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Abstract: The impact of individuals’ mobility on the degree of error in estimates of exposure to
ambient PM2.5 concentrations is increasingly reported in the literature. However, the degree to which
accounting for mobility reduces error likely varies as a function of two related factors—individuals’
routine travel patterns and the local variations of air pollution fields. We investigated whether
individuals’ routine travel patterns moderate the impact of mobility on individual long-term exposure
assessment. Here, we have used real-world time–activity data collected from 2013 participants in
Erie/Niagara counties, New York, USA, matched with daily PM2.5 predictions obtained from two
spatial exposure models. We further examined the role of the spatiotemporal representation of
ambient PM2.5 as a second moderator in the relationship between an individual’s mobility and the
exposure measurement error using a random effect model. We found that the effect of mobility on the
long-term exposure estimates was significant, but that this effect was modified by individuals’ routine
travel patterns. Further, this effect modification was pronounced when the local variations of ambient
PM2.5 concentrations were captured from multiple sources of air pollution data (‘a multi-sourced
exposure model’). In contrast, the mobility effect and its modification were not detected when
ambient PM2.5 concentration was estimated solely from sparse monitoring data (‘a single-sourced
exposure model’). This study showed that there was a significant association between individuals’
mobility and the long-term exposure measurement error. However, the effect could be modified by
individuals’ routine travel patterns and the error-prone representation of spatiotemporal variability
of PM2.5.

Keywords: long-term exposure to ambient PM2.5; uncertainty; mobility-based approach; spatial
exposure models; routine travel patterns

1. Introduction

Environmental health studies have routinely conducted exposure assessments using
pollutant measurements from sparse networks of monitors matched with the locations
of home addresses of individuals [1,2]. However, reliance on these networks leads to
measurement error in exposure assessments because they are unable to capture high
spatial heterogeneity in pollution fields [3,4]. Similarly, this approach, which focuses only
on individuals’ location of residences, ignores time-activities of individuals and fails to
assess dynamic exposure to air pollution [5–9]. In sum, considerable uncertainties exist in
residence-based exposure assessments relying on air monitoring networks.

As an effort to improve the resolution and availability of air pollution data, recent
studies have incorporated additional data sources, such as satellite images and computer
simulation outcomes, to supplement monitoring measurements. Particularly, satellite-
derived aerosol optical depth (AOD) and the Community Multiscale Air Quality Modeling
System (CMAQ) have received growing interests as they provide fine spatiotemporal data
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with complete spatial coverage. It is worth noting, however, that the estimation of spatial
and temporal variability of ambient air pollutant concentration alone cannot guarantee the
accuracy and precision of personal exposure estimates [10–15].

Similarly, several epidemiological studies attempted to reduce exposure misclassifi-
cation by accounting for the variations in the time people spend in different locations by
using time-weighted pollutant concentrations in each microenvironment [16–19]. These
studies typically collected participants’ activity data and their locations using 24-h diaries
in a survey [20], which involves high costs and raises concerns regarding reliability and
validity [21,22]. Recent technological advancements, such as global positioning system
(GPS) and mobile phones, and their adoption in exposure assessments have shifted the
paradigm in exposure studies [23–26]. Unlike traditional travel surveys, mobile phones
equipped with GPS provide detailed and accurate time–activity information with low
burden to the phone carriers and low cost to researchers [27,28]. These mobile phones are
also able to frequently measure and record their locations. Researchers can use the resulting
geographic coordinates (latitude and longitude) to measure an individual’s locations at
multiple points throughout ones’ daily life instead of relying solely on a person’s residential
location to estimate his or her air pollutant exposures [2,29,30].

Despite a continuous effort to understand the relationship between ambient air pol-
lution and personal exposures, previous investigations of exposure measurement error
and exposure misclassification have been confined to a single issue. Some studies have
focused on the mischaracterization of the spatial heterogeneity of air pollution due to the
limited availability and resolution of environmental pollution data [31–35]. Other studies
investigated the effects of ignoring human mobility on air pollution exposures [36–41]. The
uncertainty of personal exposure to ambient air pollution is likely affected by both the
representation of spatiotemporal variability of air pollution and the use of time–activity
data to capture dynamic nature of individuals’ movements [28,42–44]. However, few stud-
ies systematically investigated the joint effect of the human mobility and spatial exposure
models on the uncertainty of the personal exposure assessment.

