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Abstract: Sphingolipids, long thought to be passive components of biological membranes with merely
a structural role, have proved throughout the past decade to be major players in the pathogenesis
of many human diseases. The study and characterization of several genetic disorders like Fabry’s
and Tay Sachs, where sphingolipid metabolism is disrupted, leading to a systemic array of clinical
symptoms, have indeed helped elucidate and appreciate the importance of sphingolipids and their
metabolites as active signaling molecules. In addition to being involved in dynamic cellular processes
like apoptosis, senescence and differentiation, sphingolipids are implicated in critical physiological
functions such as immune responses and pathophysiological conditions like inflammation and insulin
resistance. Interestingly, the kidneys are among the most sensitive organ systems to sphingolipid
alterations, rendering these molecules and the enzymes involved in their metabolism, promising
therapeutic targets for numerous nephropathic complications that stand behind podocyte injury and
renal failure.

Keywords: sphingolipids; Fabry’s disease; sphingolipid metabolism; podocytes; renal injury;
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1. Podocytes

1.1. Renal Glomerular Podocyte Role and Function

Podocytes are highly differentiated visceral epithelial cells in the glomerulus of the kidney.
They are similar to neurons in that they are always in a quiescent state and thus do not actively
proliferate. Their unique shape and location render them critical for glomerular basic functions such
as filtration [1]. While the voluminous cell body of the podocyte incurves into the urinary space of the
capsule, its foot processes extend to interdigitate with foot processes from adjacent cells. The proper
interaction of foot processes the glomerular basement membrane (GBM) represents a key element
of the glomerular filtration barrier. These specialized processes interdigitate to form filtration slits,
which allow only small molecules to pass from the blood into the first filtrate [2].

1.2. Podocyte Injury

Podocyte integrity is crucial for maintaining the stability of the filtration barrier. Insults to the
glomerular podocytes from numerous sources including metabolic cellular stress, genetic mutations,
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cancer and inflammatory, metabolic and hemodynamic changes usually result in functional
aberrations [3]. Podocyte dysfunction is characterized by cytoskeletal remodeling or dysregulation
and foot processes widening, effacement and loss. These structural changes eventually compromise
the filtration barrier and large, negatively charged molecules such as proteins are able to cross from
the blood into the urine. The latter process is referred to as proteinuria, and is one of the first signs of
glomerular diseases [4].

2. Sphingolipids

Little attention has been given in biomedical research to the role of lipids in the pathogenesis
of podocyte dysfunction. In particular, sphingolipids were long thought to be passive spectator
barrier lipids in cell membranes. Recently, researchers have started to appreciate the implication
of sphingolipids in podocyte injury. To set the stage for discussion of the role of sphingolipids in
the pathophysiology of podocyte-related problems, we will briefly describe their metabolism and
shed light on the major discoveries that highlight the involvement of sphingolipids in health and
disease states.

2.1. Overview of Sphingolipid Metabolism

Sphingolipids are a class of ubiquitous lipids that share a sphingosine base backbone and comprise
more than a thousand naturally occurring molecules. Sphingolipids constitute an essential part of
eukaryotic cell membranes and are known to regulate the fluidity and subdomain structure of the cell
membrane lipid bilayer [5,6]. Beyond their identified structural role, sphingolipid metabolism has
proved to be part of an extensive network of regulated signaling pathways that produce bioactive
molecules involved in several fundamental cellular processes such as proliferation, differentiation,
senescence and cell-to-cell interactions [7–10]. These bioactive molecules are mainly ceramide,
sphingosine, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), among many others.

Several contemporary chemical and biotechnological techniques have been applied to the study on
sphingolipids and the implications of sphingolipid dysregulation, along with their metabolic pathways
in the pathophysiology of cancer, angiogenesis, atherosclerosis, inflammation, insulin resistance and
others. Remarkably, sphingolipids are being increasingly implicated in human diseases that contribute
to podocyte dysfunction, including diabetes and various metabolic disorders. For more details on the
role of sphingolipids in disease states, the reader can refer to a set of well-written reviews [11–14].

Ceramides share a sphingoid base attached to a fatty acid. These molecules are structural
precursors and are central for the metabolism of other sphingolipids. Different ceramides, thought to
play distinct roles in cellular pathways, are characterized by the degree of saturation and length of
their attached fatty acyl chain, and are the products of different biochemical reactions of different
enzymes [15–20].

The biosynthesis of ceramide usually takes place in the endoplasmic reticulum or the plasma
membrane, at baseline or upon exposure of cells to a stressor such as heat, radiation, chemotherapy
or hypoxia [17,21–24], and can occur through three distinct pathways, one of which is de novo
synthesis. De novo synthesis starts through the condensation on L-serine and palmitoyl-coA,
yielding 3-ketosphinganine. This reaction occurs on the surface of the intracellular endoplasmic
reticulum, catalyzed by the enzyme serine-palmitoyl transferase (SPT). 3-Ketosphinganine is
subsequently reduced to sphinganine. A reaction between sphinganine and a fatty acyl coA, catalyzed
by ceramide synthase (CerS), yields dihydroceramide, which is then dehydrogenated to give ceramide.
The products of this chain of reactions usually remain anchored to the endoplasmic reticulum
surface [25–27] until the produced ceramide is transported to other subcellular compartments, such as
the Golgi apparatus, where it can be metabolized to generate other sphingolipids [21,28,29]. CerS also
catalyzes the production of ceramide from sphingosine by the salvage pathway, through which
long-chain fatty acids are recycled. Six isoforms of CerS are encoded by six different genes of the
same family, each of which produces a distinct ceramide species unique in its fatty acid composition
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and degree of saturation [30–35]. Finally, ceramide can also be produced from the hydrolysis of
sphingomyelin (SM) or other complex sphingolipids by sphingomyelinases. Phosphocholine is
produced as a byproduct of this hydrolysis reaction [36].

