 (5.86–6.27) *▾

Self-supervised Learning 26.44 (25.69–27.20) *▾ 3.90 (3.75–4.04) *▾

ResNet-50 based self-supervised learning

Hold-out test set
Trained from scratch 71.76 (71.66–71.85) * 5.70 (5.69–5.71) *
ImageNet pretrained 68.12 (68.06–68.18) * 5.22 (5.21–5.23) *
5-fold cross-validation
Trained from scratch 71.25 (70.66–71.84) *▾ 5.71 (5.68–5.76) *▾

ImageNet pretrained 66.67 (66.29–67.06) *▾ 5.05 (5.03–5.08) *▾

Internal comparison: * p < 0.01.
External comparison: # p < 0.05, ▾ p < 0.01.
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LVM models outperform the baseline CNN model using ResNet-50 as a
feature extractor. Another notable finding is that the performance of the
DINOv2 model is stable and not affected by training methods.

3.2. Comparison of model correlation

The correlation of the model predictions to the expert annotations
was evaluated with three metrics: explained variance, coefficient of
determination (R2) and Spearman’s rank correlation coefficient
(Spearman ρ). Higher values indicate better prediction consistency with
the expert knowledge (Table 2).

The results in Table 2 indicates the predictions by LVMs are better
correlated to the mRALE scores graded by human experts compared to
the baseline ResNet-50 method. The ViT methods have the best perfor-
mance. However, compared to the reduction of prediction errors
(Table 1), using self-supervised learning cannot effectively improve the
correlation of the model predictions to the grading by human experts.

3.3. Explainable AI visualization

Most of the LVMs such as ViT and DINO use the vision transformer
architecture with multiple self-attention heads for learning both global
and local visual patterns to improve the model inference performance.
We use the attention heatmaps [25] to visualize the attention values of
the attention heads at the last transformer block of the LVMs. In Fig. 5,
we compared the attention distribution of the 12 attention heads of the
ViT and DINO. It shows the LVMs distribute the focus of the attention
heads globally on the images. This finding helps to explain why LVM
models can outperform the conventional CNN models for medical image
pattern detections. Note that BiT is a residual CNN architecture [23],
thus it does not use the multi-head attention mechanism to capture vi-
sual patterns.

4. Discussions

The success of large language models (LLMs) in natural language
processing (NLP) in the AI industry since 2023 has inspired the research
interest of large vision models (LVMs) for multiple AI applications [26].
LVMs pretrained by large image datasets have possessed the ability to
understand visual patterns and to capture semantic information from the
images. The proposed knowledge adaptation by self-supervised learning
succeeds in leveraging the LVMs’ capacity to learn the visual represen-
tations of medical knowledge from images of radiology, histology,
anatomy, etc., which becomes a promising field of medical AI research.

Compared to other SARS-CoV-2 pneumonia severity quantification
AI methods such as the SiameseNet-based model by Li et al. [18], and to
the transformer-based model by Park et al. [10], our LVM-based self--
supervised knowledge adaptation technique acquired similar perfor-
mance with lower training cost. The latter models were trained by
multiple large datasets such as CheXpert containing 224,316 CXR im-
ages. Therefore, using pretrained LVMs provides a shortcut for AI
development.

The strength of LVM has two folds. First, the LVM + self-supervised
encoder architecture offers a novel data augmentation method for the
fine-tuning of LVM, in which the newly acquired knowledge is stored in
a shallow model apart from the original LVM. It helps keep the integrity
of the LVM’s original capacity for visual pattern capturing and prevent
overfitting during model fine-tuning. Second, the self-supervised
training strategy significantly reduces the amount of training examples
for high performance as the new model only used a training set with
2399 images.

The limitation of the LVM knowledge adaption is that the model
performance relies on the proper pre-training of the original LVM. The
DINOv2 model is an efficient model for general-purposed visual pattern
extraction, but its performance cannot be effectively improved by the
self-supervised encoder. It can be attributed to the pretraining of
DINOv2, which is also by self-supervised learning. It implies that there is
a limitation for self-supervised knowledge adaptation method being
further applied to secondary self-supervised learning. Another limitation
is the lack of third-party validation, though our baseline method was
tested externally by MIDRC with a prediction probability concordance of
0.811 and a quadratic weighted kappa of 0.739 [22], more third-party
validations need to be performed in the future.