This gap is important to fill because exposure measurement error is likely driven by a
synergy of two related factors. Assessment based on location-specific exposure at the home
address rather than mobility-based exposure contributes to exposure measurement error.
However, the degree of accuracy versus error in these home-based estimates will likely vary
based on individuals’ routine travel patterns and/or how the spatiotemporal dynamics
of air pollutant concentrations are modeled. For example, the exposure measurement
error induced by failing to account for daily mobility will be much smaller for individuals
who typically spend most time at home compared to people who regularly travel long
distance and spend much time outside the home [45]. Similarly, personal exposure with
and without taking one’s daily mobility into account would make little to no difference
if a spatial exposure model fails to accurately represent the spatiotemporal variability of
air pollution.

An increasing number of studies have demonstrated the effect of mobility on indi-
viduals’ exposure to air pollution, although most studies are based on either simulated
or approximated mobility data, such as call detail records. Some studies have conducted
using empirical data or accurate mobility data, but they often lack generalizability due to a
small sample size and/or a short study term. For example, Dons et al. [46] assessed per-
sonal exposure to black carbon using real time location data collected from GPS loggers of
16 participants over 7 days, whereas Park and Kwan [38] compared individuals’ exposure
to O3 with and without consideration of 80 participant’s simulated activities on a single
day. Other studies were conducted with a large number of participants, but individuals’
location data are approximated by nearest cell tower locations [2,30,47]. This discrepancy
between actual and approximated movement data may lead to exposure measurement
error in longitudinal studies of air pollution and health, particularly if they were matched
with spatially and temporally resolved air pollutant estimates. Lastly, most studies that
accounted for individuals’ mobility tend to focus on short-term exposure (from a few
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minutes to 24 h at best) to air pollution unless simulated data are used [48–50]. It is clear
that the effect of mobility on longer term exposure over months, referred to as long-term
(or sub-chronic) exposure hereafter, using empirical and accurate time–activity data with
sufficiently large participants has been understudied.

In the present study, we examined the effect of individuals’ mobility on long-term
air pollution exposure measurement error using accurate and real-world time–activity
data collected from thousands of participants in the study area over a few months. We
also investigated individuals’ routine travel patterns and spatial exposure models as
moderators of the effect of an individual’s mobility. First, we examine whether individuals’
routine travel patterns moderate the impact of mobility on individual long-term exposure
assessment. Next, we examine the role of the spatiotemporal representation of ambient
fine particulate matter (PM2.5) concentrations as a second moderator of the relationship
between individuals’ mobility and the exposure measurement error. We predict a three-
way interaction effect of spatial exposure models, routine travel patterns, and individuals’
mobility on long-term exposure measurement error to ambient PM2.5 concentrations using
the data collected in Erie and Niagara counties, New York, NY, USA.

2. Materials and Methods
2.1. Time–Activity Data

We used time–activity information of 2013 residents in the Erie and Niagara counties,
New York State (NYS), from 1 December 2016 to 31 May 2017. Most participants began
their survey in October or November of 2016, and participated in the study for a minimum
of 72 days to 182 days. To ensure the continuous monitoring, we retained the mobile
phone traces observed between December 2016 and May 2017. At the beginning of the
study we collected the address of residence and workplace (if applicable) of participants.
Individuals’ whereabouts during the study period were collected using their own mobile
phone and an application developed for Android and iOS systems by our research team.
Specifically, mobile phone traces were periodically reported by the Android application
every 35 min on average with a high accuracy (40 m of positional error). For iPhone users,
their movement information was updated whenever the device moved more than 500 m
from the last recorded location. The iOS system-based location data had a high positional
uncertainty of 650 m, but they had systematic temporal gaps. We filled these gaps using a
set of imputation strategies with a 30-min imputation interval, while taking into account
self-reported place information provided by study participants and positional uncertainty
of the data. Detailed information on the data and the imputation strategies are available in
Yoo et al. [51].

Still, we found that substantial amounts of daily time–activity information were
missing to calculate individuals’ daily time-integrated exposure to ambient PM2.5. To
address this issue, we developed a deep long short-term memory imputation model to
predict the numerical representation of time–activity for the days. Here, we replaced
the missing time–activity with the daily observations which are the most similar to the
predicted numerical representation. We imputed missing time–activity data at every
30 min-interval and assigned the place at which the activity took place. We evaluated the
performance of imputation in terms of the accuracy of reproducing time–activity patterns
of individuals, such as daily average time spent at home, work, and shopping places
each day.