Ceramidase, an enzyme that breaks down the amide bonds of the ceramide molecule,
generates sphingosine and free fatty acids. Three different ceramidases have been described in the
literature, each of which functions at an optimum pH [37–50]. Sphingosine is an important signaling
molecule that principally functions to halt the progression of the cell cycle and induce apoptosis.
Just like ceramides, the effects of sphingosine are mediated through several intracellular enzymes,
including protein kinases and phosphatases [36,51,52]. This is explained further in a review by
Pettus et al. [53].

Sphingosine-1-phosphate (S1P) can be formed from sphingosine by the action of sphingosine
kinase. It acts a ligand for a set of G-protein couples receptors (GPCRs) and can exert some
receptor-independent intracellular effects as well [54,55]. Contrary to the observed effects of ceramides,
which might be classified as tumor-suppressive lipids, S1P has been implicated in cellular growth,
survival and migration, and was found to play a role in angiogenesis and immune responses [56].
Sphingosine-1-phosphate can be deactivated by the activity of either S1P phosphatase or S1P lyase [57].
Interestingly, mice with podocyte-specific deletion of S1P lyase develop proteinuria [58] and S1P lyase
genetic mutation results in severe podocyte injury and proteinuria [59].

Ceramide kinase (CERK) is an enzyme that catalyzes the formation of ceramide phosphate
(C1P), and is yet another bioactive phosphorylated sphingolipid thought to play an extensive role
in inflammation [60]. In fact, C1P has been implicated in eicosanoid production; it recruits the enzyme
responsible for arachidonate release to the plasma membrane, where arachidonate, the precursor
of eicosanoids resides and stimulates its activity [61,62]. Conversely, some evidence suggests that
C1P acts as an anti-inflammatory molecule by inhibiting the enzyme that converts pro-TNF (tumor
necrosis factor) to its active inflammation-inducing form [63], thus halting the production of TNF.
Indeed, the downregulation of CERK in mouse models of airway hyper-responsiveness using silencing
ribonucleic acid (RNA) molecules lead to a significant decrease in the observed inflammatory response [64].
In addition, other studies have shown that exogenous administration of C1P can inhibit the production
of several interleukins including IL-6, IL-8 and IL-1β from peripheral blood mononuclear cells [65].
Given this controversial data, the concept of using this newly identified bioactive sphingolipid in
immunomodulation remains debatable and requires further research to reveal its intricately complex
systemic effects. Interestingly though, despite the ongoing investigations regarding C1P and all its
physiological roles, a cell-surface C1P receptor through which circulating C1P can act has not been
identified. Similarly, the identity of a C1P lyase was suggested but remains unknown.

2.2. Sphingolipids in Health and Disease

2.2.1. Sphingolipids and Cancer Treatment

Sphingolipids are being extensively studied as potential therapeutic targets in cancer research.
Ceramides, for example, have been recognized as tumor-suppressive lipids that exert anti-proliferative
effects including growth arrest and apoptosis [13,66]. Moreover, earlier studies had shown that
short-chain ceramides induce apoptosis in several cancer cell types [67]. In addition, the inclusion
a mixture of short-chain ceramides in the treatment of breast cancer patients improved symptom
control with only minimum side effects reported [68]. The increased expression of some ceramidases
has also been observed in several treatment-resistant prostate cancer specimens and cell lines [69],
and the inhibition of ceramidase activity proved to have an anticancer effect. This, if anything, hints at
a promising role for sphingolipids and their metabolic pathway in cancer therapy.

Drug resistance is a major concern in cancer treatment. In fact, upon exposure to stressors,
some cancer cell types alter sphingolipid metabolism and become drug resistant, which promotes
tumor growth and survival [70,71]. For instance, earlier experiments have demonstrated that
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glucosylceramide synthase (GCS) is capable of modulating drug resistance. GCS is an enzyme
involved in sphingolipid metabolism that transfers glucose from UDP-glucose (uridine diphosphate-
glucose) to ceramide producing glucosylceramides, and its implications in the development of cancer
drug resistance have garnered considerable interest in the past few years [72–76]. Several mechanisms
have been proposed through which the cell can alter the cytotoxicity of the chemotherapeutic agents
used, and many of those mechanisms involve modulation of GCS expression. GCS is known to
catalyze the first step in the production of glycosphingolipids [77,78], which are important players
in tumor progression. Their dysregulation has been extensively linked to the angiogenesis and
metastasis of chemoresistant cells. Glycosphingolipids include lactosylceramides, gangliosides and
glucosylceramides. Indeed, blocking membrane ganglioside synthesis by fumonisin B1 enhanced the
radiosensivity of human melanoma cells [79].

Experiments by Liu et al. demonstrated that transfecting MCF-7 resistant cells with GCS antisense
resensitized the cells to doxorubicin, vinblastine and paclitaxel. Multi-drug resistance (MDR) is
a property of cancerous cells conferred by members of the ABC (ATP-binding cassette) transporters
family. These are membrane transporters, some of which encoded by the MDR1 gene, that reduce
the intracellular availability and cytotoxicity of anti-cancer drugs through efflux outside the cell [80].
In fact, a study conducted by Gouaze et al. [80] showed that transfecting resistant human breast cancer
cells with GCS antisense reduced the expression of the MDR1 gene and altered the phospholipid
bilayer composition in such a way that enhanced the sensitivity of the cells to the used drug. Therefore,
GCS is a potential target in chemoresistant cancer cells.