5. Conclusions

We proposed a novel knowledge domain adaptation method utilizing
the pretrained large vision models (LVM) to transfer the generalized
pixel features to the CXR domain-specific features by self-supervised
learning. The experiment results showed the new method can ach-
ieved comparable SOTA performance to quantify the severity of SARS-
CoV-2 pneumonia from CXR images using the mRALE score prediction.

The experiment showed the ViT model achieved the best perfor-
mance at quantifying the severity of SARS-CoV-2 pneumonia from CXR

Table 2
Comparison of model prediction correlation.

Extraction
method

Explained
Variance (95 %
CI)

Coefficient of
determination (R2

)
(95

% CI)

Spearman ρ
(95 % CI)

ViT

Hold-out test set
Direct feature

extraction
0.75 (0.74–0.76)
*

0.74 (0.73–0.74) * 0.75
(0.74–0.75) *

Self-supervised
Learning

0.70 (0.69–0.70)
*

0.68 (0.67–0.68) * 0.78
(0.77–0.78) *

5-fold cross-validation
Direct feature

extraction
0.67 (0.63–0.70) 0.64 (0.62–0.67) 0.81

(0.79–0.82)
Self-supervised

Learning
0.66 (0.63–0.68) 0.65 (0.63–0.67) 0.80

(0.77–0.81)
DINOv2

Hold-out test set
Direct feature

extraction
0.52 (0.50–0.53)
*

0.49 (0.45–0.53) * 0.69
(0.68–0.70) *

Self-supervised
Learning

0.34 (0.33–0.35)
*

0.30 (0.29–0.31) * 0.56
(0.55–0.56) *

5-fold cross-validation
Direct feature

extraction
0.51 (0.42–0.60)# 0.37 (0.13–0.61)# 0.70

(0.64–0.77)#

Self-supervised
Learning

0.41 (0.36–0.45)
▾

0.38 (0.33–0.44) ▾ 0.64
(0.62–0.67) ▾

BiT

Hold-out test set
Direct feature

extraction
0.29 (0.28–0.30)
*

0.25 (0.24–0.27) * 0.56
(0.55–0.57) *

Self-supervised
Learning

0.63 (0.62–0.63)
*

0.63 (0.62–0.63) * 0.73
(0.72–0.73) *

5-fold cross-validation
Direct feature

extraction
0.27 (0.24–0.30)
▾

0.26 (0.22–0.29) ▾ 0.53
(0.50–0.57) ▾

Self-supervised
Learning

0.62 (0.60–0.64)
*#

0.61 (0.59–0.63) *# 0.79
(0.76–0.81) *

ResNet-50 based self-supervised learning
Hold-out test set
Trained from

scratch
− 0.15 (− 0.15 to
− 0.14) *

0.02 (0.01–0.02) * 0.43
(0.42–0.44) *

ImageNet
pretrained

0.14 (0.13–0.14)
*

− 0.09 (− 0.09 to
− 0.08) *

0.68
(0.67–0.68) *

5-fold cross-validation
Trained from

scratch
0.02 (0.01–0.03)*
▾

− 0.13 (− 0.14 to
− 0.12)* ▾

0.52
(0.45–0.59) *▾

ImageNet
pretrained

0.21 (0.20–0.21)
▾

− 0.07 (− 0.07 to
− 0.06) ▾

0.77
(0.75–0.79)▾

Internal comparison: * p < 0.01.
External comparison: # p < 0.05,▾external comparison: p < 0.01.
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images based on the prediction of mRALE score. The comparison also
indicates the proposed knowledge domain adaptation method by self-
supervised learning can further improve the ViT capacity for medical
significant pattern extractions given the pretrained LVM was not pre-
trained by self-supervised learning. However, the self-supervised-based
knowledge domain adaptation method has less impact on enhancing the
AI prediction correlation to human expertise. The findings provide a
comprehensive guideline for the use of LVM in medical AI
developments.
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