2.2. Air Pollution Data

We considered two spatial exposure model scenarios in this study to reconstruct
spatial variability of daily ambient PM2.5 concentrations in 2016. First, we generated
estimates of daily PM2.5 concentrations using a single-sourced data, that is, measurements
obtained from the monitoring networks [7]. There was a limited number of monitoring
stations in the range of 1 to 5 stations operated in Eire/Niagara county during the study
period of 2016. To improve the reliability of predictions, we used a total of 38 monitoring
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stations present in NYS for model building. Monitoring data used in the present study were
obtained from the U.S. Environmental Protection Agency (EPA, http://www.epa.gov/).

In the multi-sourced exposure model, we compensated the lack of spatial coverage
of monitoring station data by incorporating both satellite-derived Aerosol Optical Depth
(AOD) and the Community Multi-scale Air Quality Model (CMAQ) outputs. Satellite-
derived AOD does not directly represent ground-level PM2.5 concentrations, and thus they
need to be calibrated by accounting for the influences from meteorological, topological
and anthropogenic conditions [52,53]. In the present paper, we reconstructed a daily PM2.5
concentration surface over the study area primarily based on the 1 km high resolution
AOD derived by the algorithm of Multi-Angle Implementation of Atmospheric Correction
(MAIAC) [54–56]. During the study period, however, there were many days without
sufficient MAIAC AOD retrievals due to cloud/snow presence. To address this missing
AOD problem, we imputed the missing values by incorporating multiple proxy data
available at coarse spatial resolutions, including Modern-Era Retrospective Analysis for
Research and Applications version 2 and the CMAQ model outputs [57].

2.3. Measures
2.3.1. Individual’s Travel Patterns

We examined daily travel patterns of each participant using spatial and temporal
metrics, namely, the characteristic distance travelled by individuals and the time allocated
at places other than one’s home address [58–60]. Specifically, we calculated a radius of
gyration (RoG), denoted by rj

g, on a daily basis as

rj
g =

√√√√ 1
Nj

∑
k∈Lj

nk(uk − ucj)
2, (1)

to characterize the distance travelled by a participant on a day j. Here, Lj denotes the set of
locations visited by a participant on the day j; uk is a two-dimensional vector of geographic
coordinates of location k; nk is the frequency of visits at the k-th location; Nj = ∑k∈Lj

nk is
the total number of trips made on the day j; and ucj is the center of mass of the individual
on the day j. The daily characteristic distance of i-th participant (i = 1, . . . , 2013) was
further aggregated as an average RoG ri =

1
ni

∑ni
j=1 rj

g over the number of days ni that the
participant i enrolled in the survey. We also calculated each participant’s daily averaged
time spent away from home (referred to as non-home time), denoted as τi, over the study
period. Considering the positional error of mobile phone location data, we used a buffer of
2 km centered at each participant home address and excluded all GPS trajectories within
the buffered zones in the calculation of τi.

Based on these two metrics, we classified study participants into three groups: (1)
individuals with static travel patterns who spend most time at home; (2) individuals with
moderate travel patterns as they either travel long-distance but spend little time outside
the home or travel short distances but spend many hours outside the home; (3) individuals
with active travel patterns who regularly travel long-distance and spend large amount of
time away from home. The classification scheme is summarized in Table 1, where we used
the mean distance (Rc) of daily RoGs in pooled study participants and the mean non-home
time (Γc) of the study participants during the study period, respectively.

Table 1. Stratification of individuals’ travel patterns.

Travel Patterns Static Moderate Active

ri < Rc, τi < Γc
ri ≥ Rc, τi < Γc ri ≥ Rc, τi ≥ Γcri < Rc, τi ≥ Γc

http://www.epa.gov/
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2.3.2. Spatial Variability of Daily PM2.5 Concentration

We used the two spatial exposure models to reconstruct the daily PM2.5 variations
across the study area. In the single-source exposure model, we estimated daily PM2.5 con-
centrations throughout the study area using Ordinary Kriging (OK), known as a best linear
unbiased estimator among spatial interpolation methods [61–63]. In the multi-sourced
exposure model, we used an ensemble model that integrates multiple machine-learning al-
gorithms based on its superior performance to a single machine learning algorithm [64,65].