Several lines of evidence support the involvement of S1P in tumor growth and survival [62–64].
Visentin et al. [81] used S1P monoclonal antibodies to slow down the progression and even eliminate
human and mice tumors in in vivo and in vitro models, thus demonstrating the pro-oncogenic role
of S1P. Other lines of evidence support that VEGF (vascular endothelial growth factor) receptors are
transactivated by S1P, and thus implicate a role for S1P in the vasculature of the tumor, which is
important for the maintenance of tumor microenvironment, metastasis and invasion [81,82]. S1P exerts
its functions through a family of G-protein coupled receptors S1P1–5. In addition to regulating vascular
maturation and angiogenesis, it has been implicated in many aspects of cancerous cells such as
cytoskeletal arrangement and movement, calcium homeostasis, and cellular growth and inhibition
of apoptosis [82]. Thus, it is not surprising that sphingosine kinase inhibitors are currently in clinical
trials for the treatment of solid tumors.

2.2.2. Sphingolipids and Inflammatory Responses

Inflammation is the body’s natural protective response against foreign infectious agents
and allergens. Recent literature hints at the implication of sphingolipids, namely C1P and
S1P, in inflammatory responses by activating mediators such as prostaglandins. C1P has been
shown to regulate the activation and the translocation of cytosolic phospholipase A2 (cPLA2),
in a calcium-dependent manner, in response to inflammatory responses such as Interleukin-1β (IL1β)
and tumor necrosis factor α (TNF-α), thus leading to the production of prostanoids from arachidonic
acid. This latter step requires the activation of cyclooxygenase-2 (COX-2), which is mediated by S1P.
Unlike the mechanism of action of C1P, which involves direct binding to specific domains of PLA2,
S1P has been shown to act indirectly to stimulate COX-2 activity by modulating its expression at
the messenger RNA (mRNA) level [9,61,83,84]. Taken together, these studies suggest a scheme of
events in which C1P and S1P act synergistically in a spatially and temporally coordinated manner
to induce eicosanoid production, thereby mounting an orchestrated inflammatory response [85].
In addition to their proinflammatory role in the production of eicosanoids, C1P and S1P are also
involved in allergic responses and are crucial for macrophage survival, neutrophil activity and cytokine
production [86–89]. This makes these endogenous sphingolipids and the enzymes responsible for their
production, ceramide kinase (CK) and sphingosine kinase (SK), respectively, potential targets for the
development of new anti-inflammatory compounds, especially after some COX-2 inhibitors have been
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withdrawn from the market for their dangerous side effects [84,89,90]. Indeed, interfering with S1P
signaling has proven through clinical trials to be effective in targeting autoimmune conditions such as
multiple sclerosis [91].

2.2.3. Sphingolipids and Insulin Resistance

Insulin resistance is a hallmark of type 2 diabetes, a metabolic disorder characterized by chronic
hyperglycemia and severe complications including neuropathy, retinopathy and diabetic nephropathy,
altogether referred to as diabetic triopathy. There is increasing evidence that supports the involvement
of sphingolipids in the pathophysiology of insulin resistance. Studies conducted by Shimabukuro et al.
showed increased ceramide levels and higher number of apoptotic cells in pancreatic islets isolated
from Zucker diabetic rats [92]. This study among others helped establish the concept of cell death from
lipid oversupply, also known as lipoapoptosis [93].

Liver and skeletal muscles are important glucose storage organs and, hence, the loss of their
sensitivity to insulin promotes the development of type 2 diabetes. Old and current data strongly
suggests the involvement of ceramides in insulin resistance. Turinsky et al. reported elevated ceramide
levels in liver and skeletal muscles in rat models of insulin resistance. Increased ceramide levels have
also been reported in more recent studies in muscle biopsies from subjects displaying risk factors for
insulin resistance and from insulin-resistant obese humans [94–96]. Additionally, analogs of ceramide
or agents that stimulate endogenous ceramides biosynthesis have proved to inhibit systemic insulin
signaling effects such as glycogen synthesis and glucose uptake [97–100].

Although the mechanistic pathway of lipid accumulation in insulin resistance might not be
clear yet, it is suggested that there are alterations in the way through which Akt, a serine/threonine
protein kinase, responds to ceramide [98]. In fact, research conducted by Summers et al. revealed
that ceramide can antagonize the effect of insulin by dephosphorylating and hence inactivating
Akt and its downstream effector protein kinase B (PKB) [98,101,102]. Akt acts downstream of
insulin and mediates its anabolic effects. Akt/PKB has been implicated in cellular responses to
several hormones and growth factors. Signals from these chemicals activate a well-known pathway
that starts with the enzyme phosphatidylinositol 3-kinase. The latter is a regulatory lipid kinase
that catalyzes the production of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol
3,4,5-triphosphate. rrAt the plasma membrane, these two phosphoinositides serve as docking
sites for Akt/PKB and phosphoinositide-dependent kinase-1 (PDK1) and, hence, gets these kinases
closer to each other, activating the recruited isoform of Akt/PKB at its phosphorylating sites and
triggering a cascade that elicits the desired cellular response [102]. Indeed, artificially doubling
ceramide levels in some insulin-sensitive cells such as preadipocytes and myotubes to mimic diabetic
conditions blocks this critical step in insulin response at two different sites in the Akt/PKB complex,
through independent mechanisms, thus supporting the proposed cellular mode of response to ceramide
accumulation [97,98,103]. Interestingly, podocytes are insulin sensitive cells [104] and podocyte specific
deletion of the insulin receptor results in altered AKT phosphorylation and podocyte injury [105,106]
However, whether sphingolipids interfere with podocyte insulin signaling remains to be established.
For more detailed information on sphingolipids and insulin resistance, the reader can refer to this
article [107].