The two exposure models differ substantially in terms of the data sources that they
relied on rather than their statistical approaches. Both spatial interpolation techniques make
predictions across space from air monitoring data and rely on relationships being identified
within the data itself or with information regarding the surrounding environment [66,67].
Both models generate predictions of daily PM2.5 concentration across the entire study area
using some forms of spatial dependence, which are quantified as a mathematical function
of the distance between monitoring sites. When sparsely sampled air monitoring data are
used as the primary source in the single-sourced exposure model, an overly-smooth spatial
structure of daily PM2.5 concentrations is produced with high levels of spatial uncertainty.
Meanwhile, the multi-sourced model captures local variations of PM2.5 concentrations
by incorporating additional information from AOD and auxiliary variables, such as land
cover, population density, and meteorological conditions.

The performance of the two exposure models was evaluated using the 10-fold spatial
cross validation (CV) method. Specifically, the monitoring sites within NYS in 2016 were
randomly divided into 10 groups where sites from nine groups were used as training sites
and the remaining sites were used for validation. We trained each model with the same
training data aggregated from the training sites and made predictions at validation sites.
The differences between predicted and known values at validation sites were summarized
by metrics, such as root mean square error (RMSE) and mean prediction error (MPE). This
process was repeated 10 times until all monitoring sites were selected as validation sites.

2.3.3. Personal Exposures to PM2.5 Concentrations

We estimated personal exposure to ambient PM2.5 using both a residence-based and
mobility-based approach. Specifically, we matched home address and mobile-phone traces
with a daily PM2.5 concentration surface estimated from the two spatial exposure models
(single-sourced and multi-sourced models), respectively. It should be noted that PM2.5
monitoring data and satellite-derived AOD are obtained for the entire year of 2016, but
the time–activity data are collected across the years of 2016 and 2017. Here, the primary
focus lies on the measurement error by ignoring participants’ whereabouts instead of the
actual exposure estimates and thus we treated the time–activity data collected in 2017
(January to May) as observations in 2016 and matched them with corresponding PM2.5
estimate surfaces.

For each participant we estimated four sets of daily exposure to PM2.5 and aggregated
them over time for long-term exposure. Let yS

M(i, j) be the PM2.5 exposure estimate of
participant i = 1, . . . , 2013 on day j = 1, . . . , ni from a PM2.5 surface estimated from the S
exposure model. Here, ni denotes the total number of days that the i-th subject participated
the study. Each day we also estimated a pair of daily PM2.5 exposures with (M = 1) and
without (M = 0) one’s time–activity patterns. The residence-based exposure was calculated
by extracting the PM2.5 concentration estimates at each participant’s home address, where
daily PM2.5 surfaces were obtained from a single-sourced (S = 0) and a multi-sourced
(S = 1) exposure model, respectively. For the mobility-based exposure, we used the general
form of the equation where the time-weighted exposure was calculated as [68]

yS
M=1(i, j) = ∑

k∈Lj

CS
k tk, (2)

where CS
k and tk are the PM2.5 concentration estimated from the S-source exposure model

(S = 0, 1) and the total time spent at the k-th place located at uk on the day j, respectively.
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The daily exposure to ambient PM2.5 concentrations of each study participant was further
summarized into a long-term exposure by taking the average of the i-th participant’s daily
exposure estimates as YS

M(i) = 1
ni

∑ni
j=1 yS

M(i, j) for S = 0, 1 and M = 0, 1.

2.4. Statistical Analyses

We developed a 3-way interaction model in a linear mixed-effect regression to study
the effect of the mobility on exposures to ambient PM2.5 concentrations. Here, we also
explicitly accounted for the moderation by other two factors—individuals’ routine travel
patterns and spatial exposure models. Three sets of analyses were conducted to address
each hypothesis below:

Hypothesis 1. The consideration of individuals’ mobility affects long-term exposure to ambient
PM2.5 concentrations.

Hypothesis 2. Routine travel patterns moderate the relationship between the mobility and esti-
mates of the individuals’ exposure to ambient PM2.5 concentrations.

Hypothesis 3. The type of spatial exposure models (multi-sourced or single-sourced) moderates
the two-way interaction between of mobility and the long-term travel patterns on estimates of
individual exposure to ambient PM2.5.

To test each hypothesis, we developed a multiple regression model with additional
interaction terms to determine whether a moderating effect exists. We also accounted for
the potential correlation among multiple exposure measures per participant by developing
a random effect model.

In the statistical analyses, we used an indicator coding scheme for the mobility effect.
It is worth noting that our primary focus was on the statistical significance of the relative
difference of mobility-based exposures from residence-based exposures. We anticipated
that the sign or the magnitude of the differences (i.e., exposure measurement errors) might
vary for pollutants other than PM2.5 or different study regions. However, the statistical
significance of the differences implies that the consideration of individuals’ mobility affects
the exposure measurement error. For individuals’ routine travel patterns, we used a
numerical variable (referred to as ‘activity-travel score’), which coded static, moderate and
active travel patterns as a numerical value of 0, 1, and 2, respectively. This new coding
scheme facilitates the interpretation of the statistical analysis. For example, we can relate
the changes in the long-term exposure to ambient PM2.5 as a function of individuals’ travel
pattern in terms of the travel distance and non-home time. This coding also enabled us to
account fo the larger differences between static and active travel patterns versus moderate
and active travel patterns.

The statistical analyses, spatial prediction of PM2.5 concentrations and time–activity
pattern analyses were conducted in R version 4.0.2 (R Core Team, 2020). We used the
nlme package (v.3.1-148) and the effects package (4.2-0) for statistical analyses and visu-
alizations; and the gstat package (v.2.0.6) for a single-sourced exposure model. We used
a fast and scalable machine learning platform, H2O (https://www.h2o.ai/) (accessed on
3 February 2021), to build the multi-sourced ensemble model.

3. Results
3.1. Daily Mobility Patterns and Routine Travel Patterns

A total of 2013 participants’ time–activity data collected between 1 December 2016
and 31 May 2017 were included in the study. For each participant we reconstructed time–
activity patterns at 30-min intervals each day during the study period. During the six
months of the study period, a total of 1612 to 2012 participants engaged in the survey
each day. Based on the reconstructed time–activity trajectories, we characterized each
participant’s routine travel patterns by calculating both the averaged radius of gyration

https://www.h2o.ai/
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(ri in km) and the averaged time spent away from home (τi in hour). The averaged daily
travel distance measured in the averaged radius of gyration (RoG) and the time spent away
from home (NhT) of each study participant are summarized in Table 2. The pooled and
average travel distance, characterized by Rc = 6.27 km with a standard deviation 3.60 km
with a range of 0.08 to 24.34 km. The study participants also spent their time away from
home on average Γc = 5.84 h, with a standard deviation of 2.91 h.

Table 2. The summary statistics of a total of 2013 study participants’ travel patterns quantified by the
Radius of Gyration (RoG) and Non-home Time (NhT).

Mean SD Min Q1 Median Q3 Max

RoG 6.27 3.60 0.08 3.76 5.51 8.13 24.34
NhT 5.84 2.91 0.03 3.34 6.37 7.94 16.21

SD denotes standard deviation; Q1 and Q3 denote the first and third quartile, respectively.

Based on the averaged daily travel distance and time spent outside the home, we
classified study participants into three groups. Study participants whose averaged RoG
and NhT are greater than 6.27 km and 5.84 h were considered as active travelers (Active
in Figure 1). In contrast, if their RoG and NhT are both less than 6.27 km and 5.84 h,
we classified their mobility patterns into static (Static in Figure 1). The rest of the study
participants were considered to have moderate travel patterns. The classification scheme is
illustrated in Figure 1. The total number of participants for Static, Moderate, and Active
group is 720 (35.8 %), 654 (32.0%), and 648 (32.2%), respectively.

Figure 1. Stratification of individuals’ travel patterns based on the averaged travel distance (RoG) of
6.27 km and time spent away from home (Non-home time) of 5.84 h.

3.2. Spatial and Temporal Variability of PM2.5 Concentrations

Over the study period of six months (January to May, and December) in 2016, the
spatial average of daily PM2.5 concentration in the study region varied from 1.25 µg/m3
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and 16.58 µg/m3 with a mean of 7.15 µg/m3 and standard deviation of 3.11 µg/m3 from
the single-sourced exposure model and a mean of 5.60 µg/m3 and standard deviation
of 2.28 µg/m3 from the multi-sourced exposure model. The daily mean and standard
deviation of PM2.5 estimates obtained from two models were calculated over the six
months and we summarized their distributions in Table 3. Overall, the average of daily
PM2.5 concentration estimated from the multi-sourced exposure model was lower than
the averaged PM2.5 predictions obtained from the single-sourced model. However, the
multi-sourced model captured higher levels of spatial variability (1.16 of the multi-sourced
model versus 0.25 of the single-sourced model). The standard deviation (SD) of daily
PM2.5 concentration estimates, which quantifies how daily PM2.5 predictions vary in space,
was also substantially different between the two models. The multi-sourced exposure
model predictions have higher variability with a mean of 1.16 than a single-sourced model
estimates whose mean SD was as low as 0.25.