3. Sphingolipids in Podocyte Injury

In the past few years, it has become clear that sphingolipids and their metabolic pathways
are heavily implicated in podocyte injury, however, the underlying molecular pathways and
mechanisms of lipid-mediated kidney and glomerular diseases are still poorly understood. The study
and characterization of genetic glycosphingolipid metabolic and storage diseases through several
experimental and clinical models have indeed increased the interest in sphingolipid metabolites as
therapeutic targets for many non-genetically acquired nephropathic complications.



Int. J. Mol. Sci. 2017, 18, 2528 6 of 24

3.1. Globotriaosylceramide (Gb3)

Fabry’s disease (OMIM # 301500) is an X-linked sphingolipidose characterized by deficient activity
of a lysosomal hydrolase encoded by the GLA gene, α-galactosidase A. The disease phenotype is a result
of the intracellular and extracellular build-up of non-metabolized glycosphingolipids. This condition
leads to the progressive deposition of the α-galactosidase A substrate, Globotriaosylceramide (Gb3),
in virtually all the patient’s tissues. Although end-stage renal disease is one of the leading causes
of death in hemizygous males with this inborn error, the mechanism of kidney failure is not well
understood. However, based on histological studies, the accumulation of the metabolite Gb3 in the
podocytes has been theorized to explain the pathophysiology of the resulting glomerular damage.
In the kidneys, podocytes accumulate Gb3 more than all the other cell types leading to podocyte injury
that occurs at an early age and eventual podocyturia, where podocytes detach and can be found in the
patient’s urine [108–111].

Due to the absence of appropriate human and animal models to test the hypothesized mechanism,
Liebau and colleagues designed a cellular model of Fabry’s disease in which RNA interference and
lentiviral transduction techniques were used to knockdown the GLA gene from human podocytes.
The double deletion of this gene resulted in a decreased α-galactosidase A enzymatic activity and a slow
accumulation of intracellular Gb3. Remarkably, the upregulation of LC3-II and the downregulation of
mTOR kinase activity, an autophagy inhibitor, were observed. An increase of autophagosomes was
also noted as a result of these two changes. The data obtained indicates a link between α-galactosidase
A dysregulation and autophagy pathways and hints at promising future directions in uncovering the
mechanism of nephropathy in Fabry’s disease to develop an optimal therapy [109,110].

Currently, enzyme replacement therapy (ERT) is being clinically used in the management of
Fabry’s disease [112–114]. However, the onset of the disease occurs during childhood whereas
diagnosis is often left until a life-threatening condition develops in the heart, kidneys or nervous
system. This time gap between the development of early symptoms and diagnosis and treatment
allows enough room for irreversible advanced tissue damage that ERT cannot halt. For example,
ERT did not prove to be efficient in improving patient outcomes after the onset of urinary albuminuria,
a hallmark of podocyte injury [115], especially in the absence of nephroprotective therapies [116].
Globotriaosylsphingosine (Lyso-Gb3), the deacetylated form of Globotriaosylceramide, is a circulating
bioactive glycolipid that has been recently described to increase remarkably in the body fluids of
Fabry’s disease patients, such as plasma and urine [117]. In experiments conducted by Sanchez-Nino
et al. in an attempt to find a better therapeutic approach to Fabry’s disease, high levels of the
Lyso-Gb3 proved to play a proinflammatory role in cultured human podocytes, mainly through
the activation of NOTCH-1 signaling pathway [110]. Upon the binding of Lyso-Gb3 to the proper
receptor, Notch undergoes a series of proteolytic cleavages and Notch intracellular domain (NICD),
a cytoplasmic protein, is produced through the action of γ-secretase. Lyso-Gb3 has also been found to
upregulate the expression of NOTCH-1 in podocytes, which in turn has been shown to lead to kidney
fibrosis and cause podocyte injury in vivo. Notch-1 recruits the transcription nuclear factor κB (NFκB),
a well-known regulator of inflammatory responses [118], hence increasing its DNA-binding activity.
Furthermore, NICD translocates to the nucleus and promotes the expression of NOTCH canonical
targets such as the HES1 gene (hairy and enhancer of split 1), thus promoting dedifferentiation
of the podocytes, genes coding extracellular matrix proteins such as fibronectin, thus leading to
fibrogenic responses, and inflammatory genes such as chemokines, resulting in a state of inflammation.
Indeed, siRNA silencing of NOTCH-1 and γ-secretase pharmacological inhibitors both prevented the
lyso-Gb3-induced upregulation of HES1 and chemokines at the protein and mRNA levels, as well as
the increase in NFκB DNA-binding activity, thereby curbing proinflammatory responses [110,119–121].
A summary model of the discussed pathways is provided in Figure 1.
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Figure 1. Potential mechanism of action of Globotriaosylceramide (Gb3) and Globotriaosylsphingosine
(Lyso-Gb3) in Fabry’s disease podocyte. The accumulation of Gb3 in lysosomes inhibits AKT and
mTOR pathway leading to the dysregulation of autophagy signaling in the podocyte. The inhibition
of mTOR prevents the recovery of autophagosomes and lysosomes from autophagolysosomes by
negative regulation. The formation of the autophagolysosomes causes podocyte foot processes
effacement thus injury. Lyso-Gb3, the deacetylated form of Gb3, also plays a role in podocyte injury
by promoting inflammation, fibrosis and dedifferentiation of podocytes. Lyso-Gb3 activates both the
NOTCH signaling pathway, through γ-secretase, and nuclear factor κB (NFκB) leading to the release of
chemokines. NOTCH-1 activation also promotes the transcription of HES genes and genes coding for
extracellular matrix (ECM) proteins thus inducing, respectively, the dedifferentiation and fibrosis of
the podocyte.

3.2. The Sphingomyelinase-Pathway

Diabetic kidney disease (DKD) and focal segmental glomerulosclerosis (FSGS) have been tightly
linked to podocyte dysfunction and can lead to end-stage renal disease (ESRD) and kidney failure.
Recent studies have contributed to our understanding of the role that the lipid metabolizing enzyme
sphingomyelinase phosphodiesterase acid-like 3b (SMPDL3b) plays in both of the mentioned diseases.
SMPDL3b controls the activity of acid sphingomyelinase. In the podocytes, SMPDL3b is located
in the membrane lipid rafts, and its role is hypothesized to be the conversion of sphingomyelin
to ceramide and phosphorylcholine due to its homology with acid sphingomyelinase (ASMase),
thus exerting signaling and regulatory roles. However, its exact intrinsic enzymatic function is yet to
be determined [117,122–125].

DKD is the number one cause of renal failure in the USA and is most importantly characterized
by the loss of podocytes, also known as podocytopenia, following their injury, in type 1 and type
2 diabetic patients [126–130]. Although high levels of sphingolipids have been reported in the
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plasma of diabetic individuals, recently it has become clear that it is the intracellular sphingolipid
composition of glomerular cells, especially podocytes, that contributes to the pathogenesis of diabetic
nephropathy [2,131–133]. Interestingly, SMPDL3b expression levels were higher in glomeruli of
patients with DKD, those of diabetic mice and in cultured human podocytes treated with serum from
DKD patients. Indeed, due to its theorized role, Fornoni et al. hypothesized that this increase in the
expression of SMPDL3b will activate sphingomyelin metabolic pathways and lead to the accumulation
of different sphingolipids in glomerular cells [134]. Taken together, studies conducted by Fornoni’s
group indicate a substantial correlation between ceramide accumulation, glomerular hypertrophy and
podocytopenia in DKD [134–137].

Focal segmental glomerulosclerosis (FSGS) is the most common cause of nephrotic syndrome
and glomerular diseases in adults [138]. FSGS can be caused genetically by mutations in genes coding
for podocyte proteins or non-genetically, taking primary spontaneous forms. Its recurrence is also
very common post-transplantation in almost one-third of such patients [139–141]. Unlike in DKD,
SMPDL3b is downregulated in FSGS patients. In a study by Fornoni’s group involving 41 patients with
high risk of FSGS recurrence, SMPDL3b levels in podocytes were found to be decreased in patients in
who FSGS recurred. This lead to the hypothesis that low levels of the SMPDL3b enzyme, leads to the
accumulation of non-metabolized sphingomyelin that might play a role in FSGS pathogenesis. Indeed,
this is verified by the observation that cultured podocytes treated with serum from FSGS patients have
low activity of the ASMase enzyme in addition to decreased SMPDL3b expression levels. This was
associated with actin cytoskeletal remodeling and apoptosis, both of which could be prevented by
overexpressing SMPDL3b in the podocytes [124].

In a study aimed at exploring the dynamics of podocyte foot processes, the researchers
investigated the role of urokinase plasminogen activator receptor (uPAR), a molecule known to
be involved in cellular motility, during proteinuric kidney diseases [142–144]. In fact, uPAR plays
remarkable roles in a variety of processes that are based on cell movement like stem cell mobilization
and tumor metastasis. In FSGS patients, circulating soluble uPAR (suPAR) levels are elevated,
leading to αVβ3 integrin activation in podocytes, a pathway hypothesized to contribute to the
proteinuria observed in these individuals. The suPAR-dependent activation of αVβ3 in FSGS
is linked to the downregulation of SMPDL3b and decreased RhoA kinase activity. Conversely,
increased SMPDL3b levels were shown to prevent suPAR-αVβ3 interaction in DKD, thus preventing
podocyte cytoskeleton remodeling and migration, while leading to an increase in RhoA kinase
activity [124,134,142,145,146]. Podocytes are highly differentiated glomerular cells that depend mainly
on the integrity of their cytoskeleton to properly contribute to the critical function of the kidney
ultrafiltration barrier [147]. These results thus highlight the importance of SMPDL3b and hence
sphingomyelin and its catabolites in regulating podocytes physiological functions and response in
pathophysiological conditions and makes them a target for new strategies that can prevent or reverse
podocyte injury in two common kidney diseases.