Table 3. The spatial mean and variability of PM2.5 concentration estimates from a single-sourced and
multi-sourced exposure models.

Model Mean SD Min Q1 Median Q3 Max

Single-Sourced DM 7.15 3.11 1.25 4.86 6.71 8.77 16.58
DSD 0.25 0.35 0.00 0.06 0.15 0.29 2.39

Multi-Sourced DM 5.60 2.28 1.14 3.96 5.24 6.83 14.66
DSD 1.16 0.58 0.20 0.68 1.11 1.48 3.13

DM denotes the daily mean and DSD denotes the daily standard deviation.

As illustrated in Figure 2, the PM2.5 predictions of a single day (12/01/2016) ob-
tained from the single-sourced exposure model in the right panel resulted in smoother
spatial structures than the multi-sourced exposure model in the left panel. This is highly
anticipated because the smoothing effect of the Ordinary Kriging is well known by geo-
statisticians and is considered as a serious drawback [69]. Specifically, the smooth patterns
of PM2.5 prediction in the right panel of Figure 2 is a result of making predictions from
sparsely sampled air monitoring data (denoted as the symbol of triangles), where low
levels of PM2.5 predictions were overestimated and high values were underestimated.
Meanwhile, the PM2.5 prediction from the multi-sourced model in the left panel of Figure 2
depicted local variations of daily PM2.5 concentrations that were affected by the prox-
imity to road networks, the spatial variations of population density and land use type.
These visual inspections were also asserted by the spatial 10-fold cross validation (CV),
where the multi-sourced model outperformed the single-sourced model with CV-R2 of
0.74 versus 0.66. A similar pattern was found in the comparison of RMSE/MPE of the
two models: 1.91/1.40 µg/m3 for the multi-sourced model and 1.96/1.49 µg/m3 for the
single-sourced model.

Lastly, we compared the spatial averaged PM2.5 concentration levels from both models
at each day during the study period. This comparison is significant because the daily
spatial variation of PM2.5 predictions could directly affect personal exposure estimates.
As presented in Figure 3, the single-sourced model consistently yielded higher PM2.5
concentrations than the multi-sourced model except a few days (see the left panel). We also
examined the distribution of spatial variation of the estimated daily PM2.5 concentrations
from both models using the histogram in the right panel. The standard deviation of the
estimates across the study area is much smaller for a single-sourced model compared
to the multi-sourced model, suggesting that the single-sourced model might result in
over-smoothed PM2.5 predictions.
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Figure 2. PM2.5 estimates obtained from both a multi-sourced and single-sourced exposure models
on 1 December 2016 overlaid with the five air monitoring stations operated in 2016 (denoted as
symbols of black triangle).
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Figure 3. PM2.5 concentration estimates obtained from both a multi-sourced and single-sourced
exposure models and the comparison of model predictions using the daily spatial mean and
standard deviations.
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3.3. Mobility Effect on Long-Term Exposure to Ambient PM2.5

For each participant, we calculated four long-term exposure estimates obtained from
two spatial exposure models of ambient PM2.5 with and without the individual’s mobility.
Based on the four exposure estimates of 2013 participants, we investigated the effect
of personal mobility on individual exposure to ambient PM2.5. Considering that the
contribution of mobility in personal exposure assessment may vary per individuals’ travel
patterns and the spatiotemporal variability of air pollution fields, we formally tested
their interactions in the random-effect regression model. We separately assessed their
interactions per a spatial exposure model that captures different levels of spatial variability
of PM2.5 concentrations.

Specifically, we conducted multiple regression analyses to evaluate whether the consid-
eration of mobility patterns affects the air pollution exposure assessment (i.e., measurement
error). The results of analyses are summarized in Table 4. As shown in Step 1, Hypothesis 1
predicted that mobility-based exposure has a significant effect on individual exposure to
ambient PM2.5 (β = 0.03, p < 0.01).

Hypothesis 2 predicted the effect of mobility on personal exposure measurement error
would vary depending on individuals’ routine travel patterns. For example, mobility-based
exposure would be higher for individuals with active travel patterns than individuals who
travel long distances but do not spend much time outside the home or who travel short
distances although spend much time outside the home (moderate travel patterns). As
shown in Table 4 (Step 2), the interaction effect of mobility and individuals’ travel patterns
were statistically significant (β = 0.03, p < 0.05).