In fact, the observations described earlier correlate with the findings of our recent work aiming
to study the molecular mechanisms involved in radiation-induced podocyte injury and radiation
nephropathy. Exposure to radiation during abdominal or paraspinal cancer treatment usually affects
different kidney components and the damage induced is proportional to the dosage and duration of
radiotherapy. However, excessive exposure can lead to a syndrome of kidney failure called radiation
nephropathy, which is, interestingly, a secondary cause for FSGS. This condition clinically manifests itself
by proteinuria and reduced glomerular filtration rate and eventually leads to end-stage renal disease
(ESRD), hence requiring either dialysis or transplantation [148–152]. In order to assess whether SMPDL3b
plays a role in radiation-induced podocytopathy, podocytes were exposed to increasing doses of radiation.
Within two hours after radiation, cultured human podocytes exhibited remarkable morphological changes.
The actin-binding protein ezrin translocated from the cell periphery, where it stabilizes the link between
the actin filaments and the plasma membrane, into the cytosol, resulting in cytoskeleton remodeling.
Also, radiation led to decreased SMPDL3b protein levels, whereas overexpressing SMPDL3b protected
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podocytes from post-radiation ezrin relocation, cytoskeleton remodeling and apoptosis. Interestingly,
when investigating cellular sphingolipid levels, an increase in ceramide levels after irradiation was
observed in all the podocytes except those overexpressing SMPDL3b. In addition, a time-dependent drop
in neutral ceramidase activity and in sphingosine and S1P levels were observed. The administration
of exogenous S1P mitigated the radiation-induced cytoskeletal changes, thus proving the protective
role of S1P against radiation injury. The proposed mechanism to explain these changes is that radiation
induces downregulation of SMPDL3b thus altering sphingolipid metabolism by raising ceramide levels and
decreasing sphingosine and S1P. This leads to a marked dysregulation of the cytoskeletal network within the
podocyte, ultimately causing cellular injury which explains the observed clinical phenotype [153] (Figure 2).
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Figure 2. Proposed role for sphingomyelinase phosphodiesterase acid-like 3b (SMPDL3b) in radiation
and diabetic kidney disease-induced podocytopathy. Radiation causes the downregulation of
SMPDL3B, altering the sphingolipid metabolism. Ceramide levels increase while sphingosine
and sphingosine 1 phosphate levels decrease. This leads to the dephosphorylation of ezrin and
subsequent actin remodeling and resorption of filopodia. However, in diabetic kidney disease (DKD)
SMPDL3B levels are elevated and bind to increased circulating soluble urokinase plasminogen activator
receptor (suPAR), thus inhibiting the activation of αVβ3, but enabling RhoA activation and increasing
podocyte apoptosis.

Cardiovascular morbidities are a leading cause of death in patients with end-stage renal disease
(ESRD) [154]. Indeed, patients on dialysis and those who have received a kidney transplant have
a much higher rate of cardiac diseases as compared to the general population. These include fatal
ischemic heart disease, atherothrombotic vascular disease and myocardial infarctions [155–157].
However, since vascular risks alone do not explain the elevated cardiovascular mortality in renal
patients, hyperhomocysteinemia has been suspected to play a role. In fact, studies support the
presence of a physiological link between blood homocysteine levels and heart diseases [158,159].
Homocysteine is the transmethylation metabolite of the essential amino acid methionine. This product
is present in different forms in the plasma, the fasting level of most of which is increased in renal
patients, even with mild degrees of renal insufficiency, leading to a pathological condition known
as hyperhomocysteinemia (hHcys) [160–162]. Excess homocysteine in hyperhomocysteinemia is
cardiotoxic since it can cause lipid oxidation, impaired thrombolysis and vascular smooth muscle
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differentiation, as well as vasodilation and monocyte chemotaxis, all of which predispose for severe
cardiovascular complications [158,163,164].

The role of the sphingomyelinase pathway has been investigated in hyperhomocysteinemia.
Boini and colleagues first assessed levels of homocysteine in wild-type mice and in mice where
ASMase expression was either silenced by a short hairpin RNA (shRNA) or knocked out (ASMase−/−).
No difference was observed in the plasma levels of homocysteine in both models thus affirming
that ASMase does not play a role in the pathophysiology of hyperhomocysteinemia. However,
ASMase gene deficiency lead to noticeable results when such mice were fed a folate-free diet, a diet
known to retard methionine metabolism, thereby inducing hyperhomocysteinemia. ASMase+/+

mice showed increased levels of ceramide, ASMase mRNA production and activity and urinary
proteinuria. Local oxidative stress was also observed in these mice through the production of
oxygen free-radicals (O2

−.) by NADPH (nicotinamide adenine dinucleotide phosphate) oxidases
in the cortex of the glomeruli and in the podocytes, thus leading to glomerular damage. Many studies
that were conducted using pharmacological and/or molecular interventions have in fact reported
that the observed activation of NADPH oxidase occurs due to the ceramide produced by the action
of hyperhomocysteinemia [165–168]. However, ASMase−/− mice had significantly lower levels of
ceramide, ASMase activity and O2

−. production showing that the glomerulus was protected from
oxidative stress and injury [169]. This indicates an active role of the sphingomyelinase pathway in
hyperhomocysteinemia-induced renal injury and stress.

The role of ASMase in hHcys was further studied using the cystathionine β-synthase (Cbs)
gene and ASMase gene double knockout mice model. Cbs gene knockout mice (Cbs+/−) are known
to develop hHcys characterized by glomerular oxidative stress and podocyte injury. The results
showed that ASMase+/+ and ASMase−/− homozygous mice, and heterozygous mice with ASMase+/−,
have the same blood Hcys levels in the same Cbs+/+ background. However, hHcys itself increases
ASMase activity and renal ceramide levels, mainly in the podocytes, in Cbs+/−/ASMase+/+ and
Cbs+/−/ASMase+/− mice, which is accompanied by oxidative stress, glomerular damage and
proteinuria. This enzymatic activity can be attenuated in ASMase−/− mice with hHcys, thus reducing
podocyte ceramide accumulation and curbing the observed renal complications. Therefore,
the sphingomyelinase pathway plays a pathogenic role in hHcys and its blockade can be protective
against hHcys-inducted renal nephropathy [125].

3.3. Sphingosine-1-Phosphate

Sphingosine-1-phosphate (S1P), a sphingolipid produced intracellularly in organelles and the
plasma membrane through multi-step metabolic pathways, is also involved in regulating and
maintaining normal podocyte function [170–173]. S1P acts via G-protein coupled receptors. Five S1P
receptors (S1PRs) have been identified to date (S1PR1 to S1PR5) but only receptors 1–3 have been
described in the kidney [153]. S1PRs are thought to be involved in multiple critical cellular and
physiological processes including cell survival, proliferation, differentiation, secretion and migration
and immune responses [54,174–180]. Hence, the physiological concentration of S1P is actively
maintained within an optimal narrow range through the coordinating activities of biosynthetic and
biodegradative enzymes [173,181,182].

In radiation-induced podocyte injury, S1P plays a renal protective effect. In fact, the treatment
of irradiated podocytes with exogenous S1P attenuated cytoskeletal remodeling post-radiation,
suggesting that S1PRs play a critical role in maintaining the podocytes integrity upon stress and
hence their role in the ultrafiltration barrier [153]. In addition, work done by Awad and colleagues
demonstrated that independent S1PR1 activation using selective and non-selective S1PR1 agonists
such as SEW2871 and FTY720 reduces early stage diabetic nephropathy. The levels of both albumin
and tumor necrosis factor α (TNF-α) in the urine of diabetic rats dropped significantly upon treatment
with the mentioned agonists [183]. S1PR1 agonists have also been noted to play a role in mitigating
renal injury due to ischemia reperfusion [184].
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A recent study conducted by Schuman et al. investigated the role of S1P lyase in the kidney,
among other tissues. Sphingosine-1-phosphate lyase (SGPL1) is an intracellular microsomal enzyme
expressed to varying degrees in almost all mammalian cells and carries a critical irreversible step in
sphingolipid metabolism by degrading S1P. Prasad et al. showed that loss of function mutation in the
gene coding this decisive enzyme can lead to a wide array of systemic problems. In fact, a partial or
total lack of S1P lyase leads to the accumulation of S1P in body tissues and disturbs the established
S1P concentration gradient between blood and lymphatic tissues, hindering normal immune-related
physiological processes [185–194]. Interestingly though, current research supports the potential
use of S1P lyase inhibition as a treatment option for various autoimmune disorders [192,193,195].
To assess the safety of this approach, a tamoxifen-inducible partial S1P lyase-deficient mice were
generated. Kidney alterations were observed in mice that are partially S1P lyase deficient upon
induction of SRBC-induced DTH (sheep red blood cells-induced delayed-type hypersensitivity),
including the matrix deposition and destruction of some capillaries, both of which are characteristics of
glumerulopathy. Also, S1P lyase-deficient mice, in which DTH was not experimentally induced,
revealed podocyte foot processes effacement associated with a decrease in serum protein and
albumin levels and an increase in urine protein-creatinine levels, characteristics of glomerular injury,
podocytopathy and proteinuria. This was accompanied by a remarkable increase in S1P levels in the
kidney. Taken together, these results suggest that S1P accumulation due to S1P lyase deficiency causes
renal damage and podocyte dysfunction. The mice were housed ad libitum and followed for over
a year. The mortality rate in the partially S1P lyase-deficient mice was much higher than in the control
mice. The animals who survived till the end of experimental period showed severe renal damage
upon histopathological examination. Kidney analysis revealed glomerular lesions, focal and segmental
glomerulosclerosis, interstitial fibrosis and tubular degeneration. This was accompanied by chronic
proteinuria. It is important to note that those pathological alterations linked to reduction in S1P lyase
activity are obtained in partially deficient mice due to the lethality of a totally deficient phenotype.
The reduction of S1P lyase levels caused, in addition to podocyte-based kidney toxicity, manifestation
of skin irritation and platelet activation in the studied mice, putting in question the safety of treating
systematic chronic autoimmune diseases with S1P lyase inhibitors [58].

Steroid-resistant nephrotic syndrome (SRNS) is a congenital condition that often presents with
a set of serious comorbidities including adrenal insufficiency, pathological skin conditions and/or
neurological defects [59]. A recent study of seven families affected by SRNS, nine different mutations
were identified, upon whole exome sequencing (WES), in the gene coding for SGPL1. SRNS is
a serious condition which, when accompanied with resistance to other immunosuppressive reagents,
can lead to kidney failure. It is responsible for 15% of all end-stage renal disease cases that manifest in
individuals younger than 25 years old [196,197]. Further investigations revealed focal segmental
glomerulosclerosis at the kidney level. Knocking down SGPL1 in rat mesangial cells inhibited
their normal physiological functions. The obtained abnormal phenotype was partially corrected
through using specific S1PR1 antagonists. In addition, mutant flies that lacked SGPL1 enzymatic
activity demonstrated a nephrotic syndrome-like phenotype, which is equivalent to podocyte injury in
humans [59]. Hence, S1P imbalance is indeed implicated in injurious nephrotic diseases, among other
complications, further affirming that potential therapeutic role of S1P lyase inhibitors.

4. Sphingolipids as Potential Therapeutic Targets

In the light of the important role of the sphingolipid metabolism in maintaining podocyte and
glomerular integrity, recent studies have focused on these bioactive lipids as potential therapeutic
targets for various nephropathic diseases.

Focal segmental glomerulosclerosis and diabetic kidney disease are marked by proteinuria and
are a major cause for progressive end-stage renal disease. In this context, SMPDL3b has been recently
reported to be downregulated in FSGS but increased in DKD. The hypothesis postulated was that
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targeting SMPDL3b and regulating its expression levels would indeed protect the podocytes from
damage [124,134].

Rituximab is a genetically engineered dimeric monoclonal antibody that is designed to target
CD20 expressed on B lymphocytes [198], and happens to bind to SMPDL3b through a specific
amino acid sequence [199]. It is currently used as a therapy for different immune diseases and
has been beneficial in multiple kidney diseases such as steroid resistant nephrotic syndrome and
acute allograph rejections [200]. Earlier findings revealed that treating kidney transplant patients with
rituximab reduces the incidence of post-transplant proteinuria, and leads to a decrease in the estimated
glomerular filtration rate (GFR). Interestingly, patients who redeveloped FSGS showed a lower number
of SMPDL3b-expressing podocytes [124].