Hypothesis 3 predicted that the effect of mobility on personal exposure measurement
error would be substantial when the PM2.5 concentration is estimated from a multi-sourced
exposure model and for individuals whose travel patterns are active—routinely travel long
distances and spent a lot of time outside the home. As shown in the Step 3 of Table 4, the
three-way interaction effect of mobility, active travel patterns of individuals, and a multi-
sourced exposure model on personal exposure to PM2.5 was significant (β = 0.05, p < 0.05).

Table 4. Statistical models.

Step 1 Step 2 Step 3

(Intercept) 7.23 *** 7.23 *** 7.21 ***
Main Effects

Mobility-based Approach 0.03 ** −0.03 −0.00
Travel Patterns −0.04 *** −0.02 −0.00

Multi-sourced Exposure Model −0.51 *** −0.47 *** −0.44 ***
2-Way Interaction Terms

Mobility-based × Travel Patterns 0.03 * 0.00
Mobility-based ×Multi-sourced 0.06 ** 0.01
Travel Patterns ×Multi-sourced −0.07 *** −0.10 ***

3-Way Interaction Term
Mobility-based × Travel Patterns ×Multi-sourced 0.05 *

AIC 10, 702.71 10, 672.50 10, 674.81
BIC 10, 744.66 10, 735.42 10, 744.73

Log Likelihood −5345.35 −5327.25 −5327.41
*** p < 0.001; ** p < 0.01; * p < 0.05.

To facilitate the understanding of this significant three-way interaction, we plotted
the effect of mobility patterns on personal exposure in Figure 4. The long-term exposure
estimates from the single-sourced model are substantially higher than the multi-sourced
model. Further, there was no effect of travel pattern on exposure estimates when the single-
sourced model was used regardless of whether they were based mobility or residence
(in the right panel). In contrast, when the daily ambient PM2.5 was predicted from the
multi-sourced exposure model, the effect of mobility varied depending on whether an
individual’s travel pattern is static or active (in the left panel). Greater activity-travel scores
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were associated with lower levels of exposure estimates, when individuals’ long-term
exposure was estimated at residence. That is, the time-weighted exposures taking into
account both multiple places visited by individuals and the time spent at each place was
higher than one’s residence-based exposure.
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Figure 4. The three-way interaction effects of individuals’ daily mobility, routine travel patterns, and
the exposure models on long-term exposure to ambient PM2.5 concentrations.

4. Discussion

To better understand the effect of mobility on individuals’ long-term exposure to
ambient PM2.5, we developed a statistical model for mobility, individuals’ routine travel
patterns and spatial exposure models. The results strongly suggested that mobility has
a statistically significant effect on personal long-term exposure to ambient PM2.5. Our
unique contribution to existing literature, however, lies in that we demonstrated that the
mobility effect can be modified by individuals’ routine travel patterns and the validity of
spatial exposure models. For individuals with static travel patterns over an overly smooth
PM2.5 surface, we found that the mobility-based approach has no effect on the accuracy
of long-term exposure estimates. On the other hand, the mobility-based approach will be
the most effective to capture accurate exposure of individuals with highly active travel
patterns over an air pollution field with high spatial and temporal variability.

In the first stage, we examined the effect of individuals’ mobility on long-term ex-
posure to ambient PM2.5 by comparing a location-specific exposure at home with time-
weighted exposure based on mobility data. The results suggested that the mobility effect
on individuals’ long-term exposure to ambient PM2.5 was statistically significant. When
mobility was taken into account, personal exposure to PM2.5 was 0.03 µg/m3 higher than
overall mean exposure. Our finding on the significant effect of mobility on long-term
exposure is in line with previous studies [40,41,50]. To our best knowledge, however, this is
one of a few studies to examine and show the statistically significant effects of the mobility
on long-term exposure to air pollution in a large sample over a period of multiple months.

In the second stage, we examined effect modification by individuals’ routine travel
patterns by introducing the two-way interaction term between the mobility and indi-
viduals’ travel patterns in the multiple regression model. The results revealed that the
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single-sourced exposure model contributed to higher long-term exposure estimates to
ambient PM2.5 than the multi-sourced exposure model. Based on the cross-validation
results, we speculated that the higher values of exposure estimates were attributed to
the overestimation of PM2.5 predictions from the single-sourced exposure model. This
overestimation from the single-sourced model is rather anticipated because the primary
source of PM2.5 measurements obtained from air quality monitoring sites operated in the
study region in 2016 are clustered around highly polluted areas, including Tonawanda
Coke Facility [70].