Our recent work showed that podocyte SMPDL3b levels are downregulated after radiation,
leading to actin remodeling and the resorption of filopodia. However, the overexpression of SMPDL3b
mitigated these changes [153]. Pre-treatment with rituximab inhibited SMPDL3b downregulation
and, thus, had a similar effect to SMPDL3b overexpression. In fact, radiation-induced cytoskeletal
changes were not observed and caspase-3 cleavage was attenuated in the pre-treated podocytes [153].
These findings place rituximab in a clinician’s perspective as a potential protective agent against
radiation-induced kidney injury and not only as an anti-tumor agent.

Another therapy targeting sphingolipids is enzyme replacement therapy (ERT). ERT presents the
lacking enzyme to the body of the patient, not correcting the initial cause of the disease but delivering
the right amount of the enzyme that would make up for its deficiency [201]. Different studies have
demonstrated the beneficial effect of ERT in reducing glycosphingolipid lysosomal accumulation.
ERT with α galactosidase A was found to help clear Gb3 accumulation in Fabry’s disease patients.
In an ERT study that extended over a period of 11 months of a population of 58 Fabry’s disease
patients, renal biopsies revealed that nearly all cell types of the kidney had cleared Gb3 accumulation,
especially in podocytes and distal tubular epithelium [202]. A more recent study showed that ERT
with agalsidase β leads to a significant decrease of 73% of Gb3 accumulation from the podocytes after
one year of treatment [203]. In addition, prolonged ERT with agalsidase reduced Gb3 inclusions in
podocytes and microalbuminuria in Fabry’s patients, thus advocating for a protective role of ERT on
early nephropathy [204].

Although ERT is a very promising treatment for lipid storage disease, it alone is not able to
reverse all the damage induced by these diseases. Substrate reduction theory, postulated by Norman
Radin, is another possible therapeutic approach for lipid storage diseases [205]. Substrate reduction
theory is based on reducing the accumulation of lipids by inhibiting their synthesis rather than
correcting the initial enzymatic dysfunction. Slowing the biosynthesis of the accumulating lipid by
synthesis inhibition would balance the rate of hydrolysis, thus preventing its accumulation and the
resulting complications [206]. The substrate reduction theory was first carried on the lipid storage
disease Gaucher disease type 1. Gaucher disease is a recessive autosomal disease characterized by
a loss or lack of activity in β-glucocerebrosidase, leading to the accumulation of the sphingolipid
glucosylceramide in lysosomes [207]. This glucosylceramide synthase is responsible for the synthesis
of glucosylceramide from ceramide and UDP-glucose, a critical step in glucocerebroside-based
glycosphingolipid pathway [208]. Further products of this pathway are globotriaosylceramide and
gangliosides, as seen in Figure 3. These glycosphingolipids are involved in the pathology of even other
lipid storage diseases such as Fabry’s, Tay Sachs and Gangliosidosis. Inhibiting the first step of this
pathway therefore became a potential therapeutic target for these diseases replacing or complementing
enzyme replacement therapy. PDMP was the first glucosylceramide synthase inhibitor designed
and was found to be effective in reducing lipid accumulation over different cell lines and animal
models of Fabry’s disease [205]. Even better, a derivative of PDMP called EtDO-P4 was tested
on Fabry’s disease cellular models. As early as three days of treatment, approximately 70% of
globotriaosylceramide was depleted [209]. A model of black C57BL/6 Fabry’s disease mice also showed
a concentration-dependent decrease of glucosylceramide accumulation in kidney, liver and spleen after
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treatment with EtDO-P4 [210]. However, both Fabry’s and Gaucher disease exhibit accumulations of
lipids in the CNS (central nervous system) involving neurological symptoms and leading to premature
death, and since the mentioned pharmaceutical chemicals cannot cross the blood brain barrier [211],
other glucosylceramide synthase inhibitors are currently in clinical development [212].
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Figure 3. Substrate reduction theory: Glucosylceramide synthase inhibitors are therapeutic targets
for lipid storing diseases. Glucosylceramide synthase inhibitors (EtDO-P4, C10 and Eliglustat
tartrate) halt the synthesis of glucosylceramide, thereby preventing the downstream synthesis
and accumulation of different sphingolipids involved in diseases such as Gaucher, Fabry’s,
Tay-Sachs and GM1-Gangliosidosis.

Targeting glucosylceramide synthesis has been studied in renal injury related to chemotherapy.
Cisplatin, a widely used chemotherapeutic agent for solid tumors, is associated with acute kidney
injury (AKI). Both ceramide and glucosylceramides were found to play a role in cisplatin-induced
kidney injury. Treating mice with cisplatin elevated the levels of both ceramide and glucosylceramide
in the renal cortex, leading to the activation of inflammatory responses, oxidative stress and apoptosis.
The co-administration of Amitriptyline, an inhibitor of acid sphingomyelinase, and Myriocin,
an inhibitor of the de novo ceramide synthetic pathway, prevented the accumulation of ceramide in the
renal cortex. However, inhibiting the conversion of ceramide into glucosylceramide using C10, a GCS
inhibitor, exacerbated cisplatin-induced renal injury, suggesting that glucosylceramide has a protective
role and acts as buffer in order to attenuate the effect of ceramide accumulation [213] (Figure 3).

5. Conslusions

In addition to cancer biology and inflammation, sphingolipids are evolving as key players in renal
disorders. Recent studies identify SMPDL3b, GCS, S1P lyase and SK as key targets within sphingolipid
metabolism for developing novel therapies against renal disorders. Several sphigolipid analogues,
recombinant enzymes , and their inhibitors are expected to enter clinical trials aimed at treating various
nephropathies, in the near future.
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