Another unique point of our study is that we have used complete and relatively
accurate mobility data collected from thousands individuals during their daily life. As
demonstrated in our comparison study, however, the effect of mobility on the measurement
error of long-term air pollution exposure estimates is only pronounced when they are
matched with spatially and temporally resolved PM2.5 estimates [57]. The difference
between residence-based and mobility-based exposure estimates have not been detected
unless the spatial dynamics of ambient PM2.5 were captured by the multi-sourced model.
This indicates the measurement error of long-term exposure can be reduced only by
improving the spatial and temporal resolution of both mobility data and the representation
of air pollution fields simultaneously.

It is important to note that our conclusions only pertain to the uncertainties associated
with personal long-term exposure to ambient PM2.5. In contrast, our finding cannot
speak to the issue of the accuracy of exposure assessment. Given that the true exposure
of individuals is unknown, the accuracy (or error) of exposure assessment can not be
quantified [71]. However, we attempted to quantify and compare uncertainties in long-term
PM2.5 exposure estimates that arise from the oversimplified assumption (‘residence-based
approach’) on individuals’ spatial behaviors. We further examined how the uncertainties
associated with individuals’ mobility effect on one’s long-term exposure are modified by
individuals’ routine spatial behaviors and the limited representation of spatiotemporal
representation of air pollution fields [72].

The main strengths of this study are as follows—first, we examined the effect of mobil-
ity on individuals’ long-term exposure to ambient PM2.5 and highlighted the moderating
effects of their routine travel patterns and the spatiotemporal dynamic of air pollution
fields. Second, we conducted the study using both accurate and spatially and temporally
resolved time–activity data from thousands of participants over several months, as well as
high-resolution satellite-derived AODs and CMAQ model outputs to improve the avail-
ability and resolution of air pollution data [31]. As a result, the effects of small sample size
and sample bias on the accuracy of personal exposure assessment were reduced. Third, we
found that individuals’ mobility has a significant effect on long-term exposure to ambient
PM2.5 in this study, although its effect was moderated by individuals’ routine travel pat-
terns and the spatial variability in the study area. Our findings may provide a scientific
basis for long-term exposure modeling and the study designs of health effect estimation.

Several limitations should be acknowledged in this study. First, there is potential
measurement error because we used measured PM2.5 concentrations taken at a small
number of fixed monitoring stations as a primary data source in both spatial exposure
models. This concern was lessened in the multi-sourced exposure model by incorporating
additional data, such as AOD, but the sparse monitoring stations operated in the study
area likely contributed to the measurement errors. Furthermore, reliance on a sparse
monitoring network might affect the observed mobility effects as well as the moderation
of the mobility effect on personal exposure to PM2.5. Similarly, our findings might be
subject to confounding factors, such as study participants’ age, gender and occupational
status. The effect of stratification of exposure to different subpopulation groups needs to
be further investigated. Third, we have stratified individuals’ long-term travel patterns
into three groups based on both a spatial and temporal mobility metric, namely radius of
gyration and time spent away from home. However, other mobility metrics, such as mean
square displacement and entropy [73], could be used to quantify individuals’ long-term
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travel patterns, and its effect on the statistical analysis needs to be investigated. Lastly, our
personal exposure assessment was limited to ambient PM2.5 concentrations for the purpose
of illustration without the health effect assessments. In future work, we plan to include
other pollutants that are known to have severe adverse health impacts, such as NO2 and
O3, as well as the subsequent health outcomes, including flu symptoms.

5. Conclusions

This study suggests that there is a significant association between mobility and long-
term exposure measurement error, although the mobility effect can be modified by in-
dividuals’ routine travel patterns and the spatiotemporal variability of air pollutants of
concern. Our findings on the modification effect of mobility suggest that even accurately
measured mobility may have little to no effect on exposure assessment for individuals with
static travel patterns over a relatively homogeneous air pollution surface. Meanwhile, our
findings underscore the significance of a mobility-based approach when a study involves
individuals who regularly travel long distances and spend longer hours outside the home
over spatially and temporally dynamic air pollutant concentrations. These findings suggest
that investigators should pay greater attention to both individuals’ routine travel patterns
and the spatial uncertainty of air pollution predictions to minimize long-term exposure
measurement error.
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